gtsam/gtsam_unstable/slam/SmartProjectionHessianFactor.h

607 lines
24 KiB
C++

/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file ProjectionFactor.h
* @brief Basic bearing factor from 2D measurement
* @author Chris Beall
* @author Luca Carlone
* @author Zsolt Kira
*/
#pragma once
#include <gtsam/nonlinear/NonlinearFactor.h>
#include <gtsam/geometry/PinholeCamera.h>
#include <gtsam/geometry/Cal3Bundler.h>
#include <gtsam/geometry/Pose3.h>
#include <gtsam/linear/HessianFactor.h>
#include <vector>
#include <gtsam_unstable/geometry/triangulation.h>
#include <boost/optional.hpp>
//#include <boost/assign.hpp>
static bool isDebug=false;
namespace gtsam {
// default threshold for selective relinearization
static double defaultLinThreshold = -1; // 1e-7; // 0.01
// default threshold for retriangulation
static double defaultTriangThreshold = 1e-5;
// default threshold for rank deficient triangulation
static double defaultRankTolerance = 1; // this value may be scenario-dependent and has to be larger in presence of larger noise
// if set to true will use the rotation-only version for degenerate cases
static bool manageDegeneracy = true;
/**
* Structure for storing some state memory, used to speed up optimization
* @addtogroup SLAM
*/
class SmartProjectionHessianFactorState {
public:
static int lastID;
int ID;
SmartProjectionHessianFactorState() {
ID = lastID++;
calculatedHessian = false;
}
// Linearization point
Values values;
std::vector<Pose3> cameraPosesLinearization;
// Triangulation at current linearization point
Point3 point;
std::vector<Pose3> cameraPosesTriangulation;
bool degenerate;
bool cheiralityException;
// Overall reprojection error
double overallError;
std::vector<Pose3> cameraPosesError;
// Hessian representation (after Schur complement)
bool calculatedHessian;
Matrix H;
Vector gs_vector;
std::vector<Matrix> Gs;
std::vector<Vector> gs;
double f;
// C = Hl'Hl
// Cinv = inv(Hl'Hl)
// Matrix3 Cinv;
// E = Hx'Hl
// w = Hl'b
};
int SmartProjectionHessianFactorState::lastID = 0;
/**
* The calibration is known here.
* @addtogroup SLAM
*/
template<class POSE, class LANDMARK, class CALIBRATION = Cal3_S2>
class SmartProjectionHessianFactor: public NonlinearFactor {
protected:
// Keep a copy of measurement and calibration for I/O
std::vector<Point2> measured_; ///< 2D measurement for each of the m views
std::vector< SharedNoiseModel > noise_; ///< noise model used
///< (important that the order is the same as the keys that we use to create the factor)
std::vector< boost::shared_ptr<CALIBRATION> > K_all_; ///< shared pointer to calibration object (one for each camera)
double retriangulationThreshold; ///< threshold to decide whether to re-triangulate
double rankTolerance; ///< threshold to decide whether triangulation is degenerate
double linearizationThreshold; ///< threshold to decide whether to re-linearize
boost::optional<POSE> body_P_sensor_; ///< The pose of the sensor in the body frame (one for each camera)
boost::shared_ptr<SmartProjectionHessianFactorState> state_;
// verbosity handling for Cheirality Exceptions
bool throwCheirality_; ///< If true, rethrows Cheirality exceptions (default: false)
bool verboseCheirality_; ///< If true, prints text for Cheirality exceptions (default: false)
