Some refactoring, small edits, TODOs for Ivan
parent
0af87e7298
commit
26a7647629
|
@ -2,6 +2,7 @@
|
|||
* @file ActiveSetSolver.h
|
||||
* @brief Abstract class above for solving problems with the abstract set method.
|
||||
* @author Ivan Dario Jimenez
|
||||
* @author Duy Nguyen Ta
|
||||
* @date 1/25/16
|
||||
*/
|
||||
#pragma once
|
||||
|
@ -11,78 +12,39 @@
|
|||
|
||||
namespace gtsam {
|
||||
class ActiveSetSolver {
|
||||
protected:
|
||||
public:
|
||||
typedef std::vector<std::pair<Key, Matrix> > TermsContainer;
|
||||
|
||||
protected:
|
||||
KeySet constrainedKeys_; //!< all constrained keys, will become factors in dual graphs
|
||||
GaussianFactorGraph baseGraph_; //!< factor graphs of cost factors and linear equalities.
|
||||
//!< used to initialize the working set factor graph,
|
||||
//!< to which active inequalities will be added
|
||||
VariableIndex costVariableIndex_, equalityVariableIndex_,
|
||||
inequalityVariableIndex_; //!< index to corresponding factors to build dual graphs
|
||||
ActiveSetSolver() :
|
||||
constrainedKeys_() {
|
||||
}
|
||||
/**
|
||||
* Compute step size alpha for the new solution x' = xk + alpha*p, where alpha \in [0,1]
|
||||
*
|
||||
* @return a tuple of (alpha, factorIndex, sigmaIndex) where (factorIndex, sigmaIndex)
|
||||
* is the constraint that has minimum alpha, or (-1,-1) if alpha = 1.
|
||||
* This constraint will be added to the working set and become active
|
||||
* in the next iteration
|
||||
*/
|
||||
boost::tuple<double, int> computeStepSize(
|
||||
const InequalityFactorGraph& workingSet, const VectorValues& xk,
|
||||
const VectorValues& p, const double& startAlpha) const {
|
||||
double minAlpha = startAlpha;
|
||||
int closestFactorIx = -1;
|
||||
for (size_t factorIx = 0; factorIx < workingSet.size(); ++factorIx) {
|
||||
const LinearInequality::shared_ptr& factor = workingSet.at(factorIx);
|
||||
double b = factor->getb()[0];
|
||||
// only check inactive factors
|
||||
if (!factor->active()) {
|
||||
// Compute a'*p
|
||||
double aTp = factor->dotProductRow(p);
|
||||
|
||||
// Check if a'*p >0. Don't care if it's not.
|
||||
if (aTp <= 0)
|
||||
continue;
|
||||
|
||||
// Compute a'*xk
|
||||
double aTx = factor->dotProductRow(xk);
|
||||
|
||||
// alpha = (b - a'*xk) / (a'*p)
|
||||
double alpha = (b - aTx) / aTp;
|
||||
// We want the minimum of all those max alphas
|
||||
if (alpha < minAlpha) {
|
||||
closestFactorIx = factorIx;
|
||||
minAlpha = alpha;
|
||||
}
|
||||
}
|
||||
}
|
||||
return boost::make_tuple(minAlpha, closestFactorIx);
|
||||
}
|
||||
public:
|
||||
/// Create a dual factor
|
||||
virtual JacobianFactor::shared_ptr createDualFactor(Key key,
|
||||
const InequalityFactorGraph& workingSet,
|
||||
const VectorValues& delta) const = 0;
|
||||
|
||||
//******************************************************************************
|
||||
/// Collect the Jacobian terms for a dual factor
|
||||
template<typename FACTOR>
|
||||
TermsContainer collectDualJacobians(Key key, const FactorGraph<FACTOR> &graph,
|
||||
const VariableIndex &variableIndex) const {
|
||||
/// Collect the Jacobian terms for a dual factor
|
||||
template <typename FACTOR>
|
||||
TermsContainer collectDualJacobians(
|
||||
Key key, const FactorGraph<FACTOR>& graph,
|
||||
const VariableIndex& variableIndex) const {
|
||||
TermsContainer Aterms;
|
||||
if (variableIndex.find(key) != variableIndex.end()) {
|
||||
BOOST_FOREACH(size_t factorIx, variableIndex[key]) {
|
||||
typename FACTOR::shared_ptr factor = graph.at(factorIx);
|
||||
if (!factor->active()) continue;
|
||||
Matrix Ai = factor->getA(factor->find(key)).transpose();
|
||||
Aterms.push_back(std::make_pair(factor->dualKey(), Ai));
|
||||
BOOST_FOREACH (size_t factorIx, variableIndex[key]) {
|
||||
typename FACTOR::shared_ptr factor = graph.at(factorIx);
|
||||
if (!factor->active()) continue;
|
||||
Matrix Ai = factor->getA(factor->find(key)).transpose();
|
||||
Aterms.push_back(std::make_pair(factor->dualKey(), Ai));
|
||||
}
|
||||
}
|
||||
return Aterms;
|
||||
}
|
||||
return Aterms;
|
||||
}
|
||||
|
||||
/**
|
||||
* The goal of this function is to find currently active inequality constraints
|
||||
|
@ -118,36 +80,83 @@ public:
|
|||
* And we want to remove the worst one with the largest lambda from the active set.
|
||||
*
|
||||
*/
|
||||
int identifyLeavingConstraint(const InequalityFactorGraph& workingSet,
|
||||
const VectorValues& lambdas) const {
|
||||
int worstFactorIx = -1;
|
||||
// preset the maxLambda to 0.0: if lambda is <= 0.0, the constraint is either
|
||||
// inactive or a good inequality constraint, so we don't care!
