Working state of Multiple object stable tracking using Lidar scans with an extended Kalman Filter (rosrun kf_tracker tracker). A naive tracker is implemented in main_naive.cpp for comparison (rosrun kf_tracker naive_tracker).
parent
4c569c598e
commit
112a2d4e4c
365
src/main.cpp
365
src/main.cpp
|
@ -31,6 +31,12 @@
|
|||
#include <pcl/sample_consensus/model_types.h>
|
||||
#include <pcl/segmentation/sac_segmentation.h>
|
||||
#include <pcl/segmentation/extract_clusters.h>
|
||||
#include <pcl/common/centroid.h>
|
||||
|
||||
#include <visualization_msgs/MarkerArray.h>
|
||||
#include <visualization_msgs/Marker.h>
|
||||
#include <limits>
|
||||
#include <utility>
|
||||
|
||||
using namespace std;
|
||||
using namespace cv;
|
||||
|
@ -56,6 +62,10 @@ ros::Publisher objID_pub;
|
|||
ros::Publisher pub_cluster4;
|
||||
ros::Publisher pub_cluster5;
|
||||
|
||||
ros::Publisher markerPub;
|
||||
|
||||
std::vector<geometry_msgs::Point> prevClusterCenters;
|
||||
|
||||
|
||||
cv::Mat state(stateDim,1,CV_32F);
|
||||
cv::Mat_<float> measurement(2,1);
|
||||
|
@ -90,6 +100,27 @@ int countIDs(vector<int> v)
|
|||
objID: vector containing the IDs of the clusters that should be associated with each KF_Tracker
|
||||
objID[0] corresponds to KFT0, objID[1] corresponds to KFT1 etc.
|
||||
*/
|
||||
|
||||
std::pair<int,int> findIndexOfMin(std::vector<std::vector<float> > distMat)
|
||||
{
|
||||
cout<<"findIndexOfMin cALLED\n";
|
||||
std::pair<int,int>minIndex;
|
||||
float minEl=std::numeric_limits<float>::max();
|
||||
cout<<"minEl="<<minEl<<"\n";
|
||||
for (int i=0; i<distMat.size();i++)
|
||||
for(int j=0;j<distMat.at(0).size();j++)
|
||||
{
|
||||
if( distMat[i][j]<minEl)
|
||||
{
|
||||
minEl=distMat[i][j];
|
||||
minIndex=std::make_pair(i,j);
|
||||
|
||||
}
|
||||
|
||||
}
|
||||
cout<<"minIndex="<<minIndex.first<<","<<minIndex.second<<"\n";
|
||||
return minIndex;
|
||||
}
|
||||
void KFT(const std_msgs::Float32MultiArray ccs)
|
||||
{
|
||||
|
||||
|
@ -133,23 +164,70 @@ void KFT(const std_msgs::Float32MultiArray ccs)
|
|||
KFpredictions.push_back(pt);
|
||||
|
||||
}
|
||||
// cout<<"Got predictions"<<"\n";
|
||||
// cout<<"Got predictions"<<"\n";
|
||||
|
||||
|
||||
|
||||
// Find the cluster that is more probable to be belonging to a given KF.
|
||||
objID.clear();//Clear the objID vector
|
||||
objID.resize(6);//Allocate default elements so that [i] doesnt segfault. Should be done better
|
||||
// Copy clusterCentres for modifying it and preventing multiple assignments of the same ID
|
||||
std::vector<geometry_msgs::Point> copyOfClusterCenters(clusterCenters);
|
||||
std::vector<std::vector<float> > distMat;
|
||||
|
||||
for(int filterN=0;filterN<6;filterN++)
|
||||
{
|
||||
std::vector<float> distVec;
|
||||
for(int n=0;n<6;n++)
|
||||
distVec.push_back(euclidean_distance(KFpredictions[filterN],clusterCenters[n]));
|
||||
|
||||
// cout<<"distVec[="<<distVec[0]<<","<<distVec[1]<<","<<distVec[2]<<","<<distVec[3]<<","<<distVec[4]<<","<<distVec[5]<<"\n";
|
||||
objID.push_back(std::distance(distVec.begin(),min_element(distVec.begin(),distVec.end())));
|
||||
// cout<<"MinD for filter"<<filterN<<"="<<*min_element(distVec.begin(),distVec.end())<<"\n";
|
||||
|
||||
{
|
||||
distVec.push_back(euclidean_distance(KFpredictions[filterN],copyOfClusterCenters[n]));
|
||||
}
|
||||
|
||||
distMat.push_back(distVec);
|
||||
/*// Based on distVec instead of distMat (global min). Has problems with the person's leg going out of scope
|
||||
int ID=std::distance(distVec.begin(),min_element(distVec.begin(),distVec.end()));
|
||||
//cout<<"finterlN="<<filterN<<" minID="<<ID
|
||||
objID.push_back(ID);
|
||||
// Prevent assignment of the same object ID to multiple clusters
|
||||
copyOfClusterCenters[ID].x=100000;// A large value so that this center is not assigned to another cluster
|
||||
copyOfClusterCenters[ID].y=10000;
|
||||
copyOfClusterCenters[ID].z=10000;
|
||||
*/
|
||||
cout<<"filterN="<<filterN<<"\n";
|
||||
|
||||
|
||||
}
|
||||
|
||||
cout<<"distMat.size()"<<distMat.size()<<"\n";
|
||||
cout<<"distMat[0].size()"<<distMat.at(0).size()<<"\n";
|
||||
// DEBUG: print the distMat
|
||||
for ( const auto &row : distMat )
|
||||
{
|
||||
for ( const auto &s : row ) std::cout << s << ' ';
|
||||
std::cout << std::endl;
|
||||
}
|
||||
|
||||
|
||||
|
||||
for(int clusterCount=0;clusterCount<6;clusterCount++)
|
||||
{
|
||||
// 1. Find min(distMax)==> (i,j);
|
||||
std::pair<int,int> minIndex(findIndexOfMin(distMat));
|
||||
cout<<"Received minIndex="<<minIndex.first<<","<<minIndex.second<<"\n";
|
||||
// 2. objID[i]=clusterCenters[j]; counter++
|
||||
objID[minIndex.first]=minIndex.second;
|
||||
|
||||
// 3. distMat[i,:]=10000; distMat[:,j]=10000
|
||||
distMat[minIndex.first]=std::vector<float>(6,10000.0);// Set the row to a high number.
|
||||
for(int row=0;row<distMat.size();row++)//set the column to a high number
|
||||
{
|
||||
distMat[row][minIndex.second]=10000.0;
|
||||
}
|
||||
// 4. if(counter<6) got to 1.