public:
/// shorthand for base class type
typedef NonlinearFactor Base;
/// shorthand for this class
typedef SmartProjectionHessianFactor<POSE, LANDMARK, CALIBRATION> This;
/// shorthand for a smart pointer to a factor
typedef boost::shared_ptr<This> shared_ptr;
/// shorthand for smart projection factor state variable
typedef boost::shared_ptr<SmartProjectionHessianFactorState> SmartFactorStatePtr;
/**
* Constructor
* @param poseKeys is the set of indices corresponding to the cameras observing the same landmark
* @param measured is the 2m dimensional location of the projection of a single landmark in the m views (the measurements)
* @param model is the standard deviation (current version assumes that the uncertainty is the same for all views)
* @param K shared pointer to the constant calibration
* @param body_P_sensor is the transform from body to sensor frame (default identity)
*/
SmartProjectionHessianFactor(
const double rankTol = defaultRankTolerance,
const double linThreshold = defaultLinThreshold,
boost::optional<POSE> body_P_sensor = boost::none,
SmartFactorStatePtr state = SmartFactorStatePtr(new SmartProjectionHessianFactorState())) :
retriangulationThreshold(defaultTriangThreshold), rankTolerance(rankTol),
linearizationThreshold(linThreshold), body_P_sensor_(body_P_sensor),
state_(state), throwCheirality_(false), verboseCheirality_(false) {}
/** Virtual destructor */
virtual ~SmartProjectionHessianFactor() {}
/**
* add a new measurement and pose key
* @param measured is the 2m dimensional location of the projection of a single landmark in the m view (the measurement)
* @param poseKey is the index corresponding to the camera observing the same landmark
*/
void add(const Point2 measured_i, const Key poseKey_i, const SharedNoiseModel noise_i,
const boost::shared_ptr<CALIBRATION> K_i) {
measured_.push_back(measured_i);
keys_.push_back(poseKey_i);
noise_.push_back(noise_i);
K_all_.push_back(K_i);
}
void add(std::vector< Point2 > measurements, std::vector< Key > poseKeys, std::vector< SharedNoiseModel > noises,
std::vector< boost::shared_ptr<CALIBRATION> > Ks) {
for(size_t i = 0; i < measurements.size(); i++) {
measured_.push_back(measurements.at(i));
keys_.push_back(poseKeys.at(i));
noise_.push_back(noises.at(i));
K_all_.push_back(Ks.at(i));
}
}
void add(std::vector< Point2 > measurements, std::vector< Key > poseKeys, const SharedNoiseModel noise,
const boost::shared_ptr<CALIBRATION> K) {
for(size_t i = 0; i < measurements.size(); i++) {
measured_.push_back(measurements.at(i));
keys_.push_back(poseKeys.at(i));
noise_.push_back(noise);
K_all_.push_back(K);
}
}
// This function checks if the new linearization point is the same as the one used for previous triangulation
// (if not, a new triangulation is needed)
static bool decideIfTriangulate(std::vector<Pose3> cameraPoses, std::vector<Pose3> oldPoses, double retriangulationThreshold) {
// several calls to linearize will be done from the same linearization point, hence it is not needed to re-triangulate
// Note that this is not yet "selecting linearization", that will come later, and we only check if the
// current linearization is the "same" (up to tolerance) w.r.t. the last time we triangulated the point