|
||||
double maxLambda = 0.0;
|
||||
for (size_t factorIx = 0; factorIx < workingSet.size(); ++factorIx) {
|
||||
const LinearInequality::shared_ptr& factor = workingSet.at(factorIx);
|
||||
if (factor->active()) {
|
||||
double lambda = lambdas.at(factor->dualKey())[0];
|
||||
if (lambda > maxLambda) {
|
||||
worstFactorIx = factorIx;
|
||||
maxLambda = lambda;
|
||||
int identifyLeavingConstraint(const InequalityFactorGraph& workingSet,
|
||||
const VectorValues& lambdas) const {
|
||||
int worstFactorIx = -1;
|
||||
// preset the maxLambda to 0.0: if lambda is <= 0.0, the constraint is
|
||||
// either
|
||||
// inactive or a good inequality constraint, so we don't care!
|
||||
double maxLambda = 0.0;
|
||||
for (size_t factorIx = 0; factorIx < workingSet.size(); ++factorIx) {
|
||||
const LinearInequality::shared_ptr& factor = workingSet.at(factorIx);
|
||||
if (factor->active()) {
|
||||
double lambda = lambdas.at(factor->dualKey())[0];
|
||||
if (lambda > maxLambda) {
|
||||
worstFactorIx = factorIx;
|
||||
maxLambda = lambda;
|
||||
}
|
||||
}
|
||||
}
|
||||
return worstFactorIx;
|
||||
}
|
||||
return worstFactorIx;
|
||||
}
|
||||
|
||||
//******************************************************************************
|
||||
GaussianFactorGraph::shared_ptr buildDualGraph(
|
||||
const InequalityFactorGraph& workingSet, const VectorValues& delta) const {
|
||||
GaussianFactorGraph::shared_ptr dualGraph(new GaussianFactorGraph());
|
||||
BOOST_FOREACH(Key key, constrainedKeys_) {
|
||||
// Each constrained key becomes a factor in the dual graph
|
||||
JacobianFactor::shared_ptr dualFactor = createDualFactor(key, workingSet,
|
||||
delta);
|
||||
if (!dualFactor->empty()) dualGraph->push_back(dualFactor);
|
||||
/// TODO: comment
|
||||
GaussianFactorGraph::shared_ptr buildDualGraph(
|
||||
const InequalityFactorGraph& workingSet,
|
||||
const VectorValues& delta) const {
|
||||
GaussianFactorGraph::shared_ptr dualGraph(new GaussianFactorGraph());
|
||||
BOOST_FOREACH (Key key, constrainedKeys_) {
|
||||
// Each constrained key becomes a factor in the dual graph
|
||||
JacobianFactor::shared_ptr dualFactor =
|
||||
createDualFactor(key, workingSet, delta);
|
||||
if (!dualFactor->empty()) dualGraph->push_back(dualFactor);
|
||||
}
|
||||
return dualGraph;
|
||||
}
|
||||
return dualGraph;
|
||||
}
|
||||
|
||||
protected:
|
||||
|
||||
ActiveSetSolver() : constrainedKeys_() {}
|
||||
|
||||
/**
|
||||
* Compute step size alpha for the new solution x' = xk + alpha*p, where alpha \in [0,1]
|
||||
*
|
||||
* @return a tuple of (alpha, factorIndex, sigmaIndex) where (factorIndex, sigmaIndex)
|
||||
* is the constraint that has minimum alpha, or (-1,-1) if alpha = 1.
|
||||
* This constraint will be added to the working set and become active
|
||||
* in the next iteration.
|
||||
*/
|
||||
boost::tuple<double, int> computeStepSize(
|
||||
const InequalityFactorGraph& workingSet, const VectorValues& xk,
|
||||
const VectorValues& p, const double& startAlpha) const {
|
||||
double minAlpha = startAlpha;
|
||||
int closestFactorIx = -1;
|
||||
for (size_t factorIx = 0; factorIx < workingSet.size(); ++factorIx) {
|
||||
const LinearInequality::shared_ptr& factor = workingSet.at(factorIx);
|
||||
double b = factor->getb()[0];
|
||||
// only check inactive factors
|
||||
if (!factor->active()) {
|
||||
// Compute a'*p
|
||||
double aTp = factor->dotProductRow(p);
|
||||
|
||||
// Check if a'*p >0. Don't care if it's not.
|
||||
if (aTp <= 0)
|
||||
continue;
|
||||
|
||||
// Compute a'*xk
|
||||
double aTx = factor->dotProductRow(xk);
|
||||
|
||||
// alpha = (b - a'*xk) / (a'*p)
|
||||
double alpha = (b - aTx) / aTp;
|
||||
// We want the minimum of all those max alphas
|
||||
if (alpha < minAlpha) {
|
||||
closestFactorIx = factorIx;
|
||||
minAlpha = alpha;
|
||||
}
|
||||
}
|
||||
}
|
||||
return boost::make_tuple(minAlpha, closestFactorIx);
|
||||
}
|
||||
|
||||
};
|
||||
}
|
||||
} // namespace gtsam
|
||||
|
|
|
@ -18,8 +18,9 @@
|
|||
|
||||
#pragma once
|
||||
|
||||
#include <gtsam/inference/FactorGraph.h>
|
||||
#include <gtsam_unstable/linear/LinearInequality.h>
|
||||
#include <gtsam/linear/VectorValues.h>
|
||||
#include <gtsam/inference/FactorGraph.h>
|
||||
|
||||
namespace gtsam {
|
||||
|
||||
|
|
|
@ -6,24 +6,24 @@
|
|||
*/
|
||||
|
||||
#include <gtsam_unstable/linear/LPSolver.h>
|
||||
#include <gtsam/linear/GaussianFactorGraph.h>
|
||||
#include <gtsam_unstable/linear/InfeasibleInitialValues.h>
|
||||
|
||||
#include <gtsam/linear/GaussianFactorGraph.h>
|
||||
|
||||
namespace gtsam {
|
||||
LPSolver::LPSolver(const LP &lp) :
|
||||
lp_(lp) {
|
||||
LPSolver::LPSolver(const LP &lp) : lp_(lp) {
|
||||
// Push back factors that are the same in every iteration to the base graph.