|
||||
cout<<"clusterCount="<<clusterCount<<"\n";
|
||||
|
||||
}
|
||||
|
||||
// cout<<"Got object IDs"<<"\n";
|
||||
//countIDs(objID);// for verif/corner cases
|
||||
|
||||
|
@ -160,28 +238,62 @@ void KFT(const std_msgs::Float32MultiArray ccs)
|
|||
cout<<*it<<" ,";
|
||||
cout<<"\n";
|
||||
*/
|
||||
|
||||
visualization_msgs::MarkerArray clusterMarkers;
|
||||
|
||||
for (int i=0;i<6;i++)
|
||||
{
|
||||
visualization_msgs::Marker m;
|
||||
|
||||
m.id=i;
|
||||
m.type=visualization_msgs::Marker::CUBE;
|
||||
m.header.frame_id="/map";
|
||||
m.scale.x=0.3; m.scale.y=0.3; m.scale.z=0.3;
|
||||
m.action=visualization_msgs::Marker::ADD;
|
||||
m.color.a=1.0;
|
||||
m.color.r=i%2?1:0;
|
||||
m.color.g=i%3?1:0;
|
||||
m.color.b=i%4?1:0;
|
||||
|
||||
//geometry_msgs::Point clusterC(clusterCenters.at(objID[i]));
|
||||
geometry_msgs::Point clusterC(KFpredictions[i]);
|
||||
m.pose.position.x=clusterC.x;
|
||||
m.pose.position.y=clusterC.y;
|
||||
m.pose.position.z=clusterC.z;
|
||||
|
||||
clusterMarkers.markers.push_back(m);
|
||||
}
|
||||
|
||||
prevClusterCenters=clusterCenters;
|
||||
|
||||
markerPub.publish(clusterMarkers);
|
||||
|
||||
|
||||
|
||||
|
||||
std_msgs::Int32MultiArray obj_id;
|
||||
for(auto it=objID.begin();it!=objID.end();it++)
|
||||
obj_id.data.push_back(*it);
|
||||
// Publish the object IDs
|
||||
objID_pub.publish(obj_id);
|
||||
// convert clusterCenters from geometry_msgs::Point to floats
|
||||
std::vector<std::vector<float> > cc;
|
||||
for (int i=0;i<clusterCenters.size();i++)
|
||||
for (int i=0;i<6;i++)
|
||||
{
|
||||
vector<float> pt;
|
||||
pt.push_back(clusterCenters[i].x);
|
||||
pt.push_back(clusterCenters[i].y);
|
||||
pt.push_back(clusterCenters[i].z);
|
||||
pt.push_back(clusterCenters[objID[i]].x);
|
||||
pt.push_back(clusterCenters[objID[i]].y);
|
||||
pt.push_back(clusterCenters[objID[i]].z);
|
||||
|
||||
cc.push_back(pt);
|
||||
}
|
||||
//cout<<"cc[5][0]="<<cc[5].at(0)<<"cc[5][1]="<<cc[5].at(1)<<"cc[5][2]="<<cc[5].at(2)<<"\n";
|
||||
float meas0[3]={cc[0].at(0),cc[0].at(1)};
|
||||
float meas1[3]={cc[1].at(0),cc[1].at(1)};
|
||||
float meas2[3]={cc[2].at(0),cc[2].at(1)};
|
||||
float meas3[3]={cc[3].at(0),cc[3].at(1)};
|
||||
float meas4[3]={cc[4].at(0),cc[4].at(1)};
|
||||
float meas5[3]={cc[5].at(0),cc[5].at(1)};
|
||||
float meas0[2]={cc[0].at(0),cc[0].at(1)};
|
||||
float meas1[2]={cc[1].at(0),cc[1].at(1)};
|
||||
float meas2[2]={cc[2].at(0),cc[2].at(1)};
|
||||
float meas3[2]={cc[3].at(0),cc[3].at(1)};
|
||||
float meas4[2]={cc[4].at(0),cc[4].at(1)};
|
||||
float meas5[2]={cc[5].at(0),cc[5].at(1)};
|
||||
|
||||
|
||||
|
||||
|
@ -194,13 +306,19 @@ void KFT(const std_msgs::Float32MultiArray ccs)
|
|||
cv::Mat meas5Mat=cv::Mat(2,1,CV_32F,meas5);
|
||||
|
||||
//cout<<"meas0Mat"<<meas0Mat<<"\n";
|
||||
|
||||
if (!(meas0Mat.at<float>(0,0)==0.0f || meas0Mat.at<float>(1,0)==0.0f))
|
||||
Mat estimated0 = KF0.correct(meas0Mat);
|
||||
Mat estimated1 = KF0.correct(meas1Mat);
|
||||
Mat estimated2 = KF0.correct(meas2Mat);
|
||||
Mat estimated3 = KF0.correct(meas3Mat);
|
||||
Mat estimated4 = KF0.correct(meas4Mat);
|
||||
Mat estimated5 = KF0.correct(meas5Mat);
|
||||
if (!(meas1[0]==0.0f || meas1[1]==0.0f))
|
||||
Mat estimated1 = KF1.correct(meas1Mat);
|
||||
if (!(meas2[0]==0.0f || meas2[1]==0.0f))
|
||||
Mat estimated2 = KF2.correct(meas2Mat);
|
||||
if (!(meas3[0]==0.0f || meas3[1]==0.0f))
|
||||
Mat estimated3 = KF3.correct(meas3Mat);
|
||||
if (!(meas4[0]==0.0f || meas4[1]==0.0f))
|
||||
Mat estimated4 = KF4.correct(meas4Mat);
|
||||
if (!(meas5[0]==0.0f || meas5[1]==0.0f))
|
||||
Mat estimated5 = KF5.correct(meas5Mat);
|
||||
|
||||
|
||||
// Publish the point clouds belonging to each clusters
|
||||
|
||||
|
@ -223,18 +341,23 @@ void publish_cloud(ros::Publisher& pub, pcl::PointCloud<pcl::PointXYZ>::Ptr clus
|
|||
void cloud_cb (const sensor_msgs::PointCloud2ConstPtr& input)
|
||||
|
||||
{
|
||||
cout<<"IF firstFrame="<<firstFrame<<"\n";
|
||||
// cout<<"IF firstFrame="<<firstFrame<<"\n";
|
||||
// If this is the first frame, initialize kalman filters for the clustered objects
|
||||
if (firstFrame)
|
||||
{
|
||||
// Initialize 6 Kalman Filters; Assuming 6 max objects in the dataset.
|
||||
// Could be made generic by creating a Kalman Filter only when a new object is detected
|
||||
KF0.transitionMatrix = *(Mat_<float>(4, 4) << 1,0,1,0, 0,1,0,1, 0,0,1,0, 0,0,0,1);
|
||||
KF1.transitionMatrix = *(Mat_<float>(4, 4) << 1,0,1,0, 0,1,0,1, 0,0,1,0, 0,0,0,1);
|
||||
KF2.transitionMatrix = *(Mat_<float>(4, 4) << 1,0,1,0, 0,1,0,1, 0,0,1,0, 0,0,0,1);
|
||||
KF3.transitionMatrix = *(Mat_<float>(4, 4) << 1,0,1,0, 0,1,0,1, 0,0,1,0, 0,0,0,1);
|
||||
KF4.transitionMatrix = *(Mat_<float>(4, 4) << 1,0,1,0, 0,1,0,1, 0,0,1,0, 0,0,0,1);
|
||||
KF5.transitionMatrix = *(Mat_<float>(4, 4) << 1,0,1,0, 0,1,0,1, 0,0,1,0, 0,0,0,1);
|
||||
|
||||
float dvx=0.01f; //1.0
|
||||
float dvy=0.01f;//1.0
|
||||
float dx=1.0f;
|
||||
float dy=1.0f;
|
||||
KF0.transitionMatrix = *(Mat_<float>(4, 4) << dx,0,1,0, 0,dy,0,1, 0,0,dvx,0, 0,0,0,dvy);
|
||||
KF1.transitionMatrix = *(Mat_<float>(4, 4) << dx,0,1,0, 0,dy,0,1, 0,0,dvx,0, 0,0,0,dvy);
|
||||
KF2.transitionMatrix = *(Mat_<float>(4, 4) << dx,0,1,0, 0,dy,0,1, 0,0,dvx,0, 0,0,0,dvy);
|
||||
KF3.transitionMatrix = *(Mat_<float>(4, 4) << dx,0,1,0, 0,dy,0,1, 0,0,dvx,0, 0,0,0,dvy);
|
||||
KF4.transitionMatrix = *(Mat_<float>(4, 4) << dx,0,1,0, 0,dy,0,1, 0,0,dvx,0, 0,0,0,dvy);
|
||||
KF5.transitionMatrix = *(Mat_<float>(4, 4) << dx,0,1,0, 0,dy,0,1, 0,0,dvx,0, 0,0,0,dvy);
|
||||
|
||||
cv::setIdentity(KF0.measurementMatrix);
|
||||
cv::setIdentity(KF1.measurementMatrix);
|
||||
|
@ -249,19 +372,21 @@ if (firstFrame)
|
|||
// [ 0 0 0 1 Ev_y 0 ]
|
||||
//// [ 0 0 0 0 1 Ew ]
|
||||
//// [ 0 0 0 0 0 Eh ]
|
||||
setIdentity(KF0.processNoiseCov, Scalar::all(1e-4));
|
||||
setIdentity(KF1.processNoiseCov, Scalar::all(1e-4));
|
||||
setIdentity(KF2.processNoiseCov, Scalar::all(1e-4));
|
||||
setIdentity(KF3.processNoiseCov, Scalar::all(1e-4));
|
||||
setIdentity(KF4.processNoiseCov, Scalar::all(1e-4));
|
||||
setIdentity(KF5.processNoiseCov, Scalar::all(1e-4));
|
||||
float sigmaP=0.01;
|
||||
float sigmaQ=0.1;
|
||||
setIdentity(KF0.processNoiseCov, Scalar::all(sigmaP));
|
||||
setIdentity(KF1.processNoiseCov, Scalar::all(sigmaP));
|
||||
setIdentity(KF2.processNoiseCov, Scalar::all(sigmaP));
|
||||
setIdentity(KF3.processNoiseCov, Scalar::all(sigmaP));
|
||||
setIdentity(KF4.processNoiseCov, Scalar::all(sigmaP));
|
||||
setIdentity(KF5.processNoiseCov, Scalar::all(sigmaP));
|
||||
// Meas noise cov matrix R
|
||||
cv::setIdentity(KF0.measurementNoiseCov, cv::Scalar(1e-1));
|
||||
cv::setIdentity(KF1.measurementNoiseCov, cv::Scalar(1e-1));
|
||||
cv::setIdentity(KF2.measurementNoiseCov, cv::Scalar(1e-1));
|
||||
cv::setIdentity(KF3.measurementNoiseCov, cv::Scalar(1e-1));
|
||||
cv::setIdentity(KF4.measurementNoiseCov, cv::Scalar(1e-1));
|
||||
cv::setIdentity(KF5.measurementNoiseCov, cv::Scalar(1e-1));
|
||||
cv::setIdentity(KF0.measurementNoiseCov, cv::Scalar(sigmaQ));//1e-1
|
||||
cv::setIdentity(KF1.measurementNoiseCov, cv::Scalar(sigmaQ));
|
||||
cv::setIdentity(KF2.measurementNoiseCov, cv::Scalar(sigmaQ));
|
||||
cv::setIdentity(KF3.measurementNoiseCov, cv::Scalar(sigmaQ));
|
||||
cv::setIdentity(KF4.measurementNoiseCov, cv::Scalar(sigmaQ));
|
||||
cv::setIdentity(KF5.measurementNoiseCov, cv::Scalar(sigmaQ));
|
||||
|
||||
// Process the point cloud
|
||||
pcl::PointCloud<pcl::PointXYZ>::Ptr input_cloud (new pcl::PointCloud<pcl::PointXYZ>);
|
||||
|
@ -273,11 +398,7 @@ if (firstFrame)
|
|||
|
||||
tree->setInputCloud (input_cloud);
|
||||
|
||||
/* Here we are creating a vector of PointIndices, which contains the actual index
|
||||
* information in a vector<int>. The indices of each detected cluster are saved here.
