195 lines
7.5 KiB
C++
195 lines
7.5 KiB
C++
/**
|
|
* @file LPSolver.cpp
|
|
* @brief
|
|
* @author Ivan Dario Jimenez
|
|
* @date 1/26/16
|
|
*/
|
|
|
|
#include <gtsam_unstable/linear/LPSolver.h>
|
|
#include <gtsam_unstable/linear/InfeasibleInitialValues.h>
|
|
#include <gtsam/linear/GaussianFactorGraph.h>
|
|
|
|
namespace gtsam {
|
|
LPSolver::LPSolver(const LP &lp) : lp_(lp) {
|
|
// Push back factors that are the same in every iteration to the base graph.
|
|
// Those include the equality constraints and zero priors for keys that are
|
|
// not in the cost
|
|
baseGraph_.push_back(lp_.equalities);
|
|
|
|
// Collect key-dim map of all variables in the constraints to create their
|
|
// zero priors later
|
|
keysDim_ = collectKeysDim(lp_.equalities);
|
|
KeyDimMap keysDim2 = collectKeysDim(lp_.inequalities);
|
|
keysDim_.insert(keysDim2.begin(), keysDim2.end());
|
|
|
|
// Create and push zero priors of constrained variables that do not exist in
|
|
// the cost function
|
|
baseGraph_.push_back(*createZeroPriors(lp_.cost.keys(), keysDim_));
|
|
|
|
// Variable index
|
|
equalityVariableIndex_ = VariableIndex(lp_.equalities);
|
|
inequalityVariableIndex_ = VariableIndex(lp_.inequalities);
|
|
constrainedKeys_ = lp_.equalities.keys();
|
|
constrainedKeys_.merge(lp_.inequalities.keys());
|
|
}
|
|
|
|
GaussianFactorGraph::shared_ptr LPSolver::createZeroPriors(
|
|
const KeyVector &costKeys, const KeyDimMap &keysDim) const {
|
|
GaussianFactorGraph::shared_ptr graph(new GaussianFactorGraph());
|
|
for (Key key: keysDim | boost::adaptors::map_keys) {
|
|
if (find(costKeys.begin(), costKeys.end(), key) == costKeys.end()) {
|
|
size_t dim = keysDim.at(key);
|
|
graph->push_back(JacobianFactor(key, eye(dim), zero(dim)));
|
|
}
|
|
}
|
|
return graph;
|
|
}
|
|
|
|
LPState LPSolver::iterate(const LPState &state) const {
|
|
// Solve with the current working set
|
|
// LP: project the objective neg. gradient to the constraint's null space
|
|
// to find the direction to move
|
|
VectorValues newValues =
|
|
solveWithCurrentWorkingSet(state.values, state.workingSet);
|
|
|
|
// If we CAN'T move further
|
|
// LP: projection on the constraints' nullspace is zero: we are at a vertex
|
|
if (newValues.equals(state.values, 1e-7)) {
|
|
// Find and remove the bad inequality constraint by computing its lambda
|
|
// Compute lambda from the dual graph
|
|
// LP: project the objective's gradient onto each constraint gradient to
|
|
// obtain the dual scaling factors
|
|
// is it true??
|
|
GaussianFactorGraph::shared_ptr dualGraph =
|
|
buildDualGraph(state.workingSet, newValues);
|
|
VectorValues duals = dualGraph->optimize();
|
|
// LP: see which inequality constraint has wrong pulling direction, i.e., dual < 0
|
|
int leavingFactor = identifyLeavingConstraint(state.workingSet, duals);
|
|
// If all inequality constraints are satisfied: We have the solution!!
|
|
if (leavingFactor < 0) {
|
|
// TODO If we still have infeasible equality constraints: the problem is
|
|
// over-constrained. No solution!
|
|
// ...
|
|
return LPState(newValues, duals, state.workingSet, true, state.iterations + 1);
|
|
} else {
|
|
// Inactivate the leaving constraint
|
|
// LP: remove the bad ineq constraint out of the working set
|
|
InequalityFactorGraph newWorkingSet = state.workingSet;
|
|
newWorkingSet.at(leavingFactor)->inactivate();
|
|
return LPState(newValues, duals, newWorkingSet, false, state.iterations + 1);
|
|
}
|
|
} else {
|
|
// If we CAN make some progress, i.e. p_k != 0
|
|
// Adapt stepsize if some inactive constraints complain about this move
|
|
// LP: projection on nullspace is NOT zero:
|
|
// find and put a blocking inactive constraint to the working set,
|
|
// otherwise the problem is unbounded!!!
|
|
double alpha;
|
|
int factorIx;
|
|
VectorValues p = newValues - state.values;
|
|
boost::tie(alpha, factorIx) = // using 16.41
|
|
computeStepSize(state.workingSet, state.values, p);
|
|
// also add to the working set the one that complains the most
|
|
InequalityFactorGraph newWorkingSet = state.workingSet;
|
|
if (factorIx >= 0) newWorkingSet.at(factorIx)->activate();
|
|
// step!