|
||||
// Those include the equality constraints and zero priors for keys that are not
|
||||
// in the cost
|
||||
// Those include the equality constraints and zero priors for keys that are
|
||||
// not in the cost
|
||||
baseGraph_.push_back(lp_.equalities);
|
||||
|
||||
// Collect key-dim map of all variables in the constraints to create their zero priors later
|
||||
// Collect key-dim map of all variables in the constraints to create their
|
||||
// zero priors later
|
||||
keysDim_ = collectKeysDim(lp_.equalities);
|
||||
KeyDimMap keysDim2 = collectKeysDim(lp_.inequalities);
|
||||
keysDim_.insert(keysDim2.begin(), keysDim2.end());
|
||||
|
||||
// Create and push zero priors of constrained variables that do not exist in the cost function
|
||||
// Create and push zero priors of constrained variables that do not exist in
|
||||
// the cost function
|
||||
baseGraph_.push_back(*createZeroPriors(lp_.cost.keys(), keysDim_));
|
||||
|
||||
// Variable index
|
||||
|
@ -36,7 +36,7 @@ LPSolver::LPSolver(const LP &lp) :
|
|||
GaussianFactorGraph::shared_ptr LPSolver::createZeroPriors(
|
||||
const KeyVector &costKeys, const KeyDimMap &keysDim) const {
|
||||
GaussianFactorGraph::shared_ptr graph(new GaussianFactorGraph());
|
||||
BOOST_FOREACH(Key key, keysDim | boost::adaptors::map_keys) {
|
||||
for (Key key: keysDim | boost::adaptors::map_keys) {
|
||||
if (find(costKeys.begin(), costKeys.end(), key) == costKeys.end()) {
|
||||
size_t dim = keysDim.at(key);
|
||||
graph->push_back(JacobianFactor(key, eye(dim), zero(dim)));
|
||||
|
@ -47,35 +47,36 @@ GaussianFactorGraph::shared_ptr LPSolver::createZeroPriors(
|
|||
|
||||
LPState LPSolver::iterate(const LPState &state) const {
|
||||
// Solve with the current working set
|
||||
// LP: project the objective neggradient to the constraint's null space
|
||||
// LP: project the objective neg. gradient to the constraint's null space
|
||||
// to find the direction to move
|
||||
VectorValues newValues = solveWithCurrentWorkingSet(state.values,
|
||||
state.workingSet);
|
||||
VectorValues newValues =
|
||||
solveWithCurrentWorkingSet(state.values, state.workingSet);
|
||||
|
||||
// If we CAN'T move further
|
||||
// LP: projection on the constraints' nullspace is zero: we are at a vertex
|
||||
if (newValues.equals(state.values, 1e-7)) {
|
||||
// Find and remove the bad ineq constraint by computing its lambda
|
||||
// Find and remove the bad inequality constraint by computing its lambda
|
||||
// Compute lambda from the dual graph
|
||||
// LP: project the objective's gradient onto each constraint gradient to obtain the dual scaling factors
|
||||
// LP: project the objective's gradient onto each constraint gradient to
|
||||
// obtain the dual scaling factors
|
||||
// is it true??
|
||||
GaussianFactorGraph::shared_ptr dualGraph = buildDualGraph(state.workingSet,
|
||||
newValues);
|
||||
GaussianFactorGraph::shared_ptr dualGraph =
|
||||
buildDualGraph(state.workingSet, newValues);
|
||||
VectorValues duals = dualGraph->optimize();
|
||||
// LP: see which ineq constraint has wrong pulling direction, i.e., dual < 0
|
||||
// LP: see which inequality constraint has wrong pulling direction, i.e., dual < 0
|
||||
int leavingFactor = identifyLeavingConstraint(state.workingSet, duals);
|
||||
// If all inequality constraints are satisfied: We have the solution!!
|
||||
if (leavingFactor < 0) {
|
||||
// TODO If we still have infeasible equality constraints: the problem is over-constrained. No solution!
|
||||
// TODO If we still have infeasible equality constraints: the problem is
|
||||
// over-constrained. No solution!
|
||||
// ...
|
||||
return LPState(newValues, duals, state.workingSet, true,
|
||||
state.iterations + 1);
|
||||
return LPState(newValues, duals, state.workingSet, true, state.iterations + 1);
|
||||
} else {
|
||||
// Inactivate the leaving constraint
|
||||
// LP: remove the bad ineq constraint out of the working set
|
||||
InequalityFactorGraph newWorkingSet = state.workingSet;
|
||||
newWorkingSet.at(leavingFactor)->inactivate();
|
||||
return LPState(newValues, duals, newWorkingSet, false,
|
||||
state.iterations + 1);
|
||||
return LPState(newValues, duals, newWorkingSet, false, state.iterations + 1);
|
||||
}
|
||||
} else {
|
||||
// If we CAN make some progress, i.e. p_k != 0
|
||||
|
@ -86,16 +87,14 @@ LPState LPSolver::iterate(const LPState &state) const {
|
|||
double alpha;
|
||||
int factorIx;
|
||||
VectorValues p = newValues - state.values;
|
||||
boost::tie(alpha, factorIx) = // using 16.41
|
||||
boost::tie(alpha, factorIx) = // using 16.41
|
||||
computeStepSize(state.workingSet, state.values, p);
|
||||
// also add to the working set the one that complains the most
|
||||
InequalityFactorGraph newWorkingSet = state.workingSet;
|
||||
if (factorIx >= 0)
|
||||
newWorkingSet.at(factorIx)->activate();
|
||||
if (factorIx >= 0) newWorkingSet.at(factorIx)->activate();
|
||||
// step!