|
||||
* Cluster_indices is a vector containing one instance of PointIndices for each detected
|
||||
* cluster. Cluster_indices[0] contain all indices of the first cluster in input point cloud.
|
||||
*/
|
||||
|
||||
std::vector<pcl::PointIndices> cluster_indices;
|
||||
pcl::EuclideanClusterExtraction<pcl::PointXYZ> ec;
|
||||
ec.setClusterTolerance (0.08);
|
||||
|
@ -288,33 +409,45 @@ if (firstFrame)
|
|||
/* Extract the clusters out of pc and save indices in cluster_indices.*/
|
||||
ec.extract (cluster_indices);
|
||||
|
||||
/* To separate each cluster out of the vector<PointIndices> we have to
|
||||
* iterate through cluster_indices, create a new PointCloud for each
|
||||
* entry and write all points of the current cluster in the PointCloud.
|
||||
*/
|
||||
//pcl::PointXYZ origin (0,0,0);
|
||||
//float mindist_this_cluster = 1000;
|
||||
//float dist_this_point = 1000;
|
||||
|
||||
|
||||
std::vector<pcl::PointIndices>::const_iterator it;
|
||||
std::vector<int>::const_iterator pit;
|
||||
// Vector of cluster pointclouds
|
||||
std::vector<pcl::PointCloud<pcl::PointXYZ>::Ptr > cluster_vec;
|
||||
// Cluster centroids
|
||||
std::vector<pcl::PointXYZ> clusterCentroids;
|
||||
|
||||
for(it = cluster_indices.begin(); it != cluster_indices.end(); ++it) {
|
||||
pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_cluster (new pcl::PointCloud<pcl::PointXYZ>);
|
||||
|
||||
pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_cluster (new pcl::PointCloud<pcl::PointXYZ>);
|
||||
float x=0.0; float y=0.0;
|
||||
int numPts=0;
|
||||
for(pit = it->indices.begin(); pit != it->indices.end(); pit++)
|
||||
{
|
||||
|
||||
cloud_cluster->points.push_back(input_cloud->points[*pit]);
|
||||
x+=input_cloud->points[*pit].x;
|
||||
y+=input_cloud->points[*pit].y;
|
||||
numPts++;
|
||||
|
||||
|
||||
//dist_this_point = pcl::geometry::distance(input_cloud->points[*pit],
|
||||
// origin);
|
||||
//mindist_this_cluster = std::min(dist_this_point, mindist_this_cluster);
|
||||
}
|
||||
|
||||
|
||||
pcl::PointXYZ centroid;
|
||||
centroid.x=x/numPts;
|
||||
centroid.y=y/numPts;
|
||||
centroid.z=0.0;
|
||||
|
||||
cluster_vec.push_back(cloud_cluster);
|
||||
|
||||
//Get the centroid of the cluster
|
||||
clusterCentroids.push_back(centroid);
|
||||
|
||||
|
||||
}
|
||||
|
||||
//Ensure at least 6 clusters exist to publish (later clusters may be empty)
|
||||
|
@ -323,48 +456,65 @@ if (firstFrame)
|
|||
empty_cluster->points.push_back(pcl::PointXYZ(0,0,0));
|
||||
cluster_vec.push_back(empty_cluster);
|
||||
}
|
||||
|
||||
while (clusterCentroids.size()<6)
|
||||
{
|
||||
pcl::PointXYZ centroid;
|
||||
centroid.x=0.0;
|
||||
centroid.y=0.0;
|
||||
centroid.z=0.0;
|
||||
|
||||
clusterCentroids.push_back(centroid);
|
||||
}
|
||||
|
||||
|
||||
// Set initial state
|
||||
KF0.statePre.at<float>(0)=cluster_vec[0]->points[cluster_vec[0]->points.size()/2].x;
|
||||
KF0.statePre.at<float>(1)=cluster_vec[0]->points[cluster_vec[0]->points.size()/2].y;
|
||||
KF0.statePre.at<float>(0)=clusterCentroids.at(0).x;
|
||||
KF0.statePre.at<float>(1)=clusterCentroids.at(0).y;
|
||||
KF0.statePre.at<float>(2)=0;// initial v_x
|
||||
KF0.statePre.at<float>(3)=0;//initial v_y
|
||||
|
||||
// Set initial state
|
||||
KF1.statePre.at<float>(0)=cluster_vec[1]->points[cluster_vec[1]->points.size()/2].x;
|
||||
KF1.statePre.at<float>(1)=cluster_vec[1]->points[cluster_vec[1]->points.size()/2].y;
|
||||
KF1.statePre.at<float>(0)=clusterCentroids.at(1).x;
|
||||
KF1.statePre.at<float>(1)=clusterCentroids.at(1).y;
|
||||
KF1.statePre.at<float>(2)=0;// initial v_x
|
||||
KF1.statePre.at<float>(3)=0;//initial v_y
|
||||
|
||||
// Set initial state
|
||||
KF2.statePre.at<float>(0)=cluster_vec[2]->points[cluster_vec[2]->points.size()/2].x;
|
||||
KF2.statePre.at<float>(1)=cluster_vec[2]->points[cluster_vec[2]->points.size()/2].y;
|
||||
KF2.statePre.at<float>(0)=clusterCentroids.at(2).x;
|
||||
KF2.statePre.at<float>(1)=clusterCentroids.at(2).y;
|
||||
KF2.statePre.at<float>(2)=0;// initial v_x
|
||||
KF2.statePre.at<float>(3)=0;//initial v_y
|
||||
|
||||
|
||||
// Set initial state
|
||||
KF3.statePre.at<float>(0)=cluster_vec[3]->points[cluster_vec[3]->points.size()/2].x;
|
||||
KF3.statePre.at<float>(1)=cluster_vec[3]->points[cluster_vec[3]->points.size()/2].y;
|
||||
KF3.statePre.at<float>(0)=clusterCentroids.at(3).x;
|
||||
KF3.statePre.at<float>(1)=clusterCentroids.at(3).y;
|
||||
KF3.statePre.at<float>(2)=0;// initial v_x
|
||||
KF3.statePre.at<float>(3)=0;//initial v_y
|
||||
|
||||
// Set initial state
|
||||
KF4.statePre.at<float>(0)=cluster_vec[4]->points[cluster_vec[4]->points.size()/2].x;
|
||||
KF4.statePre.at<float>(1)=cluster_vec[4]->points[cluster_vec[4]->points.size()/2].y;
|
||||
KF4.statePre.at<float>(0)=clusterCentroids.at(4).x;
|
||||
KF4.statePre.at<float>(1)=clusterCentroids.at(4).y;
|
||||
KF4.statePre.at<float>(2)=0;// initial v_x
|
||||
KF4.statePre.at<float>(3)=0;//initial v_y
|
||||
|
||||
// Set initial state
|
||||
KF5.statePre.at<float>(0)=cluster_vec[5]->points[cluster_vec[5]->points.size()/2].x;
|
||||
