/* ---------------------------------------------------------------------------- * GTSAM Copyright 2010, Georgia Tech Research Corporation, * Atlanta, Georgia 30332-0415 * All Rights Reserved * Authors: Frank Dellaert, et al. (see THANKS for the full author list) * See LICENSE for the license information * -------------------------------------------------------------------------- */ /** * @file QPSolver.cpp * @brief * @date Apr 15, 2014 * @author Duy-Nguyen Ta */ #include #include #include #include #include using namespace std; namespace gtsam { //****************************************************************************** QPSolver::QPSolver(const QP& qp) : qp_(qp) { baseGraph_ = qp_.cost; baseGraph_.push_back(qp_.equalities.begin(), qp_.equalities.end()); costVariableIndex_ = VariableIndex(qp_.cost); equalityVariableIndex_ = VariableIndex(qp_.equalities); inequalityVariableIndex_ = VariableIndex(qp_.inequalities); constrainedKeys_ = qp_.equalities.keys(); constrainedKeys_.merge(qp_.inequalities.keys()); } //***************************************************cc*************************** VectorValues QPSolver::solveWithCurrentWorkingSet( const InequalityFactorGraph& workingSet) const { GaussianFactorGraph workingGraph = baseGraph_; for (const LinearInequality::shared_ptr& factor : workingSet) { if (factor->active()) workingGraph.push_back(factor); } return workingGraph.optimize(); } //****************************************************************************** JacobianFactor::shared_ptr QPSolver::createDualFactor( Key key, const InequalityFactorGraph& workingSet, const VectorValues& delta) const { // Transpose the A matrix of constrained factors to have the jacobian of the // dual key std::vector > Aterms = collectDualJacobians(key, qp_.equalities, equalityVariableIndex_); std::vector > AtermsInequalities = collectDualJacobians(key, workingSet, inequalityVariableIndex_); Aterms.insert(Aterms.end(), AtermsInequalities.begin(), AtermsInequalities.end()); // Collect the gradients of unconstrained cost factors to the b vector if (Aterms.size() > 0) { Vector b = zero(delta.at(key).size()); if (costVariableIndex_.find(key) != costVariableIndex_.end()) { for (size_t factorIx: costVariableIndex_[key]) { GaussianFactor::shared_ptr factor = qp_.cost.at(factorIx); b += factor->gradient(key, delta); } } return boost::make_shared( Aterms, b); // compute the least-square approximation of dual variables } else { return boost::make_shared(); } } //****************************************************************************** /* We have to make sure the new solution with alpha satisfies all INACTIVE inequality constraints * If some inactive inequality constraints complain about the full step (alpha = 1), * we have to adjust alpha to stay within the inequality constraints' feasible regions. * * For each inactive inequality j: * - We already have: aj'*xk - bj <= 0, since xk satisfies all inequality constraints * - We want: aj'*(xk + alpha*p) - bj <= 0 * - If aj'*p <= 0, we have: aj'*(xk + alpha*p) <= aj'*xk <= bj, for all alpha>0 * it's good! * - We only care when aj'*p > 0. In this case, we need to choose alpha so that * aj'*xk + alpha*aj'*p - bj <= 0 --> alpha <= (bj - aj'*xk) / (aj'*p) * We want to step as far as possible, so we should choose alpha = (bj - aj'*xk) / (aj'*p) * * We want the minimum of all those alphas among all inactive inequality. */ boost::tuple QPSolver::computeStepSize( const InequalityFactorGraph& workingSet, const VectorValues& xk, const VectorValues& p) const { return ActiveSetSolver::computeStepSize(workingSet, xk, p, 1); } //****************************************************************************** QPState QPSolver::iterate(const QPState& state) const { // Algorithm 16.3 from Nocedal06book. // Solve with the current working set eqn 16.39, but instead of solving for p // solve for x VectorValues newValues = solveWithCurrentWorkingSet(state.workingSet); // If we CAN'T move further // if p_k = 0 is the original condition, modified by Duy to say that the state // update is zero. if (newValues.equals(state.values, 1e-7)) { // Compute lambda from the dual graph GaussianFactorGraph::shared_ptr dualGraph = buildDualGraph(state.workingSet, newValues); VectorValues duals = dualGraph->optimize(); int leavingFactor = identifyLeavingConstraint(state.workingSet, duals); // If all inequality constraints are satisfied: We have the solution!! if (leavingFactor < 0) { return QPState(newValues, duals, state.workingSet, true, state.iterations + 1); } else { // Inactivate the leaving constraint InequalityFactorGraph newWorkingSet = state.workingSet; newWorkingSet.at(leavingFactor)->inactivate(); return QPState(newValues, duals, newWorkingSet, false, state.iterations + 1); } } else { // If we CAN make some progress, i.e. p_k != 0 // Adapt stepsize if some inactive constraints complain about this move double alpha; int factorIx; VectorValues p = newValues - state.values; boost::tie(alpha, factorIx) = // using 16.41 computeStepSize(state.workingSet, state.values, p); // also add to the working set the one that complains the most InequalityFactorGraph newWorkingSet = state.workingSet; if (factorIx >= 0) newWorkingSet.at(factorIx)->activate(); // step! newValues = state.values + alpha * p; return QPState(newValues, state.duals, newWorkingSet, false, state.iterations + 1); } } //****************************************************************************** InequalityFactorGraph QPSolver::identifyActiveConstraints( const InequalityFactorGraph& inequalities, const VectorValues& initialValues, const VectorValues& duals, bool useWarmStart) const { InequalityFactorGraph workingSet; for (const LinearInequality::shared_ptr& factor: inequalities) { LinearInequality::shared_ptr workingFactor(new LinearInequality(*factor)); if (useWarmStart == true && duals.exists(workingFactor->dualKey())) { workingFactor->activate(); } else { if (useWarmStart == true && duals.size() > 0) { workingFactor->inactivate(); } else { double error = workingFactor->error(initialValues); // TODO: find a feasible initial point for QPSolver. // For now, we just throw an exception, since we don't have an LPSolver // to do this yet if (error > 0) throw InfeasibleInitialValues(); if (fabs(error) < 1e-7) { workingFactor->activate(); } else { workingFactor->inactivate(); } } } workingSet.push_back(workingFactor); } return workingSet; } //****************************************************************************** pair QPSolver::optimize( const VectorValues& initialValues, const VectorValues& duals, bool useWarmStart) const { // Initialize workingSet from the feasible initialValues InequalityFactorGraph workingSet = identifyActiveConstraints( qp_.inequalities, initialValues, duals, useWarmStart); QPState state(initialValues, duals, workingSet, false, 0); /// main loop of the solver while (!state.converged) state = iterate(state); return make_pair(state.values, state.duals); } } /* namespace gtsam */