|
||||
newValues = state.values + alpha * p;
|
||||
return LPState(newValues, state.duals, newWorkingSet, false,
|
||||
state.iterations + 1);
|
||||
return LPState(newValues, state.duals, newWorkingSet, false, state.iterations + 1);
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -114,37 +113,35 @@ GaussianFactorGraph::shared_ptr LPSolver::createLeastSquareFactors(
|
|||
}
|
||||
|
||||
VectorValues LPSolver::solveWithCurrentWorkingSet(
|
||||
const VectorValues &xk,
|
||||
const InequalityFactorGraph &workingSet) const {
|
||||
GaussianFactorGraph workingGraph = baseGraph_; // || X - Xk + g ||^2
|
||||
const VectorValues &xk, const InequalityFactorGraph &workingSet) const {
|
||||
GaussianFactorGraph workingGraph = baseGraph_; // || X - Xk + g ||^2
|
||||
workingGraph.push_back(*createLeastSquareFactors(lp_.cost, xk));
|
||||
|
||||
BOOST_FOREACH(const LinearInequality::shared_ptr& factor, workingSet) {
|
||||
for (const LinearInequality::shared_ptr &factor: workingSet) {
|
||||
if (factor->active()) workingGraph.push_back(factor);
|
||||
}
|
||||
return workingGraph.optimize();
|
||||
}
|
||||
|
||||
boost::shared_ptr<JacobianFactor> LPSolver::createDualFactor(
|
||||
Key key,
|
||||
const InequalityFactorGraph &workingSet,
|
||||
Key key, const InequalityFactorGraph &workingSet,
|
||||
const VectorValues &delta) const {
|
||||
|
||||
// Transpose the A matrix of constrained factors to have the jacobian of the dual key
|
||||
TermsContainer Aterms = collectDualJacobians < LinearEquality
|
||||
> (key, lp_.equalities, equalityVariableIndex_);
|
||||
TermsContainer AtermsInequalities = collectDualJacobians < LinearInequality
|
||||
> (key, workingSet, inequalityVariableIndex_);
|
||||
// Transpose the A matrix of constrained factors to have the jacobian of the
|
||||
// dual key
|
||||
TermsContainer Aterms = collectDualJacobians<LinearEquality>(
|
||||
key, lp_.equalities, equalityVariableIndex_);
|
||||
TermsContainer AtermsInequalities = collectDualJacobians<LinearInequality>(
|
||||
key, workingSet, inequalityVariableIndex_);
|
||||
Aterms.insert(Aterms.end(), AtermsInequalities.begin(),
|
||||
AtermsInequalities.end());
|
||||
AtermsInequalities.end());
|
||||
|
||||
// Collect the gradients of unconstrained cost factors to the b vector
|
||||
if (Aterms.size() > 0) {
|
||||
Vector b = zero(delta.at(key).size());
|
||||
Factor::const_iterator it = lp_.cost.find(key);
|
||||
if (it != lp_.cost.end())
|
||||
b = lp_.cost.getA(it).transpose();
|
||||
return boost::make_shared < JacobianFactor > (Aterms, b); // compute the least-square approximation of dual variables
|
||||
if (it != lp_.cost.end()) b = lp_.cost.getA(it).transpose();
|
||||
return boost::make_shared<JacobianFactor>(
|
||||
Aterms, b); // compute the least-square approximation of dual variables
|
||||
} else {
|
||||
return boost::make_shared<JacobianFactor>();
|
||||
}
|
||||
|
@ -152,10 +149,9 @@ boost::shared_ptr<JacobianFactor> LPSolver::createDualFactor(
|
|||
|
||||
InequalityFactorGraph LPSolver::identifyActiveConstraints(
|
||||
const InequalityFactorGraph &inequalities,
|
||||
const VectorValues &initialValues,
|
||||
const VectorValues &duals) const {
|
||||
const VectorValues &initialValues, const VectorValues &duals) const {
|
||||
InequalityFactorGraph workingSet;
|
||||
BOOST_FOREACH(const LinearInequality::shared_ptr& factor, inequalities) {
|
||||
for (const LinearInequality::shared_ptr &factor : inequalities) {
|
||||
LinearInequality::shared_ptr workingFactor(new LinearInequality(*factor));
|
||||
|
||||
double error = workingFactor->error(initialValues);
|
||||
|
@ -165,8 +161,7 @@ InequalityFactorGraph LPSolver::identifyActiveConstraints(
|
|||
|
||||
if (fabs(error) < 1e-7) {
|
||||
workingFactor->activate();
|
||||
}
|
||||
else {
|
||||
} else {
|
||||
workingFactor->inactivate();
|
||||
}
|
||||
workingSet.push_back(workingFactor);
|
||||
|
@ -175,29 +170,25 @@ InequalityFactorGraph LPSolver::identifyActiveConstraints(
|
|||
}
|
||||
|
||||
std::pair<VectorValues, VectorValues> LPSolver::optimize(
|
||||
const VectorValues &initialValues,
|
||||
const VectorValues &duals) const {
|
||||
const VectorValues &initialValues, const VectorValues &duals) const {
|
||||
{
|
||||
|
||||
// Initialize workingSet from the feasible initialValues
|
||||
InequalityFactorGraph workingSet = identifyActiveConstraints(
|
||||
lp_.inequalities, initialValues, duals);
|
||||
InequalityFactorGraph workingSet =
|
||||
identifyActiveConstraints(lp_.inequalities, initialValues, duals);
|
||||
LPState state(initialValues, duals, workingSet, false, 0);
|
||||
|
||||