// if we do not have a previous linearization point or the new linearization point includes more poses
if(oldPoses.empty() || (cameraPoses.size() != oldPoses.size()))
return true;
for(size_t i = 0; i < cameraPoses.size(); i++) {
if (!cameraPoses[i].equals(oldPoses[i], retriangulationThreshold)) {
return true; // at least two poses are different, hence we retriangulate
}
}
return false; // if we arrive to this point all poses are the same and we don't need re-triangulation
}
// This function checks if the new linearization point is 'close' to the previous one used for linearization
// (if not, a new linearization is needed)
static bool decideIfLinearize(std::vector<Pose3> cameraPoses, std::vector<Pose3> oldPoses, double linearizationThreshold) {
// "selective linearization"
// The function evaluates how close are the old and the new poses, transformed in the ref frame of the first pose
// (we only care about the "rigidity" of the poses, not about their absolute pose)
// if we do not have a previous linearization point or the new linearization point includes more poses
if(oldPoses.empty() || (cameraPoses.size() != oldPoses.size()))
return true;
Pose3 firstCameraPose;
Pose3 firstCameraPoseOld;
for(size_t i = 0; i < cameraPoses.size(); i++) {
if(i==0){ // we store the initial pose, this is useful for selective re-linearization
firstCameraPose = cameraPoses[i];
firstCameraPoseOld = oldPoses[i];
continue;
}
// we compare the poses in the frame of the first pose
Pose3 localCameraPose = firstCameraPose.between(cameraPoses[i]);
Pose3 localCameraPoseOld = firstCameraPoseOld.between(oldPoses[i]);
if (!localCameraPose.equals(localCameraPoseOld, linearizationThreshold)) {
return true; // at least two "relative" poses are different, hence we re-linerize
}
}
return false; // if we arrive to this point all poses are the same and we don't need re-linerize
}
/**
* print
* @param s optional string naming the factor
* @param keyFormatter optional formatter useful for printing Symbols
*/
void print(const std::string& s = "", const KeyFormatter& keyFormatter = DefaultKeyFormatter) const {
std::cout << s << "SmartProjectionHessianFactor, z = \n ";
BOOST_FOREACH(const Point2& p, measured_) {
std::cout << "measurement, p = "<< p << std::endl;
}
BOOST_FOREACH(const SharedNoiseModel& noise_i, noise_) {
noise_i->print("noise model = ");
}
BOOST_FOREACH(const boost::shared_ptr<CALIBRATION>& K, K_all_) {
K->print("calibration = ");
}
if(this->body_P_sensor_){
this->body_P_sensor_->print(" sensor pose in body frame: ");
}
Base::print("", keyFormatter);
}
/// equals
virtual bool equals(const NonlinearFactor& p, double tol = 1e-9) const {
const This *e = dynamic_cast<const This*>(&p);
bool areMeasurementsEqual = true;
for(size_t i = 0; i < measured_.size(); i++) {
if(this->measured_.at(i).equals(e->measured_.at(i), tol) == false)
areMeasurementsEqual = false;
break;
}
return e
&& Base::equals(p, tol)
&& areMeasurementsEqual
//&& this->K_->equals(*e->K_all_, tol);
&& ((!body_P_sensor_ && !e->body_P_sensor_) || (body_P_sensor_ && e->body_P_sensor_ && body_P_sensor_->equals(*e->body_P_sensor_)));
}
/// get the dimension of the factor (number of rows on linearization)
virtual size_t dim() const {
return 6*keys_.size();
}
/// linearize returns a Hessianfactor that is an approximation of error(p)
