196 lines
7.8 KiB
C++
196 lines
7.8 KiB
C++
/* ----------------------------------------------------------------------------
|
|
|
|
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
|
|
* Atlanta, Georgia 30332-0415
|
|
* All Rights Reserved
|
|
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
|
|
|
|
* See LICENSE for the license information
|
|
|
|
* -------------------------------------------------------------------------- */
|
|
|
|
/**
|
|
* @file QPSolver.cpp
|
|
* @brief
|
|
* @date Apr 15, 2014
|
|
* @author Duy-Nguyen Ta
|
|
*/
|
|
|
|
#include <gtsam/inference/Symbol.h>
|
|
#include <gtsam/inference/FactorGraph-inst.h>
|
|
#include <gtsam_unstable/linear/QPSolver.h>
|
|
#include <gtsam_unstable/linear/InfeasibleInitialValues.h>
|
|
#include <boost/range/adaptor/map.hpp>
|
|
|
|
using namespace std;
|
|
|
|
namespace gtsam {
|
|
|
|
//******************************************************************************
|
|
QPSolver::QPSolver(const QP& qp) : qp_(qp) {
|
|
baseGraph_ = qp_.cost;
|
|
baseGraph_.push_back(qp_.equalities.begin(), qp_.equalities.end());
|
|
costVariableIndex_ = VariableIndex(qp_.cost);
|
|
equalityVariableIndex_ = VariableIndex(qp_.equalities);
|
|
inequalityVariableIndex_ = VariableIndex(qp_.inequalities);
|
|
constrainedKeys_ = qp_.equalities.keys();
|
|
constrainedKeys_.merge(qp_.inequalities.keys());
|
|
}
|
|
|
|
//***************************************************cc***************************
|
|
VectorValues QPSolver::solveWithCurrentWorkingSet(
|
|
const InequalityFactorGraph& workingSet) const {
|
|
GaussianFactorGraph workingGraph = baseGraph_;
|
|
for (const LinearInequality::shared_ptr& factor : workingSet) {
|
|
if (factor->active()) workingGraph.push_back(factor);
|
|
}
|
|
return workingGraph.optimize();
|
|
}
|
|
|
|
//******************************************************************************
|
|
JacobianFactor::shared_ptr QPSolver::createDualFactor(
|
|
Key key, const InequalityFactorGraph& workingSet,
|
|
const VectorValues& delta) const {
|
|
// Transpose the A matrix of constrained factors to have the jacobian of the
|
|
// dual key
|
|
std::vector<std::pair<Key, Matrix> > Aterms =
|
|
collectDualJacobians<LinearEquality>(key, qp_.equalities,
|
|
equalityVariableIndex_);
|
|
std::vector<std::pair<Key, Matrix> > AtermsInequalities =
|
|
collectDualJacobians<LinearInequality>(key, workingSet,
|
|
inequalityVariableIndex_);
|
|
Aterms.insert(Aterms.end(), AtermsInequalities.begin(),
|
|
AtermsInequalities.end());
|
|
|
|
// Collect the gradients of unconstrained cost factors to the b vector
|
|
if (Aterms.size() > 0) {
|
|
Vector b = zero(delta.at(key).size());
|
|
if (costVariableIndex_.find(key) != costVariableIndex_.end()) {
|
|
for (size_t factorIx: costVariableIndex_[key]) {
|
|
GaussianFactor::shared_ptr factor = qp_.cost.at(factorIx);
|
|
b += factor->gradient(key, delta);
|
|
}
|
|
}
|
|
return boost::make_shared<JacobianFactor>(
|
|
Aterms, b); // compute the least-square approximation of dual variables
|
|
} else {
|
|
return boost::make_shared<JacobianFactor>();
|
|
}
|
|
}
|
|
|
|
//******************************************************************************
|
|
/* We have to make sure the new solution with alpha satisfies all INACTIVE inequality constraints
|
|
* If some inactive inequality constraints complain about the full step (alpha = 1),
|
|
* we have to adjust alpha to stay within the inequality constraints' feasible regions.
|
|
*
|
|
* For each inactive inequality j:
|
|
* - We already have: aj'*xk - bj <= 0, since xk satisfies all inequality constraints
|
|
* - We want: aj'*(xk + alpha*p) - bj <= 0
|
|
* - If aj'*p <= 0, we have: aj'*(xk + alpha*p) <= aj'*xk <= bj, for all alpha>0
|
|
* it's good!
|
|
* - We only care when aj'*p > 0. In this case, we need to choose alpha so that
|
|
* aj'*xk + alpha*aj'*p - bj <= 0 --> alpha <= (bj - aj'*xk) / (aj'*p)
|
|
* We want to step as far as possible, so we should choose alpha = (bj - aj'*xk) / (aj'*p)
|
|
*
|
|
* We want the minimum of all those alphas among all inactive inequality.