KF5.statePre.at<float>(1)=cluster_vec[5]->points[cluster_vec[5]->points.size()/2].y;
|
||||
KF5.statePre.at<float>(0)=clusterCentroids.at(5).x;
|
||||
KF5.statePre.at<float>(1)=clusterCentroids.at(5).y;
|
||||
KF5.statePre.at<float>(2)=0;// initial v_x
|
||||
KF5.statePre.at<float>(3)=0;//initial v_y
|
||||
|
||||
firstFrame=false;
|
||||
|
||||
// Print the initial state of the kalman filter for debugging
|
||||
for (int i=0;i<6;i++)
|
||||
{
|
||||
geometry_msgs::Point pt;
|
||||
pt.x=clusterCentroids.at(i).x;
|
||||
pt.y=clusterCentroids.at(i).y;
|
||||
prevClusterCenters.push_back(pt);
|
||||
}
|
||||
/* // Print the initial state of the kalman filter for debugging
|
||||
cout<<"KF0.satePre="<<KF0.statePre.at<float>(0)<<","<<KF0.statePre.at<float>(1)<<"\n";
|
||||
cout<<"KF1.satePre="<<KF1.statePre.at<float>(0)<<","<<KF1.statePre.at<float>(1)<<"\n";
|
||||
cout<<"KF2.satePre="<<KF2.statePre.at<float>(0)<<","<<KF2.statePre.at<float>(1)<<"\n";
|
||||
|
@ -373,12 +523,13 @@ if (firstFrame)
|
|||
cout<<"KF5.satePre="<<KF5.statePre.at<float>(0)<<","<<KF5.statePre.at<float>(1)<<"\n";
|
||||
|
||||
//cin.ignore();// To be able to see the printed initial state of the KalmanFilter
|
||||
*/
|
||||
}
|
||||
|
||||
|
||||
else
|
||||
{
|
||||
cout<<"ELSE firstFrame="<<firstFrame<<"\n";
|
||||
//cout<<"ELSE firstFrame="<<firstFrame<<"\n";
|
||||
pcl::PointCloud<pcl::PointXYZ>::Ptr input_cloud (new pcl::PointCloud<pcl::PointXYZ>);
|
||||
pcl::PointCloud<pcl::PointXYZ>::Ptr clustered_cloud (new pcl::PointCloud<pcl::PointXYZ>);
|
||||
/* Creating the KdTree from input point cloud*/
|
||||
|
@ -395,15 +546,15 @@ else
|
|||
*/
|
||||
std::vector<pcl::PointIndices> cluster_indices;
|
||||
pcl::EuclideanClusterExtraction<pcl::PointXYZ> ec;
|
||||
ec.setClusterTolerance (0.08);
|
||||
ec.setClusterTolerance (0.3);
|
||||
ec.setMinClusterSize (10);
|
||||
ec.setMaxClusterSize (600);
|
||||
ec.setSearchMethod (tree);
|
||||
ec.setInputCloud (input_cloud);
|
||||
cout<<"PCL init successfull\n";
|
||||
//cout<<"PCL init successfull\n";
|
||||
/* Extract the clusters out of pc and save indices in cluster_indices.*/
|
||||
ec.extract (cluster_indices);
|
||||
cout<<"PCL extract successfull\n";
|
||||
//cout<<"PCL extract successfull\n";
|
||||
/* To separate each cluster out of the vector<PointIndices> we have to
|
||||
* iterate through cluster_indices, create a new PointCloud for each
|
||||
* entry and write all points of the current cluster in the PointCloud.
|
||||
|
@ -417,22 +568,43 @@ cout<<"PCL extract successfull\n";
|
|||
// Vector of cluster pointclouds
|
||||
std::vector<pcl::PointCloud<pcl::PointXYZ>::Ptr > cluster_vec;
|
||||
|
||||
for(it = cluster_indices.begin(); it != cluster_indices.end(); ++it) {
|
||||
// Cluster centroids
|
||||
std::vector<pcl::PointXYZ> clusterCentroids;
|
||||
|
||||
|
||||
|
||||
for(it = cluster_indices.begin(); it != cluster_indices.end(); ++it)
|
||||
{
|
||||
float x=0.0; float y=0.0;
|
||||
int numPts=0;
|
||||
pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_cluster (new pcl::PointCloud<pcl::PointXYZ>);
|
||||
for(pit = it->indices.begin(); pit != it->indices.end(); pit++)
|
||||
{
|
||||
|
||||
cloud_cluster->points.push_back(input_cloud->points[*pit]);
|
||||
|
||||
|
||||
x+=input_cloud->points[*pit].x;
|
||||
y+=input_cloud->points[*pit].y;
|
||||
numPts++;
|
||||
|
||||
//dist_this_point = pcl::geometry::distance(input_cloud->points[*pit],
|
||||
// origin);
|
||||
//mindist_this_cluster = std::min(dist_this_point, mindist_this_cluster);
|
||||
}
|
||||
|
||||
|
||||
pcl::PointXYZ centroid;
|
||||
centroid.x=x/numPts;
|
||||
centroid.y=y/numPts;
|
||||
centroid.z=0.0;
|
||||
|
||||
cluster_vec.push_back(cloud_cluster);
|
||||
|
||||
//Get the centroid of the cluster
|
||||
clusterCentroids.push_back(centroid);
|
||||
|
||||
}
|
||||
cout<<"cluster_vec got some clusters\n";
|
||||
// cout<<"cluster_vec got some clusters\n";
|
||||
|
||||
//Ensure at least 6 clusters exist to publish (later clusters may be empty)
|
||||
while (cluster_vec.size() < 6){
|
||||
|
@ -440,56 +612,69 @@ cout<<"PCL extract successfull\n";
|
|||
empty_cluster->points.push_back(pcl::PointXYZ(0,0,0));
|
||||
cluster_vec.push_back(empty_cluster);
|
||||
}
|
||||
|
||||
while (clusterCentroids.size()<6)
|
||||
{
|
||||
pcl::PointXYZ centroid;
|
||||
centroid.x=0.0;
|
||||
centroid.y=0.0;
|
||||
centroid.z=0.0;
|
||||
|
||||
clusterCentroids.push_back(centroid);
|
||||
}
|
||||
|
||||
|
||||
std_msgs::Float32MultiArray cc;
|
||||
for(int i=0;i<6;i++)
|
||||
{
|
||||
cc.data.push_back(cluster_vec[i]->points[cluster_vec[i]->points.size()/2].x);
|
||||
cc.data.push_back(cluster_vec[i]->points[cluster_vec[i]->points.size()/2].y);
|
||||
cc.data.push_back(cluster_vec[i]->points[cluster_vec[i]->points.size()/2].z);
|
||||
cc.data.push_back(clusterCentroids.at(i).x);
|
||||
cc.data.push_back(clusterCentroids.at(i).y);
|
||||
cc.data.push_back(clusterCentroids.at(i).z);
|
||||
|
||||
}
|
||||
cout<<"6 clusters initialized\n";
|
||||
// cout<<"6 clusters initialized\n";
|
||||
|
||||
//cc_pos.publish(cc);// Publish cluster mid-points.