|
|
newValues = state.values + alpha * p;
|
|
return LPState(newValues, state.duals, newWorkingSet, false, state.iterations + 1);
|
|
}
|
|
}
|
|
|
|
GaussianFactorGraph::shared_ptr LPSolver::createLeastSquareFactors(
|
|
const LinearCost &cost, const VectorValues &xk) const {
|
|
GaussianFactorGraph::shared_ptr graph(new GaussianFactorGraph());
|
|
KeyVector keys = cost.keys();
|
|
|
|
for (LinearCost::const_iterator it = cost.begin(); it != cost.end(); ++it) {
|
|
size_t dim = cost.getDim(it);
|
|
Vector b = xk.at(*it) - cost.getA(it).transpose(); // b = xk-g
|
|
graph->push_back(JacobianFactor(*it, eye(dim), b));
|
|
}
|
|
|
|
return graph;
|
|
}
|
|
|
|
VectorValues LPSolver::solveWithCurrentWorkingSet(
|
|
const VectorValues &xk, const InequalityFactorGraph &workingSet) const {
|
|
GaussianFactorGraph workingGraph = baseGraph_; // || X - Xk + g ||^2
|
|
workingGraph.push_back(*createLeastSquareFactors(lp_.cost, xk));
|
|
|
|
for (const LinearInequality::shared_ptr &factor: workingSet) {
|
|
if (factor->active()) workingGraph.push_back(factor);
|
|
}
|
|
return workingGraph.optimize();
|
|
}
|
|
|
|
boost::shared_ptr<JacobianFactor> LPSolver::createDualFactor(
|
|
Key key, const InequalityFactorGraph &workingSet,
|
|
const VectorValues &delta) const {
|
|
// Transpose the A matrix of constrained factors to have the jacobian of the
|
|
// dual key
|
|
TermsContainer Aterms = collectDualJacobians<LinearEquality>(
|
|
key, lp_.equalities, equalityVariableIndex_);
|
|
TermsContainer AtermsInequalities = collectDualJacobians<LinearInequality>(
|
|
key, workingSet, inequalityVariableIndex_);
|
|
Aterms.insert(Aterms.end(), AtermsInequalities.begin(),
|
|
AtermsInequalities.end());
|
|
|
|
// Collect the gradients of unconstrained cost factors to the b vector
|
|
if (Aterms.size() > 0) {
|
|
Vector b = zero(delta.at(key).size());
|
|
Factor::const_iterator it = lp_.cost.find(key);
|
|
if (it != lp_.cost.end()) b = lp_.cost.getA(it).transpose();
|
|
return boost::make_shared<JacobianFactor>(
|
|
Aterms, b); // compute the least-square approximation of dual variables
|
|
} else {
|
|
return boost::make_shared<JacobianFactor>();
|
|
}
|
|
}
|
|
|
|
InequalityFactorGraph LPSolver::identifyActiveConstraints(
|
|
const InequalityFactorGraph &inequalities,
|
|
const VectorValues &initialValues, const VectorValues &duals) const {
|
|
InequalityFactorGraph workingSet;
|
|
for (const LinearInequality::shared_ptr &factor : inequalities) {
|
|
LinearInequality::shared_ptr workingFactor(new LinearInequality(*factor));
|
|
|
|
double error = workingFactor->error(initialValues);
|
|
// TODO: find a feasible initial point for LPSolver.
|
|
// For now, we just throw an exception
|
|
if (error > 0) throw InfeasibleInitialValues();
|
|
|
|
if (fabs(error) < 1e-7) {
|
|
workingFactor->activate();
|
|
} else {
|
|
workingFactor->inactivate();
|
|
}
|
|
workingSet.push_back(workingFactor);
|
|
}
|
|
return workingSet;
|
|
}
|
|
|
|
std::pair<VectorValues, VectorValues> LPSolver::optimize(
|
|
const VectorValues &initialValues, const VectorValues &duals) const {
|
|
{
|
|
// Initialize workingSet from the feasible initialValues
|
|
InequalityFactorGraph workingSet =
|
|
identifyActiveConstraints(lp_.inequalities, initialValues, duals);
|
|
LPState state(initialValues, duals, workingSet, false, 0);
|
|
|
|
/// main loop of the solver
|
|
while (!state.converged)
|
|
state = iterate(state);
|
|
|
|
return make_pair(state.values, state.duals);
|
|
}
|
|
}
|
|
|
|
boost::tuples::tuple<double, int> LPSolver::computeStepSize(
|
|
const InequalityFactorGraph &workingSet, const VectorValues &xk,
|
|
const VectorValues &p) const {
|
|
return ActiveSetSolver::computeStepSize(
|
|
workingSet, xk, p, std::numeric_limits<double>::infinity());
|
|
}
|
|
}
|