diff --git a/src/main.cpp b/src/main.cpp index f7e9218..0bd35fd 100644 --- a/src/main.cpp +++ b/src/main.cpp @@ -31,6 +31,12 @@ #include #include #include +#include + +#include +#include +#include +#include using namespace std; using namespace cv; @@ -56,6 +62,10 @@ ros::Publisher objID_pub; ros::Publisher pub_cluster4; ros::Publisher pub_cluster5; + ros::Publisher markerPub; + + std::vector prevClusterCenters; + cv::Mat state(stateDim,1,CV_32F); cv::Mat_ measurement(2,1); @@ -90,6 +100,27 @@ int countIDs(vector v) objID: vector containing the IDs of the clusters that should be associated with each KF_Tracker objID[0] corresponds to KFT0, objID[1] corresponds to KFT1 etc. */ + +std::pair findIndexOfMin(std::vector > distMat) +{ + cout<<"findIndexOfMin cALLED\n"; + std::pairminIndex; + float minEl=std::numeric_limits::max(); + cout<<"minEl="< copyOfClusterCenters(clusterCenters); + std::vector > distMat; + for(int filterN=0;filterN<6;filterN++) { std::vector distVec; for(int n=0;n<6;n++) - distVec.push_back(euclidean_distance(KFpredictions[filterN],clusterCenters[n])); - - // cout<<"distVec[="< (i,j); + std::pair minIndex(findIndexOfMin(distMat)); + cout<<"Received minIndex="<(6,10000.0);// Set the row to a high number. + for(int row=0;row > cc; - for (int i=0;i pt; - pt.push_back(clusterCenters[i].x); - pt.push_back(clusterCenters[i].y); - pt.push_back(clusterCenters[i].z); + pt.push_back(clusterCenters[objID[i]].x); + pt.push_back(clusterCenters[objID[i]].y); + pt.push_back(clusterCenters[objID[i]].z); cc.push_back(pt); } //cout<<"cc[5][0]="<(0,0)==0.0f || meas0Mat.at(1,0)==0.0f)) Mat estimated0 = KF0.correct(meas0Mat); - Mat estimated1 = KF0.correct(meas1Mat); - Mat estimated2 = KF0.correct(meas2Mat); - Mat estimated3 = KF0.correct(meas3Mat); - Mat estimated4 = KF0.correct(meas4Mat); - Mat estimated5 = KF0.correct(meas5Mat); +if (!(meas1[0]==0.0f || meas1[1]==0.0f)) + Mat estimated1 = KF1.correct(meas1Mat); +if (!(meas2[0]==0.0f || meas2[1]==0.0f)) + Mat estimated2 = KF2.correct(meas2Mat); +if (!(meas3[0]==0.0f || meas3[1]==0.0f)) + Mat estimated3 = KF3.correct(meas3Mat); +if (!(meas4[0]==0.0f || meas4[1]==0.0f)) + Mat estimated4 = KF4.correct(meas4Mat); +if (!(meas5[0]==0.0f || meas5[1]==0.0f)) + Mat estimated5 = KF5.correct(meas5Mat); + // Publish the point clouds belonging to each clusters @@ -223,18 +341,23 @@ void publish_cloud(ros::Publisher& pub, pcl::PointCloud::Ptr clus void cloud_cb (const sensor_msgs::PointCloud2ConstPtr& input) { - cout<<"IF firstFrame="<(4, 4) << 1,0,1,0, 0,1,0,1, 0,0,1,0, 0,0,0,1); - KF1.transitionMatrix = *(Mat_(4, 4) << 1,0,1,0, 0,1,0,1, 0,0,1,0, 0,0,0,1); - KF2.transitionMatrix = *(Mat_(4, 4) << 1,0,1,0, 0,1,0,1, 0,0,1,0, 0,0,0,1); - KF3.transitionMatrix = *(Mat_(4, 4) << 1,0,1,0, 0,1,0,1, 0,0,1,0, 0,0,0,1); - KF4.transitionMatrix = *(Mat_(4, 4) << 1,0,1,0, 0,1,0,1, 0,0,1,0, 0,0,0,1); - KF5.transitionMatrix = *(Mat_(4, 4) << 1,0,1,0, 0,1,0,1, 0,0,1,0, 0,0,0,1); + + float dvx=0.01f; //1.0 + float dvy=0.01f;//1.0 + float dx=1.0f; + float dy=1.0f; + KF0.transitionMatrix = *(Mat_(4, 4) << dx,0,1,0, 0,dy,0,1, 0,0,dvx,0, 0,0,0,dvy); + KF1.transitionMatrix = *(Mat_(4, 4) << dx,0,1,0, 0,dy,0,1, 0,0,dvx,0, 0,0,0,dvy); + KF2.transitionMatrix = *(Mat_(4, 4) << dx,0,1,0, 0,dy,0,1, 0,0,dvx,0, 0,0,0,dvy); + KF3.transitionMatrix = *(Mat_(4, 4) << dx,0,1,0, 0,dy,0,1, 0,0,dvx,0, 0,0,0,dvy); + KF4.transitionMatrix = *(Mat_(4, 4) << dx,0,1,0, 0,dy,0,1, 0,0,dvx,0, 0,0,0,dvy); + KF5.transitionMatrix = *(Mat_(4, 4) << dx,0,1,0, 0,dy,0,1, 0,0,dvx,0, 0,0,0,dvy); cv::setIdentity(KF0.measurementMatrix); cv::setIdentity(KF1.measurementMatrix); @@ -249,19 +372,21 @@ if (firstFrame) // [ 0 0 0 1 Ev_y 0 ] //// [ 0 0 0 0 1 Ew ] //// [ 0 0 0 0 0 Eh ] - setIdentity(KF0.processNoiseCov, Scalar::all(1e-4)); - setIdentity(KF1.processNoiseCov, Scalar::all(1e-4)); - setIdentity(KF2.processNoiseCov, Scalar::all(1e-4)); - setIdentity(KF3.processNoiseCov, Scalar::all(1e-4)); - setIdentity(KF4.processNoiseCov, Scalar::all(1e-4)); - setIdentity(KF5.processNoiseCov, Scalar::all(1e-4)); + float