|
||||
KFT(cc);
|
||||
int i=0;
|
||||
bool publishedCluster[6];
|
||||
for(auto it=objID.begin();it!=objID.end();it++)
|
||||
{ cout<<"Inside the for loop\n";
|
||||
{ //cout<<"Inside the for loop\n";
|
||||
|
||||
switch(*it)
|
||||
|
||||
switch(i)
|
||||
{
|
||||
cout<<"Inside the switch case\n";
|
||||
case 0: {
|
||||
publish_cloud(pub_cluster0,cluster_vec[i]);
|
||||
publish_cloud(pub_cluster0,cluster_vec[*it]);
|
||||
publishedCluster[i]=true;//Use this flag to publish only once for a given obj ID
|
||||
i++;
|
||||
break;
|
||||
|
||||
}
|
||||
case 1: {
|
||||
publish_cloud(pub_cluster1,cluster_vec[i]);
|
||||
publish_cloud(pub_cluster1,cluster_vec[*it]);
|
||||
publishedCluster[i]=true;//Use this flag to publish only once for a given obj ID
|
||||
i++;
|
||||
break;
|
||||
|
||||
}
|
||||
case 2: {
|
||||
publish_cloud(pub_cluster2,cluster_vec[i]);
|
||||
publish_cloud(pub_cluster2,cluster_vec[*it]);
|
||||
publishedCluster[i]=true;//Use this flag to publish only once for a given obj ID
|
||||
i++;
|
||||
break;
|
||||
|
||||
}
|
||||
case 3: {
|
||||
publish_cloud(pub_cluster3,cluster_vec[i]);
|
||||
publish_cloud(pub_cluster3,cluster_vec[*it]);
|
||||
publishedCluster[i]=true;//Use this flag to publish only once for a given obj ID
|
||||
i++;
|
||||
break;
|
||||
|
||||
}
|
||||
case 4: {
|
||||
publish_cloud(pub_cluster4,cluster_vec[i]);
|
||||
publish_cloud(pub_cluster4,cluster_vec[*it]);
|
||||
publishedCluster[i]=true;//Use this flag to publish only once for a given obj ID
|
||||
i++;
|
||||
break;
|
||||
|
@ -497,7 +682,7 @@ cout<<"PCL extract successfull\n";
|
|||
}
|
||||
|
||||
case 5: {
|
||||
publish_cloud(pub_cluster5,cluster_vec[i]);
|
||||
publish_cloud(pub_cluster5,cluster_vec[*it]);
|
||||
publishedCluster[i]=true;//Use this flag to publish only once for a given obj ID
|
||||
i++;
|
||||
break;
|
||||
|
@ -505,7 +690,7 @@ cout<<"PCL extract successfull\n";
|
|||
}
|
||||
default: break;
|
||||
}
|
||||
|
||||
|
||||
}
|
||||
|
||||
}
|
||||
|
@ -545,7 +730,7 @@ cout<<"About to setup callback\n";
|
|||
*/
|
||||
|
||||
//cc_pos=nh.advertise<std_msgs::Float32MultiArray>("ccs",100);//clusterCenter1
|
||||
|
||||
markerPub= nh.advertise<visualization_msgs::MarkerArray> ("viz",1);
|
||||
|
||||
/* Point cloud clustering
|
||||
*/
|
||||
|
|
|
@ -0,0 +1,603 @@
|
|||
#include <iostream>
|
||||
#include <string.h>
|
||||
#include <fstream>
|
||||
#include <algorithm>
|
||||
#include <iterator>
|
||||
#include "kf_tracker/featureDetection.h"
|
||||
#include "kf_tracker/CKalmanFilter.h"
|
||||
#include <opencv2/core/core.hpp>
|
||||
#include <opencv2/highgui/highgui.hpp>
|
||||
#include <opencv2/imgproc/imgproc.hpp>
|
||||
#include <opencv2/video/video.hpp>
|
||||
#include "opencv2/video/tracking.hpp"
|
||||
#include <ros/ros.h>
|
||||
#include <pcl/io/pcd_io.h>
|
||||
#include <pcl/point_types.h>
|
||||
#include "pcl_ros/point_cloud.h"
|
||||
#include <geometry_msgs/Point.h>
|
||||
#include <std_msgs/Float32MultiArray.h>
|
||||
#include <std_msgs/Int32MultiArray.h>
|
||||
|
||||
#include <sensor_msgs/PointCloud2.h>
|
||||
#include <pcl_conversions/pcl_conversions.h>
|
||||
#include <pcl/point_cloud.h>
|
||||
#include <pcl/point_types.h>
|
||||
#include <pcl/common/geometry.h>
|
||||
#include <pcl/filters/extract_indices.h>
|
||||
#include <pcl/filters/voxel_grid.h>
|
||||
#include <pcl/features/normal_3d.h>
|
||||
#include <pcl/kdtree/kdtree.h>
|
||||
#include <pcl/sample_consensus/method_types.h>
|
||||
#include <pcl/sample_consensus/model_types.h>
|
||||
#include <pcl/segmentation/sac_segmentation.h>
|
||||
#include <pcl/segmentation/extract_clusters.h>
|
||||
|
||||
using namespace std;
|
||||
using namespace cv;
|
||||
|
||||
|
||||
ros::Publisher objID_pub;
|
||||
|
||||
// KF init
|
||||
int stateDim=4;// [x,y,v_x,v_y]//,w,h]
|
||||
int measDim=2;// [z_x,z_y,z_w,z_h]
|
||||
int ctrlDim=0;
|
||||
cv::KalmanFilter KF0(stateDim,measDim,ctrlDim,CV_32F);
|
||||
cv::KalmanFilter KF1(stateDim,measDim,ctrlDim,CV_32F);
|
||||
cv::KalmanFilter KF2(stateDim,measDim,ctrlDim,CV_32F);
|
||||
cv::KalmanFilter KF3(stateDim,measDim,ctrlDim,CV_32F);
|
||||
cv::KalmanFilter KF4(stateDim,measDim,ctrlDim,CV_32F);
|
||||
cv::KalmanFilter KF5(stateDim,measDim,ctrlDim,CV_32F);
|
||||
|
||||
ros::Publisher pub_cluster0;
|
||||
ros::Publisher pub_cluster1;
|
||||
ros::Publisher pub_cluster2;
|
||||
ros::Publisher pub_cluster3;
|
||||
ros::Publisher pub_cluster4;
|
||||
ros::Publisher pub_cluster5;
|
||||
|
||||
std::vector<geometry_msgs::Point> prevClusterCenters;
|
||||
|
||||
|
||||
cv::Mat state(stateDim,1,CV_32F);
|
||||
cv::Mat_<float> measurement(2,1);
|
||||
|
||||
std::vector<int> objID;// Output of the data association using KF
|
||||
// measurement.setTo(Scalar(0));
|
||||
|
||||
bool firstFrame=true;
|
||||
|
||||
// calculate euclidean distance of two points
|
||||
double euclidean_distance(geometry_msgs::Point& p1, geometry_msgs::Point& p2)
|
||||
{
|
||||
return sqrt((p1.x - p2.x) * (p1.x - p2.x) + (p1.y - p2.y) * (p1.y - p2.y) + (p1.z - p2.z) * (p1.z - p2.z));
|
||||
}
|
||||
/*
|
||||
//Count unique object IDs. just to make sure same ID has not been assigned to two KF_Trackers.
|
||||
int countIDs(vector<int> v)
|
||||
{
|
||||
transform(v.begin(), v.end(), v.begin(), abs); // O(n) where n = distance(v.end(), v.begin())
|
||||
sort(v.begin(), v.end()); // Average case O(n log n), worst case O(n^2) (usually implemented as quicksort.
|
||||
// To guarantee worst case O(n log n) replace with make_heap, then sort_heap.
|
||||
|
||||
// Unique will take a sorted range, and move things around to get duplicated
|
||||
// items to the back and returns an iterator to the end of the unique section of the range
|
||||
auto unique_end = unique(v.begin(), v.end()); // Again n comparisons
|
||||
return distance(unique_end, v.begin()); // Constant time for random access iterators (like vector's)
|
||||
}
|
||||
*/
|
||||
|
||||
/*
|
||||
|
||||
objID: vector containing the IDs of the clusters that should be associated with each KF_Tracker
|
||||
objID[0] corresponds to KFT0, objID[1] corresponds to KFT1 etc.
|
||||
*/
|
||||
void KFT(const std_msgs::Float32MultiArray ccs)
|
||||
{
|
||||
|
||||
|
||||
|
||||
// First predict, to update the internal statePre variable
|
||||
|
||||
std::vector<cv::Mat> pred{KF0.predict(),KF1.predict(),KF2.predict(),KF3.predict(),KF4.predict(),KF5.predict()};
|
||||
//cout<<"Pred successfull\n";
|
||||
|
||||
//cv::Point predictPt(prediction.at<float>(0),prediction.at<float>(1));
|
||||
// cout<<"Prediction 1 ="<<prediction.at<float>(0)<<","<<prediction.at<float>(1)<<"\n";
|
||||
|
||||
// Get measurements
|
||||
// Extract the position of the clusters forom the multiArray. To check if the data
|
||||
// coming in, check the .z (every third) coordinate and that will be 0.0
|
||||
std::vector<geometry_msgs::Point> clusterCenters;//clusterCenters
|
||||
|
||||
int i=0;
|
||||
for (std::vector<float>::const_iterator it=ccs.data.begin();it!=ccs.data.end();it+=3)
|
||||
{
|
||||
geometry_msgs::Point pt;
|
||||
pt.x=*it;
|
||||
pt.y=*(it+1);
|
||||
pt.z=*(it+2);
|
||||
|
||||
clusterCenters.push_back(pt);
|
||||
|
||||
}
|
||||
|
||||
// cout<<"CLusterCenters Obtained"<<"\n";
|
||||
std::vector<geometry_msgs::Point> KFpredictions;
|
||||
i=0;
|
||||
for (auto it=pred.begin();it!=pred.end();it++)
|
||||
{
|
||||
geometry_msgs::Point pt;
|
||||
pt.x=(*it).at<float>(0);
|
||||
pt.y=(*it).at<float>(1);
|
||||
pt.z=(*it).at<float>(2);
|
||||
|
||||
KFpredictions.push_back(pt);
|
||||
|
||||
}
|
||||
// cout<<"Got predictions"<<"\n";
|
||||
|
||||
/* Original Version using Kalman filter prediction
|
||||
|
||||
// Find the cluster that is more probable to be belonging to a given KF.