virtual boost::shared_ptr<GaussianFactor> linearize(const Values& values) const {
bool blockwise = false; // the full matrix version in faster
int dim_landmark = 3; // for degenerate instances this will become 2 (direction-only information)
// Create structures for Hessian Factors
unsigned int numKeys = keys_.size();
if(isDebug) {std::cout<< " numKeys = "<< numKeys<<std::endl; }
std::vector<Index> js;
std::vector<Matrix> Gs(numKeys*(numKeys+1)/2);
std::vector<Vector> gs(numKeys);
double f=0;
// Collect all poses (Cameras)
std::vector<Pose3> cameraPoses;
BOOST_FOREACH(const Key& k, keys_) {
Pose3 cameraPose;
if(body_P_sensor_) { cameraPose = values.at<Pose3>(k).compose(*body_P_sensor_);}
else { cameraPose = values.at<Pose3>(k);}
cameraPoses.push_back(cameraPose);
}
if(cameraPoses.size() < 2){ // if we have a single pose the corresponding factor is uninformative
state_->degenerate = true;
BOOST_FOREACH(gtsam::Matrix& m, Gs) m = zeros(6, 6);
BOOST_FOREACH(Vector& v, gs) v = zero(6);
return HessianFactor::shared_ptr(new HessianFactor(keys_, Gs, gs, f)); // TODO: Debug condition, uncomment when fixed
}
bool retriangulate = decideIfTriangulate(cameraPoses, state_->cameraPosesTriangulation, retriangulationThreshold);
if(retriangulate) {// we store the current poses used for triangulation
state_->cameraPosesTriangulation = cameraPoses;
}
if (retriangulate) {
// We triangulate the 3D position of the landmark
try {
// std::cout << "triangulatePoint3 i \n" << rankTolerance << std::endl;
state_->point = triangulatePoint3(cameraPoses, measured_, K_all_, rankTolerance);
state_->degenerate = false;
state_->cheiralityException = false;
} catch( TriangulationUnderconstrainedException& e) {
// if TriangulationUnderconstrainedException can be
// 1) There is a single pose for triangulation - this should not happen because we checked the number of poses before
// 2) The rank of the matrix used for triangulation is < 3: rotation-only, parallel cameras (or motion towards the landmark)
// in the second case we want to use a rotation-only smart factor
//std::cout << "Triangulation failed " << e.what() << std::endl; // point triangulated at infinity
state_->degenerate = true;
state_->cheiralityException = false;
} catch( TriangulationCheiralityException& e) {
// point is behind one of the cameras: can be the case of close-to-parallel cameras or may depend on outliers
// we manage this case by either discarding the smart factor, or imposing a rotation-only constraint
//std::cout << e.what() << std::end;
state_->cheiralityException = true;
}
}
if (!manageDegeneracy && (state_->cheiralityException || state_->degenerate) ){
// std::cout << "In linearize: exception" << std::endl;
BOOST_FOREACH(gtsam::Matrix& m, Gs) m = zeros(6, 6);
BOOST_FOREACH(Vector& v, gs) v = zero(6);
return HessianFactor::shared_ptr(new HessianFactor(keys_, Gs, gs, f));
}
if (state_->cheiralityException || state_->degenerate){ // if we want to manage the exceptions with rotation-only factors
state_->degenerate = true;
dim_landmark = 2;
}
bool doLinearize;
if (linearizationThreshold >= 0){//by convention if linearizationThreshold is negative we always relinearize
// std::cout << "Temporary disabled" << std::endl;