|
|
*/
|
|
boost::tuple<double, int> QPSolver::computeStepSize(
|
|
const InequalityFactorGraph& workingSet, const VectorValues& xk,
|
|
const VectorValues& p) const {
|
|
return ActiveSetSolver::computeStepSize(workingSet, xk, p, 1);
|
|
}
|
|
|
|
//******************************************************************************
|
|
QPState QPSolver::iterate(const QPState& state) const {
|
|
// Algorithm 16.3 from Nocedal06book.
|
|
// Solve with the current working set eqn 16.39, but instead of solving for p
|
|
// solve for x
|
|
VectorValues newValues = solveWithCurrentWorkingSet(state.workingSet);
|
|
// If we CAN'T move further
|
|
// if p_k = 0 is the original condition, modified by Duy to say that the state
|
|
// update is zero.
|
|
if (newValues.equals(state.values, 1e-7)) {
|
|
// Compute lambda from the dual graph
|
|
GaussianFactorGraph::shared_ptr dualGraph =
|
|
buildDualGraph(state.workingSet, newValues);
|
|
VectorValues duals = dualGraph->optimize();
|
|
int leavingFactor = identifyLeavingConstraint(state.workingSet, duals);
|
|
// If all inequality constraints are satisfied: We have the solution!!
|
|
if (leavingFactor < 0) {
|
|
return QPState(newValues, duals, state.workingSet, true,
|
|
state.iterations + 1);
|
|
} else {
|
|
// Inactivate the leaving constraint
|
|
InequalityFactorGraph newWorkingSet = state.workingSet;
|
|
newWorkingSet.at(leavingFactor)->inactivate();
|
|
return QPState(newValues, duals, newWorkingSet, false,
|
|
state.iterations + 1);
|
|
}
|
|
} else {
|
|
// If we CAN make some progress, i.e. p_k != 0
|
|
// Adapt stepsize if some inactive constraints complain about this move
|
|
double alpha;
|
|
int factorIx;
|
|
VectorValues p = newValues - state.values;
|
|
boost::tie(alpha, factorIx) = // using 16.41
|
|
computeStepSize(state.workingSet, state.values, p);
|
|
// also add to the working set the one that complains the most
|
|
InequalityFactorGraph newWorkingSet = state.workingSet;
|
|
if (factorIx >= 0) newWorkingSet.at(factorIx)->activate();
|
|
// step!
|
|
newValues = state.values + alpha * p;
|
|
return QPState(newValues, state.duals, newWorkingSet, false,
|
|
state.iterations + 1);
|
|
}
|
|
}
|
|
|
|
//******************************************************************************
|
|
InequalityFactorGraph QPSolver::identifyActiveConstraints(
|
|
const InequalityFactorGraph& inequalities,
|
|
const VectorValues& initialValues, const VectorValues& duals,
|
|
bool useWarmStart) const {
|
|
InequalityFactorGraph workingSet;
|
|
for (const LinearInequality::shared_ptr& factor: inequalities) {
|
|
LinearInequality::shared_ptr workingFactor(new LinearInequality(*factor));
|
|
if (useWarmStart == true && duals.exists(workingFactor->dualKey())) {
|
|
workingFactor->activate();
|
|
} else {
|
|
if (useWarmStart == true && duals.size() > 0) {
|
|
workingFactor->inactivate();
|
|
} else {
|
|
double error = workingFactor->error(initialValues);
|
|
// TODO: find a feasible initial point for QPSolver.
|
|
// For now, we just throw an exception, since we don't have an LPSolver
|
|
// to do this yet
|
|
if (error > 0) throw InfeasibleInitialValues();
|
|
|
|
if (fabs(error) < 1e-7) {
|
|
workingFactor->activate();
|
|
} else {
|
|
workingFactor->inactivate();
|
|
}
|
|
}
|
|
}
|
|
workingSet.push_back(workingFactor);
|
|
}
|
|
return workingSet;
|
|
}
|
|
|
|
//******************************************************************************
|
|
pair<VectorValues, VectorValues> QPSolver::optimize(
|
|
const VectorValues& initialValues, const VectorValues& duals,
|
|
bool useWarmStart) const {
|
|
// Initialize workingSet from the feasible initialValues
|
|
InequalityFactorGraph workingSet = identifyActiveConstraints(
|
|
qp_.inequalities, initialValues, duals, useWarmStart);
|
|
QPState state(initialValues, duals, workingSet, false, 0);
|
|
|
|
/// main loop of the solver
|
|
while (!state.converged)
|
|
state = iterate(state);
|
|
|
|
return make_pair(state.values, state.duals);
|
|
}
|
|
|
|
} /* namespace gtsam */
|