|
||||
objID.clear();//Clear the objID vector
|
||||
for(int filterN=0;filterN<6;filterN++)
|
||||
{
|
||||
std::vector<float> distVec;
|
||||
for(int n=0;n<6;n++)
|
||||
distVec.push_back(euclidean_distance(KFpredictions[filterN],clusterCenters[n]));
|
||||
|
||||
// cout<<"distVec[="<<distVec[0]<<","<<distVec[1]<<","<<distVec[2]<<","<<distVec[3]<<","<<distVec[4]<<","<<distVec[5]<<"\n";
|
||||
objID.push_back(std::distance(distVec.begin(),min_element(distVec.begin(),distVec.end())));
|
||||
// cout<<"MinD for filter"<<filterN<<"="<<*min_element(distVec.begin(),distVec.end())<<"\n";
|
||||
|
||||
}
|
||||
|
||||
// cout<<"Got object IDs"<<"\n";
|
||||
//countIDs(objID);// for verif/corner cases
|
||||
Original version using kalman filter prediction
|
||||
*/
|
||||
//display objIDs
|
||||
/* DEBUG
|
||||
cout<<"objID= ";
|
||||
for(auto it=objID.begin();it!=objID.end();it++)
|
||||
cout<<*it<<" ,";
|
||||
cout<<"\n";
|
||||
*/
|
||||
|
||||
/* Naive version without using kalman filter */
|
||||
objID.clear();//Clear the objID vector
|
||||
for(int filterN=0;filterN<6;filterN++)
|
||||
{
|
||||
std::vector<float> distVec;
|
||||
for(int n=0;n<6;n++)
|
||||
distVec.push_back(euclidean_distance(prevClusterCenters[n],clusterCenters[n]));
|
||||
|
||||
// cout<<"distVec[="<<distVec[0]<<","<<distVec[1]<<","<<distVec[2]<<","<<distVec[3]<<","<<distVec[4]<<","<<distVec[5]<<"\n";
|
||||
objID.push_back(std::distance(distVec.begin(),min_element(distVec.begin(),distVec.end())));
|
||||
// cout<<"MinD for filter"<<filterN<<"="<<*min_element(distVec.begin(),distVec.end())<<"\n";
|
||||
|
||||
}
|
||||
/* Naive version without kalman filter */
|
||||
//prevClusterCenters.clear();
|
||||
// Set the current associated clusters to the prevClusterCenters
|
||||
for (int i=0;i<6;i++)
|
||||
{
|
||||
prevClusterCenters[objID.at(i)]=clusterCenters.at(i);
|
||||
|
||||
}
|
||||
|
||||
/* Naive version without kalman filter */
|
||||
|
||||
/* Naive version without using kalman filter */
|
||||
|
||||
|
||||
std_msgs::Int32MultiArray obj_id;
|
||||
for(auto it=objID.begin();it!=objID.end();it++)
|
||||
obj_id.data.push_back(*it);
|
||||
objID_pub.publish(obj_id);
|
||||
// convert clusterCenters from geometry_msgs::Point to floats
|
||||
std::vector<std::vector<float> > cc;
|
||||
for (int i=0;i<clusterCenters.size();i++)
|
||||
{
|
||||
vector<float> pt;
|
||||
pt.push_back(clusterCenters[i].x);
|
||||
pt.push_back(clusterCenters[i].y);
|
||||
pt.push_back(clusterCenters[i].z);
|
||||
|
||||
cc.push_back(pt);
|
||||
}
|
||||
//cout<<"cc[5][0]="<<cc[5].at(0)<<"cc[5][1]="<<cc[5].at(1)<<"cc[5][2]="<<cc[5].at(2)<<"\n";
|
||||
float meas0[3]={cc[0].at(0),cc[0].at(1)};
|
||||
float meas1[3]={cc[1].at(0),cc[1].at(1)};
|
||||
float meas2[3]={cc[2].at(0),cc[2].at(1)};
|
||||
float meas3[3]={cc[3].at(0),cc[3].at(1)};
|
||||
float meas4[3]={cc[4].at(0),cc[4].at(1)};
|
||||
float meas5[3]={cc[5].at(0),cc[5].at(1)};
|
||||
|
||||
|
||||
|
||||
// The update phase
|
||||
cv::Mat meas0Mat=cv::Mat(2,1,CV_32F,meas0);
|
||||
cv::Mat meas1Mat=cv::Mat(2,1,CV_32F,meas1);
|
||||
cv::Mat meas2Mat=cv::Mat(2,1,CV_32F,meas2);
|
||||
cv::Mat meas3Mat=cv::Mat(2,1,CV_32F,meas3);
|
||||
cv::Mat meas4Mat=cv::Mat(2,1,CV_32F,meas4);
|
||||
cv::Mat meas5Mat=cv::Mat(2,1,CV_32F,meas5);
|
||||
|
||||
//cout<<"meas0Mat"<<meas0Mat<<"\n";
|
||||
|
||||
Mat estimated0 = KF0.correct(meas0Mat);
|
||||
Mat estimated1 = KF0.correct(meas1Mat);
|
||||
Mat estimated2 = KF0.correct(meas2Mat);
|
||||
Mat estimated3 = KF0.correct(meas3Mat);
|
||||
Mat estimated4 = KF0.correct(meas4Mat);
|
||||
Mat estimated5 = KF0.correct(meas5Mat);
|
||||
|
||||
// Publish the point clouds belonging to each clusters
|
||||
|
||||
|
||||
// cout<<"estimate="<<estimated.at<float>(0)<<","<<estimated.at<float>(1)<<"\n";
|
||||
// Point statePt(estimated.at<float>(0),estimated.at<float>(1));
|
||||
//cout<<"DONE KF_TRACKER\n";
|
||||
|
||||
}
|
||||
void publish_cloud(ros::Publisher& pub, pcl::PointCloud<pcl::PointXYZ>::Ptr cluster){
|
||||
sensor_msgs::PointCloud2::Ptr clustermsg (new sensor_msgs::PointCloud2);
|
||||
pcl::toROSMsg (*cluster , *clustermsg);
|
||||
clustermsg->header.frame_id = "/map";
|
||||
clustermsg->header.stamp = ros::Time::now();
|
||||
pub.publish (*clustermsg);
|
||||
|
||||
}
|
||||
|
||||
|
||||
void cloud_cb (const sensor_msgs::PointCloud2ConstPtr& input)
|
||||
|
||||
{
|
||||
cout<<"IF firstFrame="<<firstFrame<<"\n";
|
||||
// If this is the first frame, initialize kalman filters for the clustered objects
|
||||
if (firstFrame)
|
||||
{
|
||||
// Initialize 6 Kalman Filters; Assuming 6 max objects in the dataset.
|
||||
// Could be made generic by creating a Kalman Filter only when a new object is detected
|
||||
KF0.transitionMatrix = *(Mat_<float>(4, 4) << 1,0,1,0, 0,1,0,1, 0,0,1,0, 0,0,0,1);
|
||||
KF1.transitionMatrix = *(Mat_<float>(4, 4) << 1,0,1,0, 0,1,0,1, 0,0,1,0, 0,0,0,1);
|
||||
KF2.transitionMatrix = *(Mat_<float>(4, 4) << 1,0,1,0, 0,1,0,1, 0,0,1,0, 0,0,0,1);
|
||||
KF3.transitionMatrix = *(Mat_<float>(4, 4) << 1,0,1,0, 0,1,0,1, 0,0,1,0, 0,0,0,1);
|
||||
KF4.transitionMatrix = *(Mat_<float>(4, 4) << 1,0,1,0, 0,1,0,1, 0,0,1,0, 0,0,0,1);
|
||||
KF5.transitionMatrix = *(Mat_<float>(4, 4) << 1,0,1,0, 0,1,0,1, 0,0,1,0, 0,0,0,1);
|
||||
|
||||
cv::setIdentity(KF0.measurementMatrix);
|
||||
cv::setIdentity(KF1.measurementMatrix);
|
||||
cv::setIdentity(KF2.measurementMatrix);
|
||||
cv::setIdentity(KF3.measurementMatrix);
|
||||
cv::setIdentity(KF4.measurementMatrix);
|
||||
cv::setIdentity(KF5.measurementMatrix);
|
||||
// Process Noise Covariance Matrix Q
|
||||
// [ Ex 0 0 0 0 0 ]
|
||||
// [ 0 Ey 0 0 0 0 ]
|
||||
// [ 0 0 Ev_x 0 0 0 ]
|
||||
// [ 0 0 0 1 Ev_y 0 ]
|
||||
//// [ 0 0 0 0 1 Ew ]
|
||||
//// [ 0 0 0 0 0 Eh ]
|
||||
setIdentity(KF0.processNoiseCov, Scalar::all(1e-4));
|
||||
setIdentity(KF1.processNoiseCov, Scalar::all(1e-4));
|
||||
setIdentity(KF2.processNoiseCov, Scalar::all(1e-4));
|
||||
setIdentity(KF3.processNoiseCov, Scalar::all(1e-4));
|
||||
setIdentity(KF4.processNoiseCov, Scalar::all(1e-4));
|
||||
setIdentity(KF5.processNoiseCov, Scalar::all(1e-4));
|
||||
// Meas noise cov matrix R
|
||||
cv::setIdentity(KF0.measurementNoiseCov, cv::Scalar(1e-1));
|
||||
cv::setIdentity(KF1.measurementNoiseCov, cv::Scalar(1e-1));
|
||||
cv::setIdentity(KF2.measurementNoiseCov, cv::Scalar(1e-1));
|
||||
cv::setIdentity(KF3.measurementNoiseCov, cv::Scalar(1e-1));
|
||||
cv::setIdentity(KF4.measurementNoiseCov, cv::Scalar(1e-1));
|
||||
cv::setIdentity(KF5.measurementNoiseCov, cv::Scalar(1e-1));
|
||||
|
||||
// Process the point cloud
|
||||
pcl::PointCloud<pcl::PointXYZ>::Ptr input_cloud (new pcl::PointCloud<pcl::PointXYZ>);
|
||||
pcl::PointCloud<pcl::PointXYZ>::Ptr clustered_cloud (new pcl::PointCloud<pcl::PointXYZ>);
|
||||
/* Creating the KdTree from input point cloud*/
|
||||
pcl::search::KdTree<pcl::PointXYZ>::Ptr tree (new pcl::search::KdTree<pcl::PointXYZ>);
|
||||
|
||||
pcl::fromROSMsg (*input, *input_cloud);
|
||||
|
||||
tree->setInputCloud (input_cloud);
|
||||
|
||||
/* Here we are creating a vector of PointIndices, which contains the actual index
|
||||
* information in a vector<int>. The indices of each detected cluster are saved here.