doLinearize = decideIfLinearize(cameraPoses, state_->cameraPosesLinearization, linearizationThreshold);
}
else{
doLinearize = true;
}
if (doLinearize) {
state_->cameraPosesLinearization = cameraPoses;
}
if(!doLinearize){ // return the previous Hessian factor
// std::cout << "Using stored factors :) " << std::endl;
return HessianFactor::shared_ptr(new HessianFactor(keys_, state_->Gs, state_->gs, state_->f));
}
if (blockwise == false){ // version with full matrix multiplication
// ==========================================================================================================
Matrix Hx2 = zeros(2 * numKeys, 6 * numKeys);
Matrix Hl2 = zeros(2 * numKeys, dim_landmark);
Vector b2 = zero(2 * numKeys);
if(state_->degenerate){
for(size_t i = 0; i < measured_.size(); i++) {
Pose3 pose = cameraPoses.at(i);
PinholeCamera<CALIBRATION> camera(pose, *K_all_.at(i));
if(i==0){ // first pose
state_->point = camera.backprojectPointAtInfinity(measured_.at(i));
// 3D parametrization of point at infinity: [px py 1]
// std::cout << "point_ " << state_->point<< std::endl;
}
Matrix Hxi, Hli;
Vector bi = -( camera.projectPointAtInfinity(state_->point,Hxi,Hli) - measured_.at(i) ).vector();
// std::cout << "Hxi \n" << Hxi<< std::endl;
// std::cout << "Hli \n" << Hli<< std::endl;
noise_.at(i)-> WhitenSystem(Hxi, Hli, bi);
f += bi.squaredNorm();
Hx2.block( 2*i, 6*i, 2, 6 ) = Hxi;
Hl2.block( 2*i, 0, 2, 2 ) = Hli;
subInsert(b2,bi,2*i);
}
// std::cout << "Hx2 \n" << Hx2<< std::endl;
// std::cout << "Hl2 \n" << Hl2<< std::endl;
}
else{
for(size_t i = 0; i < measured_.size(); i++) {
Pose3 pose = cameraPoses.at(i);
PinholeCamera<CALIBRATION> camera(pose, *K_all_.at(i));
Matrix Hxi, Hli;
Vector bi;
try {
bi = -( camera.project(state_->point,Hxi,Hli) - measured_.at(i) ).vector();
} catch ( CheiralityException& e) {
std::cout << "Cheirality exception " << state_->ID << std::endl;
exit(EXIT_FAILURE);
}
noise_.at(i)-> WhitenSystem(Hxi, Hli, bi);
f += bi.squaredNorm();
Hx2.block( 2*i, 6*i, 2, 6 ) = Hxi;
Hl2.block( 2*i, 0, 2, 3 ) = Hli;
subInsert(b2,bi,2*i);
}
}
// Shur complement trick
Matrix H(6 * numKeys, 6 * numKeys);
Matrix C2;
Vector gs_vector;
C2.noalias() = (Hl2.transpose() * Hl2).inverse();
H.noalias() = Hx2.transpose() * (Hx2 - (Hl2 * (C2 * (Hl2.transpose() * Hx2))));
gs_vector.noalias() = Hx2.transpose() * (b2 - (Hl2 * (C2 * (Hl2.transpose() * b2))));
// Populate Gs and gs
int GsCount2 = 0;
for(size_t i1 = 0; i1 < numKeys; i1++) {
gs.at(i1) = sub(gs_vector, 6*i1, 6*i1 + 6);
for(size_t i2 = 0; i2 < numKeys; i2++) {
if (i2 >= i1) {
Gs.at(GsCount2) = H.block(6*i1, 6*i2, 6, 6);
GsCount2++;
}
}
}
}
// ==========================================================================================================
if(linearizationThreshold >= 0){ // if we do not use selective relinearization we don't need to store these variables
state_->calculatedHessian = true;
state_->Gs = Gs;
state_->gs = gs;
state_->f = f;
}
return HessianFactor::shared_ptr(new HessianFactor(keys_, Gs, gs, f));
}
/**
* Calculate the error of the factor.
* This is the log-likelihood, e.g. \f$ 0.5(h(x)-z)^2/\sigma^2 \f$ in case of Gaussian.
* In this class, we take the raw prediction error \f$ h(x)-z \f$, ask the noise model
* to transform it to \f$ (h(x)-z)^2/\sigma^2 \f$, and then multiply by 0.5.