sigmaP=0.01; + float sigmaQ=0.1; + setIdentity(KF0.processNoiseCov, Scalar::all(sigmaP)); + setIdentity(KF1.processNoiseCov, Scalar::all(sigmaP)); + setIdentity(KF2.processNoiseCov, Scalar::all(sigmaP)); + setIdentity(KF3.processNoiseCov, Scalar::all(sigmaP)); + setIdentity(KF4.processNoiseCov, Scalar::all(sigmaP)); + setIdentity(KF5.processNoiseCov, Scalar::all(sigmaP)); // Meas noise cov matrix R - cv::setIdentity(KF0.measurementNoiseCov, cv::Scalar(1e-1)); - cv::setIdentity(KF1.measurementNoiseCov, cv::Scalar(1e-1)); - cv::setIdentity(KF2.measurementNoiseCov, cv::Scalar(1e-1)); - cv::setIdentity(KF3.measurementNoiseCov, cv::Scalar(1e-1)); - cv::setIdentity(KF4.measurementNoiseCov, cv::Scalar(1e-1)); - cv::setIdentity(KF5.measurementNoiseCov, cv::Scalar(1e-1)); + cv::setIdentity(KF0.measurementNoiseCov, cv::Scalar(sigmaQ));//1e-1 + cv::setIdentity(KF1.measurementNoiseCov, cv::Scalar(sigmaQ)); + cv::setIdentity(KF2.measurementNoiseCov, cv::Scalar(sigmaQ)); + cv::setIdentity(KF3.measurementNoiseCov, cv::Scalar(sigmaQ)); + cv::setIdentity(KF4.measurementNoiseCov, cv::Scalar(sigmaQ)); + cv::setIdentity(KF5.measurementNoiseCov, cv::Scalar(sigmaQ)); // Process the point cloud pcl::PointCloud::Ptr input_cloud (new pcl::PointCloud); @@ -273,11 +398,7 @@ if (firstFrame) tree->setInputCloud (input_cloud); - /* Here we are creating a vector of PointIndices, which contains the actual index - * information in a vector. The indices of each detected cluster are saved here. - * Cluster_indices is a vector containing one instance of PointIndices for each detected - * cluster. Cluster_indices[0] contain all indices of the first cluster in input point cloud. - */ + std::vector cluster_indices; pcl::EuclideanClusterExtraction ec; ec.setClusterTolerance (0.08); @@ -288,33 +409,45 @@ if (firstFrame) /* Extract the clusters out of pc and save indices in cluster_indices.*/ ec.extract (cluster_indices); - /* To separate each cluster out of the vector we have to - * iterate through cluster_indices, create a new PointCloud for each - * entry and write all points of the current cluster in the PointCloud. - */ - //pcl::PointXYZ origin (0,0,0); - //float mindist_this_cluster = 1000; - //float dist_this_point = 1000; - + std::vector::const_iterator it; std::vector::const_iterator pit; // Vector of cluster pointclouds std::vector::Ptr > cluster_vec; + // Cluster centroids + std::vector clusterCentroids; for(it = cluster_indices.begin(); it != cluster_indices.end(); ++it) { - pcl::PointCloud::Ptr cloud_cluster (new pcl::PointCloud); + + pcl::PointCloud::Ptr cloud_cluster (new pcl::PointCloud); + float x=0.0; float y=0.0; + int numPts=0; for(pit = it->indices.begin(); pit != it->indices.end(); pit++) { cloud_cluster->points.push_back(input_cloud->points[*pit]); + x+=input_cloud->points[*pit].x; + y+=input_cloud->points[*pit].y; + numPts++; + + //dist_this_point = pcl::geometry::distance(input_cloud->points[*pit], // origin); //mindist_this_cluster = std::min(dist_this_point, mindist_this_cluster); } + pcl::PointXYZ centroid; + centroid.x=x/numPts; + centroid.y=y/numPts; + centroid.z=0.0; + cluster_vec.push_back(cloud_cluster); + //Get the centroid of the cluster + clusterCentroids.push_back(centroid); + + } //Ensure at least 6 clusters exist to publish (later clusters may be empty) @@ -323,48 +456,65 @@ if (firstFrame) empty_cluster->points.push_back(pcl::PointXYZ(0,0,0)); cluster_vec.push_back(empty_cluster); } + + while (clusterCentroids.size()<6) + { + pcl::PointXYZ centroid; + centroid.x=0.0; + centroid.y=0.0; + centroid.z=0.0; + + clusterCentroids.push_back(centroid); + } // Set initial state - KF0.statePre.at(0)=cluster_vec[0]->points[cluster_vec[0]->points.size()/2].x; - KF0.statePre.at(1)=cluster_vec[0]->points[cluster_vec[0]->points.size()/2].y; + KF0.statePre.at(0)=clusterCentroids.at(0).x; + KF0.statePre.at(1)=clusterCentroids.at(0).y; KF0.statePre.at(2)=0;// initial v_x KF0.statePre.at(3)=0;//initial v_y // Set initial state - KF1.statePre.at(0)=cluster_vec[1]->points[cluster_vec[1]->points.size()/2].x; - KF1.statePre.at(1)=cluster_vec[1]->points[cluster_vec[1]->points.size()/2].y; + KF1.statePre.at(0)=clusterCentroids.at(1).x; + KF1.statePre.at(1)=clusterCentroids.at(1).y; KF1.statePre.at(2)=0;// initial v_x KF1.statePre.at(3)=0;//initial v_y // Set initial state - KF2.statePre.at(0)=cluster_vec[2]->points[cluster_vec[2]->points.size()/2].x; - KF2.statePre.at(1)=cluster_vec[2]->points[cluster_vec[2]->points.size()/2].y; + KF2.statePre.at(0)=clusterCentroids.at(2).x; + KF2.statePre.at(1)=clusterCentroids.at(2).y; KF2.statePre.at(2)=0;// initial v_x KF2.statePre.at(3)=0;//initial v_y // Set initial state - KF3.statePre.at(0)=cluster_vec[3]->points[cluster_vec[3]->points.size()/2].x; - KF3.statePre.at(1)=cluster_vec[3]->points[cluster_vec[3]->points.size()/2].y; + KF3.statePre.at(0)=clusterCentroids.at(3).x; + KF3.statePre.at(1)=clusterCentroids.at(3).y; KF3.statePre.at(2)=0;// initial v_x KF3.statePre.at(3)=0;//initial v_y // Set initial state - KF4.statePre.at(0)=cluster_vec[4]->points[cluster_vec[4]->points.size()/2].x; - KF4.statePre.at(1)=cluster_vec[4]->points[cluster_vec[4]->points.size()/2].y; + KF4.statePre.at(0)=clusterCentroids.at(4).x; + KF4.statePre.at(1)=clusterCentroids.at(4).y; KF4.statePre.at(2)=0;// initial v_x KF4.statePre.at(3)=0;//initial v_y // Set initial state - KF5.statePre.at(0)=cluster_vec[5]->points[cluster_vec[5]->points.size()/2].x; - KF5.statePre.at(1)=cluster_vec[5]->points[cluster_vec[5]->points.size()/2].y; + KF5.statePre.at(0)=clusterCentroids.at(5).x; + KF5.statePre.at(1)=clusterCentroids.at(5).y; KF5.statePre.at(2)=0;// initial v_x KF5.statePre.at(3)=0;//initial v_y firstFrame=false; - // Print the initial state of the kalman filter for debugging + for (int i=0;i<6;i++) + { + geometry_msgs::Point pt; + pt.x=clusterCentroids.at(i).x; + pt.y=clusterCentroids.at(i).y; + prevClusterCenters.push_back(pt); + } + /* // Print the initial state of the kalman filter for debugging cout<<"KF0.satePre="<(0)<<","<(1)<<"\n"; cout<<"KF1.satePre="<(0)<<","<(1)<<"\n"; cout<<"KF2.satePre="<(0)<<","<(1)<<"\n"; @@ -373,12 +523,13 @@ if (firstFrame) cout<<"KF5.satePre="<(0)<<","<(1)<<"\n"; //cin.ignore();// To be able to see the printed initial state of the KalmanFilter + */ } else { - cout<<"ELSE firstFrame="<::Ptr input_cloud (new pcl::PointCloud); pcl::PointCloud::Ptr clustered_cloud (new pcl::PointCloud); /* Creating the KdTree from input point cloud*/ @@ -395,15 +546,15 @@ else */ std::vector cluster_indices; pcl::EuclideanClusterExtraction ec; - ec.setClusterTolerance (0.08); + ec.setClusterTolerance (0.3); ec.setMinClusterSize (10); ec.setMaxClusterSize (600); ec.setSearchMethod (tree); ec.setInputCloud (input_cloud); -cout<<"PCL init successfull\n"; +//cout<<"PCL init successfull\n"; /* Extract the clusters out of pc and save indices in cluster_indices.*/ ec.extract (cluster_indices); -cout<<"PCL extract successfull\n"; +//cout<<"PCL extract successfull\n"; /* To separate each cluster out of the vector we have to * iterate through cluster_indices, create a new PointCloud for each * entry and write all points of the current cluster in the PointCloud. @@ -417,22 +568,43 @@ cout<<"PCL extract successfull\n"; // Vector of cluster pointclouds std::vector::Ptr > cluster_vec; - for(it = cluster_indices.begin(); it != cluster_indices.end(); ++it) { + // Cluster centroids + std::vector clusterCentroids; + + + + for(it = cluster_indices.begin(); it != cluster_indices.end(); ++it) + { + float x=0.0; float y=0.0; + int numPts=0; pcl::PointCloud::Ptr cloud_cluster (new pcl::PointCloud); for(pit = it->indices.begin(); pit != it->indices.end(); pit++) { cloud_cluster->points.push_back(input_cloud->points[*pit]); + + + x+=input_cloud->points[*pit].x; + y+=input_cloud->points[*pit].y; + numPts++; + //dist_this_point = pcl::geometry::distance(input_cloud->points[*pit], // origin); //mindist_this_cluster = std::min(dist_this_point, mindist_this_cluster); } - + pcl::PointXYZ centroid; + centroid.x=x/numPts; + centroid.y=y/numPts; + centroid.z=0.0; + cluster_vec.push_back(cloud_cluster); + //Get the centroid of the cluster + clusterCentroids.push_back(centroid); + } - cout<<"cluster_vec got some clusters\n"; + // cout<<"cluster_vec got some clusters\n"; //Ensure at least 6 clusters exist to publish (later clusters may be empty) while (cluster_vec.size() < 6){ @@ -440,56 +612,69 @@ cout<<"PCL extract successfull\n"; empty_cluster->points.push_back(pcl::PointXYZ(0,0,0)); cluster_vec.push_back(empty_cluster); } + + while (clusterCentroids.size()<6) + { + pcl::PointXYZ centroid; + centroid.x=0.0; + centroid.y=0.0; + centroid.z=0.0; + + clusterCentroids.push_back(centroid); + } + + std_msgs::Float32MultiArray cc; for(int i=0;i<6;i++) { - cc.data.push_back(cluster_vec[i]->points[cluster_vec[i]->points.size()/2].x); - cc.data.push_back(cluster_vec[i]->points[cluster_vec[i]->points.size()/2].y); - cc.data.push_back(cluster_vec[i]->points[cluster_vec[i]->points.size()/2].z); + cc.data.push_back(clusterCentroids.at(i).x); + cc.data.push_back(clusterCentroids.at(i).y); + cc.data.push_back(clusterCentroids.at(i).z); } - cout<<"6 clusters initialized\n"; + // cout<<"6 clusters initialized\n"; //cc_pos.publish(cc);// Publish cluster mid-points. KFT(cc); int i=0; bool publishedCluster[6]; for(auto it=objID.begin();it!=objID.end();it++) - { cout<<"Inside the for loop\n"; + { //cout<<"Inside the for loop\n"; - switch(*it) + + switch(i) { cout<<"Inside the switch case\n"; case 0: { - publish_cloud(pub_cluster0,cluster_vec[i]); + publish_cloud(pub_cluster0,cluster_vec[*it]); publishedCluster[i]=true;//Use this flag to publish only once for a given obj ID i++; break; } case 1: { - publish_cloud(pub_cluster1,cluster_vec[i]); + publish_cloud(pub_cluster1,cluster_vec[*it]); publishedCluster[i]=true;//Use this flag to publish only once for a given obj ID i++; break; } case 2: { - publish_cloud(pub_cluster2,cluster_vec[i]); + publish_cloud(pub_cluster2,cluster_vec[*it]); publishedCluster[i]=true;//Use this flag to publish only once for a given obj ID i++; break; } case 3: { - publish_cloud(pub_cluster3,cluster_vec[i]); + publish_cloud(pub_cluster3,cluster_vec[*it]); publishedCluster[i]=true;//Use this flag to publish only once for a given obj ID i++; break; } case 4: { - publish_cloud(pub_cluster4,cluster_vec[i]); + publish_cloud(pub_cluster4,cluster_vec[*it]); publishedCluster[i]=true;//Use this flag to publish only once for a given obj ID i++; break; @@ -497,7 +682,7 @@ cout<<"PCL extract successfull\n"; } case 5: { - publish_cloud(pub_cluster5,cluster_vec[i]); + publish_cloud(pub_cluster5,cluster_vec[*it]); publishedCluster[i]=true;//Use this flag to publish only once for a given obj ID i++; break; @@ -505,7 +690,7 @@ cout<<"PCL extract successfull\n"; } default: break; } - + } } @@ -545,7 +730,7 @@ cout<<"About to setup callback\n"; */ //cc_pos=nh.advertise("ccs",100);//clusterCenter1 - + markerPub= nh.advertise ("viz",1); /* Point cloud clustering */ diff --git a/src/main_naive.cpp b/src/main_naive.cpp new file mode 100644 index 0000000..0886d61 --- /dev/null +++ b/src/main_naive.cpp @@ -0,0 +1,603 @@ +#include +#include +#include +#include +#include +#include "kf_tracker/featureDetection.h" +#include "kf_tracker/CKalmanFilter.h" +#include +#include +#include +#include +#include "opencv2/video/tracking.hpp" +#include +#include +#include +#include "pcl_ros/point_cloud.h" +#include +#include +#include + +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include + +using namespace std; +using namespace cv; + + +ros::Publisher objID_pub; + + // KF init + int stateDim=4;// [x,y,v_x,v_y]//,w,h] + int measDim=2;// [z_x,z_y,z_w,z_h] + int ctrlDim=0; + cv::KalmanFilter KF0(stateDim,measDim,ctrlDim,CV_32F); + cv::KalmanFilter KF1(stateDim,measDim,ctrlDim,CV_32F); + cv::KalmanFilter KF2(stateDim,measDim,ctrlDim,CV_32F); + cv::KalmanFilter KF3(stateDim,measDim,ctrlDim,CV_32F); + cv::KalmanFilter KF4(stateDim,measDim,ctrlDim,CV_32F); + cv::KalmanFilter KF5(stateDim,measDim,ctrlDim,CV_32F); + + ros::Publisher pub_cluster0; + ros::Publisher pub_cluster1; + ros::Publisher pub_cluster2; + ros::Publisher pub_cluster3; + ros::Publisher pub_cluster4; + ros::Publisher pub_cluster5; + + std::vector prevClusterCenters; + + + cv::Mat state(stateDim,1,CV_32F); + cv::Mat_ measurement(2,1); + + std::vector objID;// Output of the data association using KF + // measurement.setTo(Scalar(0)); + +bool firstFrame=true; + +// calculate euclidean distance of two points + double euclidean_distance(geometry_msgs::Point& p1, geometry_msgs::Point& p2) + { + return sqrt((p1.x - p2.x) * (p1.x - p2.x) + (p1.y - p2.y) * (p1.y - p2.y) + (p1.z - p2.z) * (p1.z - p2.z)); + } +/* +//Count unique object IDs. just to make sure same ID has not been assigned to two KF_Trackers. +int countIDs(vector v) +{ + transform(v.begin(), v.end(), v.begin(), abs); // O(n) where n = distance(v.end(), v.begin()) + sort(v.begin(), v.end()); // Average case O(n log n), worst case O(n^2) (usually implemented as quicksort. + // To guarantee worst case O(n log n) replace with make_heap, then sort_heap. + + // Unique will take a sorted range, and move things around to get duplicated + // items to the back and returns an iterator to the end of the unique section of the range + auto unique_end = unique(v.begin(), v.end()); // Again n comparisons + return distance(unique_end, v.begin()); // Constant time for random access iterators (like vector's) +} +*/ + +/* + +objID: vector containing the IDs of the clusters that should be associated with each KF_Tracker +objID[0] corresponds to KFT0, objID[1] corresponds to KFT1 etc. +*/ +void KFT(const std_msgs::Float32MultiArray ccs) +{ + + + + // First predict, to update the internal statePre variable + + std::vector pred{KF0.predict(),KF1.predict(),KF2.predict(),KF3.predict(),KF4.predict(),KF5.predict()}; + //cout<<"Pred successfull\n"; + + //cv::Point predictPt(prediction.at(0),prediction.at(1)); + // cout<<"Prediction 1 ="<(0)<<","<(1)<<"\n"; + + // Get measurements + // Extract the position of the clusters forom the multiArray. To check if the data + // coming in, check the .z (every third) coordinate and that will be 0.0 + std::vector clusterCenters;//clusterCenters + + int i=0; + for (std::vector::const_iterator it=ccs.data.begin();it!=ccs.data.end();it+=3) + { + geometry_msgs::Point pt; + pt.x=*it; + pt.y=*(it+1); + pt.z=*(it+2); + + clusterCenters.push_back(pt); + + } + + // cout<<"CLusterCenters Obtained"<<"\n"; + std::vector KFpredictions; + i=0; + for (auto it=pred.begin();it!=pred.end();it++) + { + geometry_msgs::Point pt; + pt.x=(*it).at(0); + pt.y=(*it).at(1); + pt.z=(*it).at(2); + + KFpredictions.push_back(pt); + + } + // cout<<"Got predictions"<<"\n"; + + /* Original Version using Kalman filter prediction + + // Find the cluster that is more probable to be belonging to a given KF. + objID.clear();//Clear the objID vector + for(int filterN=0;filterN<6;filterN++) + { + std::vector distVec; + for(int n=0;n<6;n++) + distVec.push_back(euclidean_distance(KFpredictions[filterN],clusterCenters[n])); + + // cout<<"distVec[="< distVec; + for(int n=0;n<6;n++) + distVec.push_back(euclidean_distance(prevClusterCenters[n],clusterCenters[n])); + + // cout<<"distVec[="< > cc; + for (int i=0;i pt; + pt.push_back(clusterCenters[i].x); + pt.push_back(clusterCenters[i].y); + pt.push_back(clusterCenters[i].z); + + cc.push_back(pt); + } + //cout<<"cc[5][0]="<(1)<<"\n"; + // Point