/// main loop of the solver
|
||||
while (!state.converged) {
|
||||
while (!state.converged)
|
||||
state = iterate(state);
|
||||
}
|
||||
|
||||
return make_pair(state.values, state.duals);
|
||||
}
|
||||
}
|
||||
|
||||
boost::tuples::tuple<double, int> LPSolver::computeStepSize(
|
||||
const InequalityFactorGraph &workingSet,
|
||||
const VectorValues &xk,
|
||||
const InequalityFactorGraph &workingSet, const VectorValues &xk,
|
||||
const VectorValues &p) const {
|
||||
return ActiveSetSolver::computeStepSize(workingSet, xk, p,
|
||||
std::numeric_limits<double>::infinity());
|
||||
return ActiveSetSolver::computeStepSize(
|
||||
workingSet, xk, p, std::numeric_limits<double>::infinity());
|
||||
}
|
||||
}
|
||||
|
|
|
@ -2,6 +2,7 @@
|
|||
* @file LPSolver.h
|
||||
* @brief Class used to solve Linear Programming Problems as defined in LP.h
|
||||
* @author Ivan Dario Jimenez
|
||||
* @author Duy Nguyen Ta
|
||||
* @date 1/24/16
|
||||
*/
|
||||
|
||||
|
@ -10,9 +11,10 @@
|
|||
#include <gtsam_unstable/linear/LPState.h>
|
||||
#include <gtsam_unstable/linear/LP.h>
|
||||
#include <gtsam_unstable/linear/ActiveSetSolver.h>
|
||||
#include <boost/range/adaptor/map.hpp>
|
||||
#include <gtsam/linear/VectorValues.h>
|
||||
|
||||
#include <boost/range/adaptor/map.hpp>
|
||||
|
||||
namespace gtsam {
|
||||
|
||||
typedef std::map<Key, size_t> KeyDimMap;
|
||||
|
@ -28,11 +30,12 @@ public:
|
|||
const LP& lp() const {
|
||||
return lp_;
|
||||
}
|
||||
|
||||
const KeyDimMap& keysDim() const {
|
||||
return keysDim_;
|
||||
}
|
||||
|
||||
//******************************************************************************
|
||||
/// TODO(comment)
|
||||
template<class LinearGraph>
|
||||
KeyDimMap collectKeysDim(const LinearGraph& linearGraph) const {
|
||||
KeyDimMap keysDim;
|
||||
|
@ -44,17 +47,13 @@ public:
|
|||
return keysDim;
|
||||
}
|
||||
|
||||
//******************************************************************************
|
||||
/**
|
||||
* Create a zero prior for any keys in the graph that don't exist in the cost
|
||||
*/
|
||||
/// Create a zero prior for any keys in the graph that don't exist in the cost
|
||||
GaussianFactorGraph::shared_ptr createZeroPriors(const KeyVector& costKeys,
|
||||
const KeyDimMap& keysDim) const;
|
||||
|
||||
//******************************************************************************
|
||||
/// TODO(comment)
|
||||
LPState iterate(const LPState& state) const;
|
||||
|
||||
//******************************************************************************
|
||||
/**
|
||||
* Create the factor ||x-xk - (-g)||^2 where xk is the current feasible solution
|
||||
* on the constraint surface and g is the gradient of the linear cost,
|
||||
|
@ -74,28 +73,27 @@ public:
|
|||
VectorValues solveWithCurrentWorkingSet(const VectorValues& xk,
|
||||
const InequalityFactorGraph& workingSet) const;
|
||||
|
||||
//******************************************************************************
|
||||
/// TODO(comment)
|
||||
JacobianFactor::shared_ptr createDualFactor(Key key,
|
||||
const InequalityFactorGraph& workingSet, const VectorValues& delta) const;
|
||||
|
||||
//******************************************************************************
|
||||
/// TODO(comment)
|
||||
boost::tuple<double, int> computeStepSize(
|
||||
const InequalityFactorGraph& workingSet, const VectorValues& xk,
|
||||
const VectorValues& p) const;
|
||||
|
||||
//******************************************************************************
|
||||
/// TODO(comment)
|
||||
InequalityFactorGraph identifyActiveConstraints(
|
||||
const InequalityFactorGraph& inequalities,
|
||||
const VectorValues& initialValues, const VectorValues& duals) const;
|
||||
|
||||
//******************************************************************************
|
||||
/** Optimize with the provided feasible initial values
|
||||
* TODO: throw exception if the initial values is not feasible wrt inequality constraints
|
||||
* TODO: comment duals
|
||||
*/
|
||||
pair<VectorValues, VectorValues> optimize(const VectorValues& initialValues,
|
||||
const VectorValues& duals = VectorValues()) const;
|
||||
|
||||
//******************************************************************************
|
||||
/**
|
||||
* Optimize without initial values
|
||||
* TODO: Find a feasible initial solution wrt inequality constraints
|
||||
|
@ -115,4 +113,4 @@ public:
|
|||
// return make_pair(state.values, state.duals);
|
||||
// }
|
||||
};
|
||||
}
|
||||
} // namespace gtsam
|
||||
|
|
|
@ -10,7 +10,9 @@
|
|||
|
||||
namespace gtsam {
|
||||
|
||||
// TODO: comment
|
||||
