/* ---------------------------------------------------------------------------- * GTSAM Copyright 2010, Georgia Tech Research Corporation, * Atlanta, Georgia 30332-0415 * All Rights Reserved * Authors: Frank Dellaert, et al. (see THANKS for the full author list) * See LICENSE for the license information * -------------------------------------------------------------------------- */ /** * @file ProjectionFactor.h * @brief Basic bearing factor from 2D measurement * @author Chris Beall * @author Luca Carlone * @author Zsolt Kira */ #pragma once #include #include #include #include #include #include #include #include //#include static bool isDebug=false; namespace gtsam { // default threshold for selective relinearization static double defaultLinThreshold = -1; // 1e-7; // 0.01 // default threshold for retriangulation static double defaultTriangThreshold = 1e-5; // default threshold for rank deficient triangulation static double defaultRankTolerance = 1; // this value may be scenario-dependent and has to be larger in presence of larger noise // if set to true will use the rotation-only version for degenerate cases static bool manageDegeneracy = true; /** * Structure for storing some state memory, used to speed up optimization * @addtogroup SLAM */ class SmartProjectionHessianFactorState { public: static int lastID; int ID; SmartProjectionHessianFactorState() { ID = lastID++; calculatedHessian = false; } // Linearization point Values values; std::vector cameraPosesLinearization; // Triangulation at current linearization point Point3 point; std::vector cameraPosesTriangulation; bool degenerate; bool cheiralityException; // Overall reprojection error double overallError; std::vector cameraPosesError; // Hessian representation (after Schur complement) bool calculatedHessian; Matrix H; Vector gs_vector; std::vector Gs; std::vector gs; double f; // C = Hl'Hl // Cinv = inv(Hl'Hl) // Matrix3 Cinv; // E = Hx'Hl // w = Hl'b }; int SmartProjectionHessianFactorState::lastID = 0; /** * The calibration is known here. * @addtogroup SLAM */ template class SmartProjectionHessianFactor: public NonlinearFactor { protected: // Keep a copy of measurement and calibration for I/O std::vector measured_; ///< 2D measurement for each of the m views std::vector< SharedNoiseModel > noise_; ///< noise model used ///< (important that the order is the same as the keys that we use to create the factor) std::vector< boost::shared_ptr > K_all_; ///< shared pointer to calibration object (one for each camera) double retriangulationThreshold; ///< threshold to decide whether to re-triangulate double rankTolerance; ///< threshold to decide whether triangulation is degenerate double linearizationThreshold; ///< threshold to decide whether to re-linearize boost::optional body_P_sensor_; ///< The pose of the sensor in the body frame (one for each camera) boost::shared_ptr state_; // verbosity handling for Cheirality Exceptions bool throwCheirality_; ///< If true, rethrows Cheirality exceptions (default: false) bool verboseCheirality_; ///< If true, prints text for Cheirality exceptions (default: false) public: /// shorthand for base class type typedef NonlinearFactor Base; /// shorthand for this class typedef SmartProjectionHessianFactor This; /// shorthand for a smart pointer to a factor typedef boost::shared_ptr shared_ptr; /// shorthand for smart projection factor state variable typedef boost::shared_ptr SmartFactorStatePtr; /** * Constructor * @param poseKeys is the set of indices corresponding to the cameras observing the same landmark * @param measured is the 2m dimensional location of the projection of a single landmark in the m views (the measurements) * @param model is the standard deviation (current version assumes that the uncertainty is the same for all views) * @param K shared pointer to the constant calibration * @param body_P_sensor is the transform from body to sensor frame (default identity) */ SmartProjectionHessianFactor( const double rankTol = defaultRankTolerance, const double linThreshold = defaultLinThreshold, boost::optional