*/
virtual double error(const Values& values) const {
if (this->active(values)) {
double overallError=0;
// Collect all poses (Cameras)
std::vector<Pose3> cameraPoses;
BOOST_FOREACH(const Key& k, keys_) {
Pose3 cameraPose;
if(body_P_sensor_) { cameraPose = values.at<Pose3>(k).compose(*body_P_sensor_);}
else { cameraPose = values.at<Pose3>(k);}
cameraPoses.push_back(cameraPose);
if(0&& isDebug) {cameraPose.print("cameraPose = "); }
}
if(cameraPoses.size() < 2){ // if we have a single pose the corresponding factor is uninformative
return 0.0;
}
bool retriangulate = decideIfTriangulate(cameraPoses, state_->cameraPosesTriangulation, retriangulationThreshold);
if(retriangulate) {// we store the current poses used for triangulation
state_->cameraPosesTriangulation = cameraPoses;
}
if (retriangulate) {
// We triangulate the 3D position of the landmark
try {
state_->point = triangulatePoint3(cameraPoses, measured_, K_all_, rankTolerance);
state_->degenerate = false;
state_->cheiralityException = false;
} catch( TriangulationUnderconstrainedException& e) {
// if TriangulationUnderconstrainedException can be
// 1) There is a single pose for triangulation - this should not happen because we checked the number of poses before
// 2) The rank of the matrix used for triangulation is < 3: rotation-only, parallel cameras (or motion towards the landmark)
// in the second case we want to use a rotation-only smart factor
//std::cout << "Triangulation failed " << e.what() << std::endl; // point triangulated at infinity
state_->degenerate = true;
state_->cheiralityException = false;
} catch( TriangulationCheiralityException& e) {
// point is behind one of the cameras: can be the case of close-to-parallel cameras or may depend on outliers
// we manage this case by either discarding the smart factor, or imposing a rotation-only constraint
//std::cout << e.what() << std::end;
state_->cheiralityException = true;
}
}
if (!manageDegeneracy && (state_->cheiralityException || state_->degenerate) ){
// if we don't want to manage the exceptions we discard the factor
// std::cout << "In error evaluation: exception" << std::endl;
return 0.0;
}
if (state_->cheiralityException || state_->degenerate){ // if we want to manage the exceptions with rotation-only factors
state_->degenerate = true;
}
if(state_->degenerate){
// return 0.0; // TODO: this maybe should be zero?
for(size_t i = 0; i < measured_.size(); i++) {
Pose3 pose = cameraPoses.at(i);
PinholeCamera<CALIBRATION> camera(pose, *K_all_.at(i));
if(i==0){ // first pose
state_->point = camera.backprojectPointAtInfinity(measured_.at(i)); // 3D parametrization of point at infinity
}
Point2 reprojectionError(camera.projectPointAtInfinity(state_->point) - measured_.at(i));
overallError += 0.5 * noise_.at(i)->distance( reprojectionError.vector() );
//overallError += reprojectionError.vector().norm();
}
return overallError;
}
else{
for(size_t i = 0; i < measured_.size(); i++) {
Pose3 pose = cameraPoses.at(i);
PinholeCamera<CALIBRATION> camera(pose, *K_all_.at(i));
try {
Point2 reprojectionError(camera.project(state_->point) - measured_.at(i));
//std::cout << "Reprojection error: " << reprojectionError << std::endl;
overallError += 0.5 * noise_.at(i)->distance( reprojectionError.vector() );
//overallError += reprojectionError.vector().norm();
} catch ( CheiralityException& e) {
std::cout << "Cheirality exception " << state_->ID << std::endl;
exit(EXIT_FAILURE);
}
}
return overallError;
}
} else { // else of active flag
return 0.0;
}
}
/** return the measurements */
const Vector& measured() const {
return measured_;
}
/** return the noise model */
const SharedNoiseModel& noise() const {
return noise_;
}
/** return the landmark */
boost::optional<Point3> point() const {
return state_->point;
}
/** return the calibration object */
inline const boost::shared_ptr<CALIBRATION> calibration() const {
return K_all_;
}
/** return verbosity */
inline bool verboseCheirality() const { return verboseCheirality_; }
/** return flag for throwing cheirality exceptions */
inline bool throwCheirality() const { return throwCheirality_; }
private:
/// Serialization function
friend class boost::serialization::access;
template<class ARCHIVE>
void serialize(ARCHIVE & ar, const unsigned int version) {
ar & BOOST_SERIALIZATION_BASE_OBJECT_NVP(Base);
ar & BOOST_SERIALIZATION_NVP(measured_);
ar & BOOST_SERIALIZATION_NVP(K_all_);
ar & BOOST_SERIALIZATION_NVP(body_P_sensor_);
ar & BOOST_SERIALIZATION_NVP(throwCheirality_);
ar & BOOST_SERIALIZATION_NVP(verboseCheirality_);
}
};
} // \ namespace gtsam