struct LPState {
|
||||
// TODO: comment member variables
|
||||
VectorValues values;
|
||||
VectorValues duals;
|
||||
InequalityFactorGraph workingSet;
|
||||
|
|
|
@ -19,6 +19,7 @@
|
|||
#pragma once
|
||||
|
||||
#include <gtsam/linear/JacobianFactor.h>
|
||||
#include <gtsam/linear/VectorValues.h>
|
||||
|
||||
namespace gtsam {
|
||||
|
||||
|
|
|
@ -27,8 +27,7 @@ using namespace std;
|
|||
namespace gtsam {
|
||||
|
||||
//******************************************************************************
|
||||
QPSolver::QPSolver(const QP& qp) :
|
||||
qp_(qp) {
|
||||
QPSolver::QPSolver(const QP& qp) : qp_(qp) {
|
||||
baseGraph_ = qp_.cost;
|
||||
baseGraph_.push_back(qp_.equalities.begin(), qp_.equalities.end());
|
||||
costVariableIndex_ = VariableIndex(qp_.cost);
|
||||
|
@ -42,39 +41,41 @@ QPSolver::QPSolver(const QP& qp) :
|
|||
VectorValues QPSolver::solveWithCurrentWorkingSet(
|
||||
const InequalityFactorGraph& workingSet) const {
|
||||
GaussianFactorGraph workingGraph = baseGraph_;
|
||||
BOOST_FOREACH(const LinearInequality::shared_ptr& factor, workingSet) {
|
||||
if (factor->active())
|
||||
workingGraph.push_back(factor);
|
||||
for (const LinearInequality::shared_ptr& factor : workingSet) {
|
||||
if (factor->active()) workingGraph.push_back(factor);
|
||||
}
|
||||
return workingGraph.optimize();
|
||||
}
|
||||
|
||||
//******************************************************************************
|
||||
JacobianFactor::shared_ptr QPSolver::createDualFactor(Key key,
|
||||
const InequalityFactorGraph& workingSet, const VectorValues& delta) const {
|
||||
|
||||
// Transpose the A matrix of constrained factors to have the jacobian of the dual key
|
||||
std::vector < std::pair<Key, Matrix> > Aterms = collectDualJacobians
|
||||
< LinearEquality > (key, qp_.equalities, equalityVariableIndex_);
|
||||
std::vector < std::pair<Key, Matrix> > AtermsInequalities =
|
||||
collectDualJacobians < LinearInequality
|
||||
> (key, workingSet, inequalityVariableIndex_);
|
||||
JacobianFactor::shared_ptr QPSolver::createDualFactor(
|
||||
Key key, const InequalityFactorGraph& workingSet,
|
||||
const VectorValues& delta) const {
|
||||
// Transpose the A matrix of constrained factors to have the jacobian of the
|
||||
// dual key
|
||||
std::vector<std::pair<Key, Matrix> > Aterms =
|
||||
collectDualJacobians<LinearEquality>(key, qp_.equalities,
|
||||
equalityVariableIndex_);
|
||||
std::vector<std::pair<Key, Matrix> > AtermsInequalities =
|
||||
collectDualJacobians<LinearInequality>(key, workingSet,
|
||||
inequalityVariableIndex_);
|
||||
Aterms.insert(Aterms.end(), AtermsInequalities.begin(),
|
||||
AtermsInequalities.end());
|
||||
AtermsInequalities.end());
|
||||
|
||||
// Collect the gradients of unconstrained cost factors to the b vector
|
||||
if (Aterms.size() > 0) {
|
||||
Vector b = zero(delta.at(key).size());
|
||||
if (costVariableIndex_.find(key) != costVariableIndex_.end()) {
|
||||
BOOST_FOREACH(size_t factorIx, costVariableIndex_[key]) {
|
||||
GaussianFactor::shared_ptr factor = qp_.cost.at(factorIx);
|
||||
b += factor->gradient(key, delta);
|
||||
for (size_t factorIx: costVariableIndex_[key]) {
|
||||
GaussianFactor::shared_ptr factor = qp_.cost.at(factorIx);
|
||||
b += factor->gradient(key, delta);
|
||||
}
|
||||
}
|
||||
return boost::make_shared<JacobianFactor>(
|
||||
Aterms, b); // compute the least-square approximation of dual variables
|
||||
} else {
|
||||
return boost::make_shared<JacobianFactor>();
|
||||
}
|
||||
return boost::make_shared < JacobianFactor > (Aterms, b); // compute the least-square approximation of dual variables
|
||||
} else {
|
||||
return boost::make_shared<JacobianFactor>();
|
||||
}
|
||||
}
|
||||
|
||||
//******************************************************************************
|
||||
|
@ -94,102 +95,101 @@ JacobianFactor::shared_ptr QPSolver::createDualFactor(Key key,
|
|||
* We want the minimum of all those alphas among all inactive inequality.
|
||||
*/
|
||||
boost::tuple<double, int> QPSolver::computeStepSize(
|
||||
const InequalityFactorGraph& workingSet, const VectorValues& xk,
|
||||
const VectorValues& p) const {
|
||||
return ActiveSetSolver::computeStepSize(workingSet, xk, p, 1);
|
||||
const InequalityFactorGraph& workingSet, const VectorValues& xk,
|
||||
const VectorValues& p) const {
|
||||
return ActiveSetSolver::computeStepSize(workingSet, xk, p, 1);
|
||||
}
|
||||
|
||||
//******************************************************************************
|
||||
QPState QPSolver::iterate(const QPState& state) const {
|
||||
// Algorithm 16.3 from Nocedal06book.