body_P_sensor = boost::none, SmartFactorStatePtr state = SmartFactorStatePtr(new SmartProjectionHessianFactorState())) : retriangulationThreshold(defaultTriangThreshold), rankTolerance(rankTol), linearizationThreshold(linThreshold), body_P_sensor_(body_P_sensor), state_(state), throwCheirality_(false), verboseCheirality_(false) {} /** Virtual destructor */ virtual ~SmartProjectionHessianFactor() {} /** * add a new measurement and pose key * @param measured is the 2m dimensional location of the projection of a single landmark in the m view (the measurement) * @param poseKey is the index corresponding to the camera observing the same landmark */ void add(const Point2 measured_i, const Key poseKey_i, const SharedNoiseModel noise_i, const boost::shared_ptr K_i) { measured_.push_back(measured_i); keys_.push_back(poseKey_i); noise_.push_back(noise_i); K_all_.push_back(K_i); } void add(std::vector< Point2 > measurements, std::vector< Key > poseKeys, std::vector< SharedNoiseModel > noises, std::vector< boost::shared_ptr > Ks) { for(size_t i = 0; i < measurements.size(); i++) { measured_.push_back(measurements.at(i)); keys_.push_back(poseKeys.at(i)); noise_.push_back(noises.at(i)); K_all_.push_back(Ks.at(i)); } } void add(std::vector< Point2 > measurements, std::vector< Key > poseKeys, const SharedNoiseModel noise, const boost::shared_ptr K) { for(size_t i = 0; i < measurements.size(); i++) { measured_.push_back(measurements.at(i)); keys_.push_back(poseKeys.at(i)); noise_.push_back(noise); K_all_.push_back(K); } } // This function checks if the new linearization point is the same as the one used for previous triangulation // (if not, a new triangulation is needed) static bool decideIfTriangulate(std::vector cameraPoses, std::vector oldPoses, double retriangulationThreshold) { // several calls to linearize will be done from the same linearization point, hence it is not needed to re-triangulate // Note that this is not yet "selecting linearization", that will come later, and we only check if the // current linearization is the "same" (up to tolerance) w.r.t. the last time we triangulated the point // if we do not have a previous linearization point or the new linearization point includes more poses if(oldPoses.empty() || (cameraPoses.size() != oldPoses.size())) return true; for(size_t i = 0; i < cameraPoses.size(); i++) { if (!cameraPoses[i].equals(oldPoses[i], retriangulationThreshold)) { return true; // at least two poses are different, hence we retriangulate } } return false; // if we arrive to this point all poses are the same and we don't need re-triangulation } // This function checks if the new linearization point is 'close' to the previous one used for linearization // (if not, a new linearization is needed) static bool decideIfLinearize(std::vector cameraPoses, std::vector oldPoses, double linearizationThreshold) { // "selective linearization" // The function evaluates how close are the old and the new poses, transformed in the ref frame of the first pose // (we only care about the "rigidity" of the poses, not about their absolute pose) // if we do not have a previous linearization point or the new linearization point includes more poses if(oldPoses.empty() || (cameraPoses.size() != oldPoses.size())) return true; Pose3 firstCameraPose; Pose3 firstCameraPoseOld; for(size_t i = 0; i < cameraPoses.size(); i++) { if(i==0){ // we store the initial pose, this is useful for selective re-linearization firstCameraPose = cameraPoses[i]; firstCameraPoseOld = oldPoses[i]; continue; } // we compare the poses in the frame of the first pose Pose3 localCameraPose = firstCameraPose.between(cameraPoses[i]); Pose3 localCameraPoseOld = firstCameraPoseOld.between(oldPoses[i]); if (!localCameraPose.equals(localCameraPoseOld, linearizationThreshold)) { return true; // at least two "relative" poses are different, hence we re-linerize } } return false; // if we arrive to this point all poses are the same and we don't need re-linerize } /** * print * @param s optional string naming the factor * @param keyFormatter