|
||||
* Cluster_indices is a vector containing one instance of PointIndices for each detected
|
||||
* cluster. Cluster_indices[0] contain all indices of the first cluster in input point cloud.
|
||||
*/
|
||||
std::vector<pcl::PointIndices> cluster_indices;
|
||||
pcl::EuclideanClusterExtraction<pcl::PointXYZ> ec;
|
||||
ec.setClusterTolerance (0.08);
|
||||
ec.setMinClusterSize (10);
|
||||
ec.setMaxClusterSize (600);
|
||||
ec.setSearchMethod (tree);
|
||||
ec.setInputCloud (input_cloud);
|
||||
/* Extract the clusters out of pc and save indices in cluster_indices.*/
|
||||
ec.extract (cluster_indices);
|
||||
|
||||
/* To separate each cluster out of the vector<PointIndices> we have to
|
||||
* iterate through cluster_indices, create a new PointCloud for each
|
||||
* entry and write all points of the current cluster in the PointCloud.
|
||||
*/
|
||||
//pcl::PointXYZ origin (0,0,0);
|
||||
//float mindist_this_cluster = 1000;
|
||||
//float dist_this_point = 1000;
|
||||
|
||||
std::vector<pcl::PointIndices>::const_iterator it;
|
||||
std::vector<int>::const_iterator pit;
|
||||
// Vector of cluster pointclouds
|
||||
std::vector<pcl::PointCloud<pcl::PointXYZ>::Ptr > cluster_vec;
|
||||
|
||||
for(it = cluster_indices.begin(); it != cluster_indices.end(); ++it) {
|
||||
pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_cluster (new pcl::PointCloud<pcl::PointXYZ>);
|
||||
for(pit = it->indices.begin(); pit != it->indices.end(); pit++)
|
||||
{
|
||||
|
||||
cloud_cluster->points.push_back(input_cloud->points[*pit]);
|
||||
//dist_this_point = pcl::geometry::distance(input_cloud->points[*pit],
|
||||
// origin);
|
||||
//mindist_this_cluster = std::min(dist_this_point, mindist_this_cluster);
|
||||
}
|
||||
|
||||
|
||||
cluster_vec.push_back(cloud_cluster);
|
||||
|
||||
}
|
||||
|
||||
//Ensure at least 6 clusters exist to publish (later clusters may be empty)
|
||||
while (cluster_vec.size() < 6){
|
||||
pcl::PointCloud<pcl::PointXYZ>::Ptr empty_cluster (new pcl::PointCloud<pcl::PointXYZ>);
|
||||
empty_cluster->points.push_back(pcl::PointXYZ(0,0,0));
|
||||
cluster_vec.push_back(empty_cluster);
|
||||
}
|
||||
|
||||
|
||||
// Set initial state
|
||||
KF0.statePre.at<float>(0)=cluster_vec[0]->points[cluster_vec[0]->points.size()/2].x;
|
||||
|
||||
KF0.statePre.at<float>(1)=cluster_vec[0]->points[cluster_vec[0]->points.size()/2].y;
|
||||
KF0.statePre.at<float>(2)=0;// initial v_x
|
||||
KF0.statePre.at<float>(3)=0;//initial v_y
|
||||
|
||||
// Set initial state
|
||||
KF1.statePre.at<float>(0)=cluster_vec[1]->points[cluster_vec[1]->points.size()/2].x;
|
||||
KF1.statePre.at<float>(1)=cluster_vec[1]->points[cluster_vec[1]->points.size()/2].y;
|
||||
KF1.statePre.at<float>(2)=0;// initial v_x
|
||||
KF1.statePre.at<float>(3)=0;//initial v_y
|
||||
|
||||
// Set initial state
|
||||
KF2.statePre.at<float>(0)=cluster_vec[2]->points[cluster_vec[2]->points.size()/2].x;
|
||||
KF2.statePre.at<float>(1)=cluster_vec[2]->points[cluster_vec[2]->points.size()/2].y;
|
||||
KF2.statePre.at<float>(2)=0;// initial v_x
|
||||
KF2.statePre.at<float>(3)=0;//initial v_y
|
||||
|
||||
|
||||
// Set initial state
|
||||
KF3.statePre.at<float>(0)=cluster_vec[3]->points[cluster_vec[3]->points.size()/2].x;
|
||||
KF3.statePre.at<float>(1)=cluster_vec[3]->points[cluster_vec[3]->points.size()/2].y;
|
||||
KF3.statePre.at<float>(2)=0;// initial v_x
|
||||
KF3.statePre.at<float>(3)=0;//initial v_y
|
||||
|
||||
// Set initial state
|
||||
KF4.statePre.at<float>(0)=cluster_vec[4]->points[cluster_vec[4]->points.size()/2].x;
|
||||
KF4.statePre.at<float>(1)=cluster_vec[4]->points[cluster_vec[4]->points.size()/2].y;
|
||||
KF4.statePre.at<float>(2)=0;// initial v_x
|
||||
KF4.statePre.at<float>(3)=0;//initial v_y
|
||||
|
||||
// Set initial state
|
||||
KF5.statePre.at<float>(0)=cluster_vec[5]->points[cluster_vec[5]->points.size()/2].x;
|
||||
KF5.statePre.at<float>(1)=cluster_vec[5]->points[cluster_vec[5]->points.size()/2].y;
|
||||
KF5.statePre.at<float>(2)=0;// initial v_x
|
||||
KF5.statePre.at<float>(3)=0;//initial v_y
|
||||
|
||||
firstFrame=false;
|
||||
|
||||
// Print the initial state of the kalman filter for debugging
|
||||
cout<<"KF0.satePre="<<KF0.statePre.at<float>(0)<<","<<KF0.statePre.at<float>(1)<<"\n";
|
||||
cout<<"KF1.satePre="<<KF1.statePre.at<float>(0)<<","<<KF1.statePre.at<float>(1)<<"\n";
|
||||
cout<<"KF2.satePre="<<KF2.statePre.at<float>(0)<<","<<KF2.statePre.at<float>(1)<<"\n";
|
||||
cout<<"KF3.satePre="<<KF3.statePre.at<float>(0)<<","<<KF3.statePre.at<float>(1)<<"\n";
|
||||
cout<<"KF4.satePre="<<KF4.statePre.at<float>(0)<<","<<KF4.statePre.at<float>(1)<<"\n";
|
||||
cout<<"KF5.satePre="<<KF5.statePre.at<float>(0)<<","<<KF5.statePre.at<float>(1)<<"\n";
|
||||
|
||||
//cin.ignore();// To be able to see the printed initial state of the KalmanFilter
|
||||
|
||||
|
||||
|
||||
/* Naive version without kalman filter */
|
||||
for (int i=0;i<6;i++)
|
||||
{
|
||||
geometry_msgs::Point pt;
|
||||
pt.x=cluster_vec[i]->points[cluster_vec[i]->points.size()/2].x;
|
||||
pt.y=cluster_vec[i]->points[cluster_vec[i]->points.size()/2].y;
|
||||
prevClusterCenters.push_back(pt);
|
||||
}
|
||||
|
||||
/* Naive version without kalman filter */
|
||||
}
|
||||
|
||||
|
||||
else
|
||||
{
|
||||
cout<<"ELSE firstFrame="<<firstFrame<<"\n";
|
||||
pcl::PointCloud<pcl::PointXYZ>::Ptr input_cloud (new pcl::PointCloud<pcl::PointXYZ>);
|
||||
pcl::PointCloud<pcl::PointXYZ>::Ptr clustered_cloud (new pcl::PointCloud<pcl::PointXYZ>);
|
||||
/* Creating the KdTree from input point cloud*/
|
||||
pcl::search::KdTree<pcl::PointXYZ>::Ptr tree (new pcl::search::KdTree<pcl::PointXYZ>);
|
||||
|
||||
pcl::fromROSMsg (*input, *input_cloud);
|
||||
|
||||
tree->setInputCloud (input_cloud);
|
||||
|
||||
/* Here we are creating a vector of PointIndices, which contains the actual index
|
||||
* information in a vector<int>. The indices of each detected cluster are saved here.