|
||||
// Solve with the current working set eqn 16.39, but instead of solving for p solve for x
|
||||
VectorValues newValues = solveWithCurrentWorkingSet(state.workingSet);
|
||||
// If we CAN'T move further
|
||||
// if p_k = 0 is the original condition, modified by Duy to say that the state update is zero.
|
||||
if (newValues.equals(state.values, 1e-7)) {
|
||||
// Compute lambda from the dual graph
|
||||
GaussianFactorGraph::shared_ptr dualGraph = buildDualGraph(state.workingSet,
|
||||
newValues);
|
||||
VectorValues duals = dualGraph->optimize();
|
||||
int leavingFactor = identifyLeavingConstraint(state.workingSet, duals);
|
||||
// If all inequality constraints are satisfied: We have the solution!!
|
||||
if (leavingFactor < 0) {
|
||||
return QPState(newValues, duals, state.workingSet, true,
|
||||
state.iterations + 1);
|
||||
// Algorithm 16.3 from Nocedal06book.
|
||||
// Solve with the current working set eqn 16.39, but instead of solving for p
|
||||
// solve for x
|
||||
VectorValues newValues = solveWithCurrentWorkingSet(state.workingSet);
|
||||
// If we CAN'T move further
|
||||
// if p_k = 0 is the original condition, modified by Duy to say that the state
|
||||
// update is zero.
|
||||
if (newValues.equals(state.values, 1e-7)) {
|
||||
// Compute lambda from the dual graph
|
||||
GaussianFactorGraph::shared_ptr dualGraph =
|
||||
buildDualGraph(state.workingSet, newValues);
|
||||
VectorValues duals = dualGraph->optimize();
|
||||
int leavingFactor = identifyLeavingConstraint(state.workingSet, duals);
|
||||
// If all inequality constraints are satisfied: We have the solution!!
|
||||
if (leavingFactor < 0) {
|
||||
return QPState(newValues, duals, state.workingSet, true,
|
||||
state.iterations + 1);
|
||||
} else {
|
||||
// Inactivate the leaving constraint
|
||||
InequalityFactorGraph newWorkingSet = state.workingSet;
|
||||
newWorkingSet.at(leavingFactor)->inactivate();
|
||||
return QPState(newValues, duals, newWorkingSet, false,
|
||||
state.iterations + 1);
|
||||
}
|
||||
} else {
|
||||
// Inactivate the leaving constraint
|
||||
// If we CAN make some progress, i.e. p_k != 0
|
||||
// Adapt stepsize if some inactive constraints complain about this move
|
||||
double alpha;
|
||||
int factorIx;
|
||||
VectorValues p = newValues - state.values;
|
||||
boost::tie(alpha, factorIx) = // using 16.41
|
||||
computeStepSize(state.workingSet, state.values, p);
|
||||
// also add to the working set the one that complains the most
|
||||
InequalityFactorGraph newWorkingSet = state.workingSet;
|
||||
newWorkingSet.at(leavingFactor)->inactivate();
|
||||
return QPState(newValues, duals, newWorkingSet, false, state.iterations + 1);
|
||||
if (factorIx >= 0) newWorkingSet.at(factorIx)->activate();
|
||||
// step!
|
||||
newValues = state.values + alpha * p;
|
||||
return QPState(newValues, state.duals, newWorkingSet, false,
|
||||
state.iterations + 1);
|
||||
}
|
||||
} else {
|
||||
// If we CAN make some progress, i.e. p_k != 0
|
||||
// Adapt stepsize if some inactive constraints complain about this move
|
||||
double alpha;
|
||||
int factorIx;
|
||||
VectorValues p = newValues - state.values;
|
||||
boost::tie(alpha, factorIx) = // using 16.41
|
||||
computeStepSize(state.workingSet, state.values, p);
|
||||
// also add to the working set the one that complains the most
|
||||
InequalityFactorGraph newWorkingSet = state.workingSet;
|
||||
if (factorIx >= 0)
|
||||
newWorkingSet.at(factorIx)->activate();
|
||||
// step!
|
||||
newValues = state.values + alpha * p;
|
||||
return QPState(newValues, state.duals, newWorkingSet, false,
|
||||
state.iterations + 1);
|
||||
}
|
||||
}
|
||||
|
||||
//******************************************************************************
|
||||
InequalityFactorGraph QPSolver::identifyActiveConstraints(
|
||||
const InequalityFactorGraph& inequalities, const VectorValues& initialValues,
|
||||
const VectorValues& duals, bool useWarmStart) const {
|
||||
InequalityFactorGraph workingSet;
|
||||
BOOST_FOREACH(const LinearInequality::shared_ptr& factor, inequalities) {
|
||||
LinearInequality::shared_ptr workingFactor(new LinearInequality(*factor));
|
||||
if (useWarmStart == true && duals.exists(workingFactor->dualKey())) {
|
||||
workingFactor->activate();
|
||||
}
|
||||
else {
|
||||
if (useWarmStart == true && duals.size() > 0) {
|
||||
workingFactor->inactivate();
|
||||
const InequalityFactorGraph& inequalities,
|
||||
const VectorValues& initialValues, const VectorValues& duals,
|
||||
bool useWarmStart) const {
|
||||
InequalityFactorGraph workingSet;
|
||||
for (const LinearInequality::shared_ptr& factor: inequalities) {
|
||||
LinearInequality::shared_ptr workingFactor(new LinearInequality(*factor));
|
||||
if (useWarmStart == true && duals.exists(workingFactor->dualKey())) {
|
||||
workingFactor->activate();
|
||||
} else {
|
||||
double error = workingFactor->error(initialValues);
|
||||
// TODO: find a feasible initial point for QPSolver.