optional formatter useful for printing Symbols */ void print(const std::string& s = "", const KeyFormatter& keyFormatter = DefaultKeyFormatter) const { std::cout << s << "SmartProjectionHessianFactor, z = \n "; BOOST_FOREACH(const Point2& p, measured_) { std::cout << "measurement, p = "<< p << std::endl; } BOOST_FOREACH(const SharedNoiseModel& noise_i, noise_) { noise_i->print("noise model = "); } BOOST_FOREACH(const boost::shared_ptr& K, K_all_) { K->print("calibration = "); } if(this->body_P_sensor_){ this->body_P_sensor_->print(" sensor pose in body frame: "); } Base::print("", keyFormatter); } /// equals virtual bool equals(const NonlinearFactor& p, double tol = 1e-9) const { const This *e = dynamic_cast(&p); bool areMeasurementsEqual = true; for(size_t i = 0; i < measured_.size(); i++) { if(this->measured_.at(i).equals(e->measured_.at(i), tol) == false) areMeasurementsEqual = false; break; } return e && Base::equals(p, tol) && areMeasurementsEqual //&& this->K_->equals(*e->K_all_, tol); && ((!body_P_sensor_ && !e->body_P_sensor_) || (body_P_sensor_ && e->body_P_sensor_ && body_P_sensor_->equals(*e->body_P_sensor_))); } /// get the dimension of the factor (number of rows on linearization) virtual size_t dim() const { return 6*keys_.size(); } /// linearize returns a Hessianfactor that is an approximation of error(p) virtual boost::shared_ptr linearize(const Values& values) const { bool blockwise = false; // the full matrix version in faster int dim_landmark = 3; // for degenerate instances this will become 2 (direction-only information) // Create structures for Hessian Factors unsigned int numKeys = keys_.size(); if(isDebug) {std::cout<< " numKeys = "<< numKeys< js; std::vector Gs(numKeys*(numKeys+1)/2); std::vector gs(numKeys); double f=0; // Collect all poses (Cameras) std::vector cameraPoses; BOOST_FOREACH(const Key& k, keys_) { Pose3 cameraPose; if(body_P_sensor_) { cameraPose = values.at(k).compose(*body_P_sensor_);} else { cameraPose = values.at(k);} cameraPoses.push_back(cameraPose); } if(cameraPoses.size() < 2){ // if we have a single pose the corresponding factor is uninformative state_->degenerate = true; BOOST_FOREACH(gtsam::Matrix& m, Gs) m = zeros(6, 6); BOOST_FOREACH(Vector& v, gs) v = zero(6); return HessianFactor::shared_ptr(new HessianFactor(keys_, Gs, gs, f)); // TODO: Debug condition, uncomment when fixed } bool retriangulate = decideIfTriangulate(cameraPoses, state_->cameraPosesTriangulation, retriangulationThreshold); if(retriangulate) {// we store the current poses used for triangulation state_->cameraPosesTriangulation = cameraPoses; } if (retriangulate) { // We triangulate the 3D position of the landmark try { // std::cout << "triangulatePoint3 i \n" << rankTolerance << std::endl; state_->point = triangulatePoint3(cameraPoses, measured_, K_all_, rankTolerance); state_->degenerate = false; state_->cheiralityException = false; } catch( TriangulationUnderconstrainedException& e) { // if TriangulationUnderconstrainedException can be // 1) There is a single pose for triangulation - this should not happen because we checked the number of poses before // 2) The rank of the matrix used for triangulation is < 3: rotation-only, parallel cameras (or motion towards the landmark) // in the second case we want to use a rotation-only smart factor //std::cout << "Triangulation failed " << e.what() << std::endl; // point triangulated at infinity state_->degenerate = true; state_->cheiralityException = false; } catch( TriangulationCheiralityException& e) { // point is behind one of the cameras: can be the case of close-to-parallel cameras or may depend on outliers // we manage this case by either discarding the smart factor, or imposing a rotation-only constraint //std::cout << e.what() << std::end; state_->cheiralityException = true; } } if (!manageDegeneracy && (state_->cheiralityException || state_->degenerate) ){ // std::cout << "In linearize: exception" << std::endl; BOOST_FOREACH(gtsam::Matrix& m, Gs) m = zeros(6, 6); BOOST_FOREACH(Vector& v, gs) v = zero(6); return HessianFactor::shared_ptr(new