|
||||
* Cluster_indices is a vector containing one instance of PointIndices for each detected
|
||||
* cluster. Cluster_indices[0] contain all indices of the first cluster in input point cloud.
|
||||
*/
|
||||
std::vector<pcl::PointIndices> cluster_indices;
|
||||
pcl::EuclideanClusterExtraction<pcl::PointXYZ> ec;
|
||||
ec.setClusterTolerance (0.08);
|
||||
ec.setMinClusterSize (10);
|
||||
ec.setMaxClusterSize (600);
|
||||
ec.setSearchMethod (tree);
|
||||
ec.setInputCloud (input_cloud);
|
||||
cout<<"PCL init successfull\n";
|
||||
/* Extract the clusters out of pc and save indices in cluster_indices.*/
|
||||
ec.extract (cluster_indices);
|
||||
cout<<"PCL extract successfull\n";
|
||||
/* To separate each cluster out of the vector<PointIndices> we have to
|
||||
* iterate through cluster_indices, create a new PointCloud for each
|
||||
* entry and write all points of the current cluster in the PointCloud.
|
||||
*/
|
||||
//pcl::PointXYZ origin (0,0,0);
|
||||
//float mindist_this_cluster = 1000;
|
||||
//float dist_this_point = 1000;
|
||||
|
||||
std::vector<pcl::PointIndices>::const_iterator it;
|
||||
std::vector<int>::const_iterator pit;
|
||||
// Vector of cluster pointclouds
|
||||
std::vector<pcl::PointCloud<pcl::PointXYZ>::Ptr > cluster_vec;
|
||||
|
||||
for(it = cluster_indices.begin(); it != cluster_indices.end(); ++it) {
|
||||
pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_cluster (new pcl::PointCloud<pcl::PointXYZ>);
|
||||
for(pit = it->indices.begin(); pit != it->indices.end(); pit++)
|
||||
{
|
||||
|
||||
cloud_cluster->points.push_back(input_cloud->points[*pit]);
|
||||
//dist_this_point = pcl::geometry::distance(input_cloud->points[*pit],
|
||||
// origin);
|
||||
//mindist_this_cluster = std::min(dist_this_point, mindist_this_cluster);
|
||||
}
|
||||
|
||||
|
||||
cluster_vec.push_back(cloud_cluster);
|
||||
|
||||
}
|
||||
//cout<<"cluster_vec got some clusters\n";
|
||||
|
||||
//Ensure at least 6 clusters exist to publish (later clusters may be empty)
|
||||
while (cluster_vec.size() < 6){
|
||||
pcl::PointCloud<pcl::PointXYZ>::Ptr empty_cluster (new pcl::PointCloud<pcl::PointXYZ>);
|
||||
empty_cluster->points.push_back(pcl::PointXYZ(0,0,0));
|
||||
cluster_vec.push_back(empty_cluster);
|
||||
}
|
||||
std_msgs::Float32MultiArray cc;
|
||||
for(int i=0;i<6;i++)
|
||||
{
|
||||
cc.data.push_back(cluster_vec[i]->points[cluster_vec[i]->points.size()/2].x);
|
||||
cc.data.push_back(cluster_vec[i]->points[cluster_vec[i]->points.size()/2].y);
|
||||
cc.data.push_back(cluster_vec[i]->points[cluster_vec[i]->points.size()/2].z);
|
||||
|
||||
}
|
||||
cout<<"6 clusters initialized\n";
|
||||
|
||||
//cc_pos.publish(cc);// Publish cluster mid-points.
|
||||
KFT(cc);
|
||||
int i=0;
|
||||
bool publishedCluster[6];
|
||||
for(auto it=objID.begin();it!=objID.end();it++)
|
||||
{ cout<<"Inside the for loop\n";
|
||||
|
||||
switch(*it)
|
||||
{
|
||||
cout<<"Inside the switch case\n";
|
||||
case 0: {
|
||||
publish_cloud(pub_cluster0,cluster_vec[i]);
|
||||
publishedCluster[i]=true;//Use this flag to publish only once for a given obj ID
|
||||
i++;
|
||||
break;
|
||||
|
||||
}
|
||||
case 1: {
|
||||
publish_cloud(pub_cluster1,cluster_vec[i]);
|
||||
publishedCluster[i]=true;//Use this flag to publish only once for a given obj ID
|
||||
i++;
|
||||
break;
|
||||
|
||||
}
|
||||
case 2: {
|
||||
publish_cloud(pub_cluster2,cluster_vec[i]);
|
||||
publishedCluster[i]=true;//Use this flag to publish only once for a given obj ID
|
||||
i++;
|
||||
break;
|
||||
|
||||
}
|
||||
case 3: {
|
||||
publish_cloud(pub_cluster3,cluster_vec[i]);
|
||||
publishedCluster[i]=true;//Use this flag to publish only once for a given obj ID
|
||||
i++;
|
||||
break;
|
||||
|
||||
}
|
||||
case 4: {
|
||||
publish_cloud(pub_cluster4,cluster_vec[i]);
|
||||
publishedCluster[i]=true;//Use this flag to publish only once for a given obj ID
|
||||
i++;
|
||||
break;
|
||||
|
||||
}
|
||||
|
||||
case 5: {
|
||||
publish_cloud(pub_cluster5,cluster_vec[i]);
|
||||
publishedCluster[i]=true;//Use this flag to publish only once for a given obj ID
|
||||
i++;
|
||||
break;
|
||||
|
||||
}
|
||||
default: break;
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
int main(int argc, char** argv)
|
||||
{
|
||||
// ROS init
|
||||
ros::init (argc,argv,"KFTracker");
|
||||
ros::NodeHandle nh;
|
||||
|
||||
|
||||
// Publishers to publish the state of the objects (pos and vel)
|
||||
//objState1=nh.advertise<geometry_msgs::Twist> ("obj_1",1);
|
||||
|
||||
|
||||
|
||||
cout<<"About to setup callback\n";
|
||||
|
||||
// Create a ROS subscriber for the input point cloud
|
||||
ros::Subscriber sub = nh.subscribe ("filtered_cloud", 1, cloud_cb);
|
||||
// Create a ROS publisher for the output point cloud
|
||||
pub_cluster0 = nh.advertise<sensor_msgs::PointCloud2> ("cluster_0", 1);
|
||||
pub_cluster1 = nh.advertise<sensor_msgs::PointCloud2> ("cluster_1", 1);
|
||||
pub_cluster2 = nh.advertise<sensor_msgs::PointCloud2> ("cluster_2", 1);
|
||||
pub_cluster3 = nh.advertise<sensor_msgs::PointCloud2> ("cluster_3", 1);
|
||||
pub_cluster4 = nh.advertise<sensor_msgs::PointCloud2> ("cluster_4", 1);
|
||||
pub_cluster5 = nh.advertise<sensor_msgs::PointCloud2> ("cluster_5", 1);
|
||||
// Subscribe to the clustered pointclouds
|
||||
//ros::Subscriber c1=nh.subscribe("ccs",100,KFT);
|
||||
objID_pub = nh.advertise<std_msgs::Int32MultiArray>("obj_id", 1);
|
||||
/* Point cloud clustering
|
||||
*/
|
||||
|
||||
//cc_pos=nh.advertise<std_msgs::Float32MultiArray>("ccs",100);//clusterCenter1
|
||||
|
||||
|
||||
/* Point cloud clustering
|
||||
*/
|
||||
|
||||
|
||||
ros::spin();
|
||||
|
||||
|
||||
}
|
Loading…
Reference in New Issue