|
||||
// For now, we just throw an exception, since we don't have an LPSolver to do this yet
|
||||
if (error > 0)
|
||||
throw InfeasibleInitialValues();
|
||||
|
||||
if (fabs(error)<1e-7) {
|
||||
workingFactor->activate();
|
||||
}
|
||||
else {
|
||||
if (useWarmStart == true && duals.size() > 0) {
|
||||
workingFactor->inactivate();
|
||||
} else {
|
||||
double error = workingFactor->error(initialValues);
|
||||
// TODO: find a feasible initial point for QPSolver.
|
||||
// For now, we just throw an exception, since we don't have an LPSolver
|
||||
// to do this yet
|
||||
if (error > 0) throw InfeasibleInitialValues();
|
||||
|
||||
if (fabs(error) < 1e-7) {
|
||||
workingFactor->activate();
|
||||
} else {
|
||||
workingFactor->inactivate();
|
||||
}
|
||||
}
|
||||
}
|
||||
workingSet.push_back(workingFactor);
|
||||
}
|
||||
workingSet.push_back(workingFactor);
|
||||
}
|
||||
return workingSet;
|
||||
return workingSet;
|
||||
}
|
||||
|
||||
//******************************************************************************
|
||||
pair<VectorValues, VectorValues> QPSolver::optimize(
|
||||
const VectorValues& initialValues, const VectorValues& duals,
|
||||
bool useWarmStart) const {
|
||||
const VectorValues& initialValues, const VectorValues& duals,
|
||||
bool useWarmStart) const {
|
||||
// Initialize workingSet from the feasible initialValues
|
||||
InequalityFactorGraph workingSet = identifyActiveConstraints(
|
||||
qp_.inequalities, initialValues, duals, useWarmStart);
|
||||
QPState state(initialValues, duals, workingSet, false, 0);
|
||||
|
||||
// Initialize workingSet from the feasible initialValues
|
||||
InequalityFactorGraph workingSet = identifyActiveConstraints(qp_.inequalities,
|
||||
initialValues, duals, useWarmStart);
|
||||
QPState state(initialValues, duals, workingSet, false, 0);
|
||||
/// main loop of the solver
|
||||
while (!state.converged)
|
||||
state = iterate(state);
|
||||
|
||||
/// main loop of the solver
|
||||
while (!state.converged) {
|
||||
state = iterate(state);
|
||||
}
|
||||
|
||||
return make_pair(state.values, state.duals);
|
||||
return make_pair(state.values, state.duals);
|
||||
}
|
||||
|
||||
} /* namespace gtsam */
|
||||
|
|
|
@ -13,20 +13,22 @@
|
|||
* @file QPSolver.h
|
||||
* @brief A quadratic programming solver implements the active set method
|
||||
* @date Apr 15, 2014
|
||||
* @author Ivan Dario Jimenez
|
||||
* @author Duy-Nguyen Ta
|
||||
*/
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <gtsam/linear/VectorValues.h>
|
||||
#include <gtsam_unstable/linear/QP.h>
|
||||
#include <gtsam_unstable/linear/ActiveSetSolver.h>
|
||||
#include <gtsam_unstable/linear/QPState.h>
|
||||
#include <gtsam/linear/VectorValues.h>
|
||||
|
||||
#include <vector>
|
||||
#include <set>
|
||||
|
||||
namespace gtsam {
|
||||
|
||||
/**
|
||||
* This QPSolver uses the active set method to solve a quadratic programming problem
|
||||
* defined in the QP struct.
|
||||
|
@ -48,24 +50,23 @@ public:
|
|||
/// Create a dual factor
|
||||
JacobianFactor::shared_ptr createDualFactor(Key key,
|
||||
const InequalityFactorGraph& workingSet, const VectorValues& delta) const;
|
||||
/// @}
|
||||
|
||||
/// TODO(comment)
|
||||
boost::tuple<double, int> computeStepSize(
|
||||
const InequalityFactorGraph& workingSet, const VectorValues& xk,
|
||||
const VectorValues& p) const;
|
||||
|
||||
/** Iterate 1 step, return a new state with a new workingSet and values */
|
||||
/// Iterate 1 step, return a new state with a new workingSet and values
|
||||
QPState iterate(const QPState& state) const;
|
||||
|
||||
/**
|
||||
* Identify active constraints based on initial values.
|
||||
*/
|
||||
/// Identify active constraints based on initial values.
|
||||
InequalityFactorGraph identifyActiveConstraints(
|
||||
const InequalityFactorGraph& inequalities,
|
||||
const VectorValues& initialValues, const VectorValues& duals =
|
||||
VectorValues(), bool useWarmStart = true) const;
|
||||
|
||||
/** Optimize with a provided initial values
|
||||
/**
|
||||
* Optimize with provided initial values
|
||||
* For this version, it is the responsibility of the caller to provide
|
||||
* a feasible initial value, otherwise, an exception will be thrown.
|
||||
* @return a pair of <primal, dual> solutions
|
||||
|
@ -76,4 +77,4 @@ public:
|
|||
|
||||
};
|
||||
|
||||
} /* namespace gtsam */
|
||||
} // namespace gtsam
|
||||
|
|
Loading…
Reference in New Issue