statePt(estimated.at(0),estimated.at(1)); +//cout<<"DONE KF_TRACKER\n"; + +} +void publish_cloud(ros::Publisher& pub, pcl::PointCloud::Ptr cluster){ + sensor_msgs::PointCloud2::Ptr clustermsg (new sensor_msgs::PointCloud2); + pcl::toROSMsg (*cluster , *clustermsg); + clustermsg->header.frame_id = "/map"; + clustermsg->header.stamp = ros::Time::now(); + pub.publish (*clustermsg); + +} + + +void cloud_cb (const sensor_msgs::PointCloud2ConstPtr& input) + +{ + cout<<"IF firstFrame="<(4, 4) << 1,0,1,0, 0,1,0,1, 0,0,1,0, 0,0,0,1); + KF1.transitionMatrix = *(Mat_(4, 4) << 1,0,1,0, 0,1,0,1, 0,0,1,0, 0,0,0,1); + KF2.transitionMatrix = *(Mat_(4, 4) << 1,0,1,0, 0,1,0,1, 0,0,1,0, 0,0,0,1); + KF3.transitionMatrix = *(Mat_(4, 4) << 1,0,1,0, 0,1,0,1, 0,0,1,0, 0,0,0,1); + KF4.transitionMatrix = *(Mat_(4, 4) << 1,0,1,0, 0,1,0,1, 0,0,1,0, 0,0,0,1); + KF5.transitionMatrix = *(Mat_(4, 4) << 1,0,1,0, 0,1,0,1, 0,0,1,0, 0,0,0,1); + + cv::setIdentity(KF0.measurementMatrix); + cv::setIdentity(KF1.measurementMatrix); + cv::setIdentity(KF2.measurementMatrix); + cv::setIdentity(KF3.measurementMatrix); + cv::setIdentity(KF4.measurementMatrix); + cv::setIdentity(KF5.measurementMatrix); + // Process Noise Covariance Matrix Q + // [ Ex 0 0 0 0 0 ] + // [ 0 Ey 0 0 0 0 ] + // [ 0 0 Ev_x 0 0 0 ] + // [ 0 0 0 1 Ev_y 0 ] + //// [ 0 0 0 0 1 Ew ] + //// [ 0 0 0 0 0 Eh ] + setIdentity(KF0.processNoiseCov, Scalar::all(1e-4)); + setIdentity(KF1.processNoiseCov, Scalar::all(1e-4)); + setIdentity(KF2.processNoiseCov, Scalar::all(1e-4)); + setIdentity(KF3.processNoiseCov, Scalar::all(1e-4)); + setIdentity(KF4.processNoiseCov, Scalar::all(1e-4)); + setIdentity(KF5.processNoiseCov, Scalar::all(1e-4)); + // Meas noise cov matrix R + cv::setIdentity(KF0.measurementNoiseCov, cv::Scalar(1e-1)); + cv::setIdentity(KF1.measurementNoiseCov, cv::Scalar(1e-1)); + cv::setIdentity(KF2.measurementNoiseCov, cv::Scalar(1e-1)); + cv::setIdentity(KF3.measurementNoiseCov, cv::Scalar(1e-1)); + cv::setIdentity(KF4.measurementNoiseCov, cv::Scalar(1e-1)); + cv::setIdentity(KF5.measurementNoiseCov, cv::Scalar(1e-1)); + +// Process the point cloud + pcl::PointCloud::Ptr input_cloud (new pcl::PointCloud); + pcl::PointCloud::Ptr clustered_cloud (new pcl::PointCloud); + /* Creating the KdTree from input point cloud*/ + pcl::search::KdTree::Ptr tree (new pcl::search::KdTree); + + pcl::fromROSMsg (*input, *input_cloud); + + tree->setInputCloud (input_cloud); + + /* Here we are creating a vector of PointIndices, which contains the actual index + * information in a vector. The indices of each detected cluster are saved here. + * Cluster_indices is a vector containing one instance of PointIndices for each detected + * cluster. Cluster_indices[0] contain all indices of the first cluster in input point cloud. + */ + std::vector cluster_indices; + pcl::EuclideanClusterExtraction ec; + ec.setClusterTolerance (0.08); + ec.setMinClusterSize (10); + ec.setMaxClusterSize (600); + ec.setSearchMethod (tree); + ec.setInputCloud (input_cloud); + /* Extract the clusters out of pc and save indices in cluster_indices.*/ + ec.extract (cluster_indices); + + /* To separate each cluster out of the vector we have to + * iterate through cluster_indices, create a new PointCloud for each + * entry and write all points of the current cluster in the PointCloud. + */ + //pcl::PointXYZ origin (0,0,0); + //float mindist_this_cluster = 1000; + //float dist_this_point = 1000; + + std::vector::const_iterator it; + std::vector::const_iterator pit; + // Vector of cluster pointclouds + std::vector::Ptr > cluster_vec; + + for(it = cluster_indices.begin(); it != cluster_indices.end(); ++it) { + pcl::PointCloud::Ptr cloud_cluster (new pcl::PointCloud); + for(pit = it->indices.begin(); pit != it->indices.end(); pit++) + { + + cloud_cluster->points.push_back(input_cloud->points[*pit]); + //dist_this_point = pcl::geometry::distance(input_cloud->points[*pit], + // origin); + //mindist_this_cluster = std::min(dist_this_point, mindist_this_cluster); + } + + + cluster_vec.push_back(cloud_cluster); + + } + + //Ensure at least 6 clusters exist to publish (later clusters may be empty) + while (cluster_vec.size() < 6){ + pcl::PointCloud::Ptr empty_cluster (new pcl::PointCloud); + empty_cluster->points.push_back(pcl::PointXYZ(0,0,0)); + cluster_vec.push_back(empty_cluster); + } + + + // Set initial state + KF0.statePre.at(0)=cluster_vec[0]->points[cluster_vec[0]->points.size()/2].x; + + KF0.statePre.at(1)=cluster_vec[0]->points[cluster_vec[0]->points.size()/2].y; + KF0.statePre.at(2)=0;// initial v_x + KF0.statePre.at(3)=0;//initial v_y + + // Set initial state + KF1.statePre.at(0)=cluster_vec[1]->points[cluster_vec[1]->points.size()/2].x; + KF1.statePre.at(1)=cluster_vec[1]->points[cluster_vec[1]->points.size()/2].y; + KF1.statePre.at(2)=0;// initial v_x + KF1.statePre.at(3)=0;//initial v_y + + // Set initial state + KF2.statePre.at(0)=cluster_vec[2]->points[cluster_vec[2]->points.size()/2].x; + KF2.statePre.at(1)=cluster_vec[2]->points[cluster_vec[2]->points.size()/2].y; + KF2.statePre.at(2)=0;// initial v_x + KF2.statePre.at(3)=0;//initial v_y + + + // Set initial state + KF3.statePre.at(0)=cluster_vec[3]->points[cluster_vec[3]->points.size()/2].x; + KF3.statePre.at(1)=cluster_vec[3]->points[cluster_vec[3]->points.size()/2].y; + KF3.statePre.at(2)=0;// initial v_x + KF3.statePre.at(3)=0;//initial v_y + + // Set initial state + KF4.statePre.at(0)=cluster_vec[4]->points[cluster_vec[4]->points.size()/2].x; + KF4.statePre.at(1)=cluster_vec[4]->points[cluster_vec[4]->points.size()/2].y; + KF4.statePre.at(2)=0;// initial v_x + KF4.statePre.at(3)=0;//initial v_y + + // Set initial state + KF5.statePre.at(0)=cluster_vec[5]->points[cluster_vec[5]->points.size()/2].x; + KF5.statePre.at(1)=cluster_vec[5]->points[cluster_vec[5]->points.size()/2].y; + KF5.statePre.at(2)=0;// initial v_x + KF5.statePre.at(3)=0;//initial v_y + + firstFrame=false; + + // Print the initial state of the kalman filter for debugging + cout<<"KF0.satePre="<(0)<<","<(1)<<"\n"; + cout<<"KF1.satePre="<(0)<<","<(1)<<"\n"; + cout<<"KF2.satePre="<(0)<<","<(1)<<"\n"; + cout<<"KF3.satePre="<(0)<<","<(1)<<"\n"; + cout<<"KF4.satePre="<(0)<<","<(1)<<"\n"; + cout<<"KF5.satePre="<(0)<<","<(1)<<"\n"; + + //cin.ignore();// To be able to see the printed initial state of the KalmanFilter + + + + /* Naive version without kalman filter */ + for (int i=0;i<6;i++) + { + geometry_msgs::Point pt; + pt.x=cluster_vec[i]->points[cluster_vec[i]->points.size()/2].x; + pt.y=cluster_vec[i]->points[cluster_vec[i]->points.size()/2].y; + prevClusterCenters.push_back(pt); + } + + /* Naive version without kalman filter */ +} + + +else +{ + cout<<"ELSE firstFrame="<::Ptr input_cloud (new pcl::PointCloud); + pcl::PointCloud::Ptr clustered_cloud (new pcl::PointCloud); + /* Creating the KdTree from input point cloud*/ + pcl::search::KdTree::Ptr tree (new pcl::search::KdTree); + + pcl::fromROSMsg (*input, *input_cloud); + + tree->setInputCloud (input_cloud); + + /* Here we are creating a vector of PointIndices, which contains the actual index + * information in a vector. The indices of each detected cluster are saved here. + * Cluster_indices is a vector containing one instance of PointIndices for each detected + * cluster. Cluster_indices[0] contain all indices of the first cluster in input point cloud. + */ + std::vector cluster_indices; + pcl::EuclideanClusterExtraction ec; + ec.setClusterTolerance (0.08); + ec.setMinClusterSize (10); + ec.setMaxClusterSize (600); + ec.setSearchMethod (tree); + ec.setInputCloud (input_cloud); +cout<<"PCL init successfull\n"; + /* Extract the clusters out of pc and save indices in cluster_indices.