HessianFactor(keys_, Gs, gs, f)); } if (state_->cheiralityException || state_->degenerate){ // if we want to manage the exceptions with rotation-only factors state_->degenerate = true; dim_landmark = 2; } bool doLinearize; if (linearizationThreshold >= 0){//by convention if linearizationThreshold is negative we always relinearize // std::cout << "Temporary disabled" << std::endl; doLinearize = decideIfLinearize(cameraPoses, state_->cameraPosesLinearization, linearizationThreshold); } else{ doLinearize = true; } if (doLinearize) { state_->cameraPosesLinearization = cameraPoses; } if(!doLinearize){ // return the previous Hessian factor // std::cout << "Using stored factors :) " << std::endl; return HessianFactor::shared_ptr(new HessianFactor(keys_, state_->Gs, state_->gs, state_->f)); } if (blockwise == false){ // version with full matrix multiplication // ========================================================================================================== Matrix Hx2 = zeros(2 * numKeys, 6 * numKeys); Matrix Hl2 = zeros(2 * numKeys, dim_landmark); Vector b2 = zero(2 * numKeys); if(state_->degenerate){ for(size_t i = 0; i < measured_.size(); i++) { Pose3 pose = cameraPoses.at(i); PinholeCamera camera(pose, *K_all_.at(i)); if(i==0){ // first pose state_->point = camera.backprojectPointAtInfinity(measured_.at(i)); // 3D parametrization of point at infinity: [px py 1] // std::cout << "point_ " << state_->point<< std::endl; } Matrix Hxi, Hli; Vector bi = -( camera.projectPointAtInfinity(state_->point,Hxi,Hli) - measured_.at(i) ).vector(); // std::cout << "Hxi \n" << Hxi<< std::endl; // std::cout << "Hli \n" << Hli<< std::endl; noise_.at(i)-> WhitenSystem(Hxi, Hli, bi); f += bi.squaredNorm(); Hx2.block( 2*i, 6*i, 2, 6 ) = Hxi; Hl2.block( 2*i, 0, 2, 2 ) = Hli; subInsert(b2,bi,2*i); } // std::cout << "Hx2 \n" << Hx2<< std::endl; // std::cout << "Hl2 \n" << Hl2<< std::endl; } else{ for(size_t i = 0; i < measured_.size(); i++) { Pose3 pose = cameraPoses.at(i); PinholeCamera camera(pose, *K_all_.at(i)); Matrix Hxi, Hli; Vector bi; try { bi = -( camera.project(state_->point,Hxi,Hli) - measured_.at(i) ).vector(); } catch ( CheiralityException& e) { std::cout << "Cheirality exception " << state_->ID << std::endl; exit(EXIT_FAILURE); } noise_.at(i)-> WhitenSystem(Hxi, Hli, bi); f += bi.squaredNorm(); Hx2.block( 2*i, 6*i, 2, 6 ) = Hxi; Hl2.block( 2*i, 0, 2, 3 ) = Hli; subInsert(b2,bi,2*i); } } // Shur complement trick Matrix H(6 * numKeys, 6 * numKeys); Matrix C2; Vector gs_vector; C2.noalias() = (Hl2.transpose() * Hl2).inverse(); H.noalias() = Hx2.transpose() * (Hx2 - (Hl2 * (C2 * (Hl2.transpose() * Hx2)))); gs_vector.noalias() = Hx2.transpose() * (b2 - (Hl2 * (C2 * (Hl2.transpose() * b2)))); // Populate Gs and gs int GsCount2 = 0; for(size_t i1 = 0; i1 < numKeys; i1++) { gs.at(i1) = sub(gs_vector, 6*i1, 6*i1 + 6); for(size_t i2 = 0; i2 < numKeys; i2++) { if (i2 >= i1) { Gs.at(GsCount2) = H.block(6*i1, 6*i2, 6, 6); GsCount2++; } } } } // ========================================================================================================== if(linearizationThreshold >= 0){ // if we do not use selective relinearization we don't need to store these variables state_->calculatedHessian = true; state_->Gs = Gs; state_->gs = gs; state_->f = f; } return HessianFactor::shared_ptr(new HessianFactor(keys_, Gs, gs, f)); } /** * Calculate the error of the factor. * This is the log-likelihood, e.g. \f$ 0.5(h(x)-z)^2/\sigma^2 \f$ in case of Gaussian. * In this class, we take the raw prediction error \f$ h(x)-z \f$, ask the noise model * to transform it to \f$ (h(x)-z)^2/\sigma^2 \f$, and then multiply by 0.5. */ virtual double error(const Values& values) const { if (this->active(values)) { double overallError=0; // Collect all poses (Cameras) std::vector cameraPoses; BOOST_FOREACH(const Key& k, keys_) { Pose3 cameraPose; if(body_P_sensor_) { cameraPose = values.at(k).compose(*body_P_sensor_);} else { cameraPose = values.at(k);} cameraPoses.push_back(cameraPose); if(0&& isDebug) {cameraPose.print("cameraPose = "); } } if(cameraPoses.size() < 2){ // if we have a single pose the corresponding factor is uninformative return 0.0; } bool retriangulate = decideIfTriangulate(cameraPoses, state_->cameraPosesTriangulation, retriangulationThreshold); if(retriangulate) {// we store the current poses used for triangulation state_->cameraPosesTriangulation = cameraPoses; } if (retriangulate) { // We triangulate the 3D position of the landmark try { state_->point = triangulatePoint3(cameraPoses, measured_, K_all_, rankTolerance); state_->degenerate = false; state_->cheiralityException = false; } catch( TriangulationUnderconstrainedException& e) { // if TriangulationUnderconstrainedException can be // 1) There is a single pose for triangulation - this should not happen because we checked the number of poses before // 2) The rank of the matrix used for triangulation is < 3: rotation-only, parallel cameras (or motion towards the landmark) // in the second case we want to use a rotation-only smart factor //std::cout << "Triangulation failed " << e.what() << std::endl; // point triangulated at infinity state_->degenerate = true; state_->cheiralityException = false; } catch( TriangulationCheiralityException& e) { // point is behind one of the cameras: can be the case of close-to-parallel cameras or may depend on outliers // we manage this case by either discarding the smart factor, or imposing a rotation-only constraint //std::cout << e.what() << std::end; state_->cheiralityException = true; } } if (!manageDegeneracy && (state_->cheiralityException || state_->degenerate) ){ // if we don't want to manage the exceptions we discard the factor // std::cout << "In error evaluation: exception" << std::endl; return 0.0; } if (state_->cheiralityException || state_->degenerate){ // if we want to manage the exceptions with rotation-only factors state_->degenerate = true; } if(state_->degenerate){ // return 0.0; // TODO: this maybe should be zero? for(size_t i = 0; i < measured_.size(); i++) { Pose3 pose = cameraPoses.at(i); PinholeCamera camera(pose, *K_all_.at(i)); if(i==0){ // first pose state_->point = camera.backprojectPointAtInfinity(measured_.at(i)); // 3D parametrization of point at infinity } Point2 reprojectionError(camera.projectPointAtInfinity(state_->point) - measured_.at(i)); overallError += 0.5 * noise_.at(i)->distance( reprojectionError.vector() ); //overallError += reprojectionError.vector().norm(); } return overallError; } else{ for(size_t i = 0; i < measured_.size(); i++) { Pose3 pose = cameraPoses.at(i); PinholeCamera camera(pose, *K_all_.at(i)); try { Point2 reprojectionError(camera.project(state_->point) - measured_.at(i)); //std::cout << "Reprojection error: " << reprojectionError << std::endl; overallError += 0.5 * noise_.at(i)->distance( reprojectionError.vector() ); //overallError += reprojectionError.vector().norm(); } catch ( CheiralityException& e) { std::cout << "Cheirality exception " << state_->ID << std::endl; exit(EXIT_FAILURE); } } return overallError; } } else { // else of active flag return 0.0; } } /** return the measurements */ const Vector& measured() const { return measured_; } /** return the noise model */ const SharedNoiseModel& noise() const { return noise_; } /** return the landmark */ boost::optional point() const { return state_->point; } /** return the calibration object */ inline const boost::shared_ptr calibration() const { return K_all_; } /** return verbosity */ inline bool verboseCheirality() const { return verboseCheirality_; } /** return flag for throwing cheirality exceptions */ inline bool throwCheirality() const { return throwCheirality_; } private: /// Serialization function friend class boost::serialization::access; template void serialize(ARCHIVE & ar, const unsigned int version) { ar & BOOST_SERIALIZATION_BASE_OBJECT_NVP(Base); ar & BOOST_SERIALIZATION_NVP(measured_); ar & BOOST_SERIALIZATION_NVP(K_all_); ar & BOOST_SERIALIZATION_NVP(body_P_sensor_); ar & BOOST_SERIALIZATION_NVP(throwCheirality_); ar & BOOST_SERIALIZATION_NVP(verboseCheirality_); } }; } // \ namespace gtsam