*/ + ec.extract (cluster_indices); +cout<<"PCL extract successfull\n"; + /* To separate each cluster out of the vector we have to + * iterate through cluster_indices, create a new PointCloud for each + * entry and write all points of the current cluster in the PointCloud. + */ + //pcl::PointXYZ origin (0,0,0); + //float mindist_this_cluster = 1000; + //float dist_this_point = 1000; + + std::vector::const_iterator it; + std::vector::const_iterator pit; + // Vector of cluster pointclouds + std::vector::Ptr > cluster_vec; + + for(it = cluster_indices.begin(); it != cluster_indices.end(); ++it) { + pcl::PointCloud::Ptr cloud_cluster (new pcl::PointCloud); + for(pit = it->indices.begin(); pit != it->indices.end(); pit++) + { + + cloud_cluster->points.push_back(input_cloud->points[*pit]); + //dist_this_point = pcl::geometry::distance(input_cloud->points[*pit], + // origin); + //mindist_this_cluster = std::min(dist_this_point, mindist_this_cluster); + } + + + cluster_vec.push_back(cloud_cluster); + + } + //cout<<"cluster_vec got some clusters\n"; + + //Ensure at least 6 clusters exist to publish (later clusters may be empty) + while (cluster_vec.size() < 6){ + pcl::PointCloud::Ptr empty_cluster (new pcl::PointCloud); + empty_cluster->points.push_back(pcl::PointXYZ(0,0,0)); + cluster_vec.push_back(empty_cluster); + } + std_msgs::Float32MultiArray cc; + for(int i=0;i<6;i++) + { + cc.data.push_back(cluster_vec[i]->points[cluster_vec[i]->points.size()/2].x); + cc.data.push_back(cluster_vec[i]->points[cluster_vec[i]->points.size()/2].y); + cc.data.push_back(cluster_vec[i]->points[cluster_vec[i]->points.size()/2].z); + + } + cout<<"6 clusters initialized\n"; + + //cc_pos.publish(cc);// Publish cluster mid-points. + KFT(cc); + int i=0; + bool publishedCluster[6]; + for(auto it=objID.begin();it!=objID.end();it++) + { cout<<"Inside the for loop\n"; + + switch(*it) + { + cout<<"Inside the switch case\n"; + case 0: { + publish_cloud(pub_cluster0,cluster_vec[i]); + publishedCluster[i]=true;//Use this flag to publish only once for a given obj ID + i++; + break; + + } + case 1: { + publish_cloud(pub_cluster1,cluster_vec[i]); + publishedCluster[i]=true;//Use this flag to publish only once for a given obj ID + i++; + break; + + } + case 2: { + publish_cloud(pub_cluster2,cluster_vec[i]); + publishedCluster[i]=true;//Use this flag to publish only once for a given obj ID + i++; + break; + + } + case 3: { + publish_cloud(pub_cluster3,cluster_vec[i]); + publishedCluster[i]=true;//Use this flag to publish only once for a given obj ID + i++; + break; + + } + case 4: { + publish_cloud(pub_cluster4,cluster_vec[i]); + publishedCluster[i]=true;//Use this flag to publish only once for a given obj ID + i++; + break; + + } + + case 5: { + publish_cloud(pub_cluster5,cluster_vec[i]); + publishedCluster[i]=true;//Use this flag to publish only once for a given obj ID + i++; + break; + + } + default: break; + } + + } + +} + +} + + + + +int main(int argc, char** argv) +{ + // ROS init + ros::init (argc,argv,"KFTracker"); + ros::NodeHandle nh; + + + // Publishers to publish the state of the objects (pos and vel) + //objState1=nh.advertise ("obj_1",1); + + + +cout<<"About to setup callback\n"; + +// Create a ROS subscriber for the input point cloud + ros::Subscriber sub = nh.subscribe ("filtered_cloud", 1, cloud_cb); + // Create a ROS publisher for the output point cloud + pub_cluster0 = nh.advertise ("cluster_0", 1); + pub_cluster1 = nh.advertise ("cluster_1", 1); + pub_cluster2 = nh.advertise ("cluster_2", 1); + pub_cluster3 = nh.advertise ("cluster_3", 1); + pub_cluster4 = nh.advertise ("cluster_4", 1); + pub_cluster5 = nh.advertise ("cluster_5", 1); + // Subscribe to the clustered pointclouds + //ros::Subscriber c1=nh.subscribe("ccs",100,KFT); + objID_pub = nh.advertise("obj_id", 1); +/* Point cloud clustering +*/ + + //cc_pos=nh.advertise("ccs",100);//clusterCenter1 + + +/* Point cloud clustering +*/ + + + ros::spin(); + + +}