mpc_python_learn/mpc_pybullet_demo/cvxpy_mpc/cvxpy_mpc.py

153 lines
4.8 KiB
Python
Executable File

import numpy as np
np.seterr(divide="ignore", invalid="ignore")
import cvxpy as opt
class MPC:
def __init__(
self, vehicle, T, DT, state_cost, final_state_cost, input_cost, input_rate_cost
):
"""
:param vehicle:
:param T:
:param DT:
:param state_cost:
:param final_state_cost:
:param input_cost:
:param input_rate_cost:
"""
self.nx = 4 # number of state vars
self.nu = 2 # umber of input/control vars
if len(state_cost) != self.nx:
raise ValueError(f"State Error cost matrix shuld be of size {self.nx}")
if len(final_state_cost) != self.nx:
raise ValueError(f"End State Error cost matrix shuld be of size {self.nx}")
if len(input_cost) != self.nu:
raise ValueError(f"Control Effort cost matrix shuld be of size {self.nu}")
if len(input_rate_cost) != self.nu:
raise ValueError(
f"Control Effort Difference cost matrix shuld be of size {self.nu}"
)
self.vehicle = vehicle
self.dt = DT
self.control_horizon = int(T / DT)
self.Q = np.diag(state_cost)
self.Qf = np.diag(final_state_cost)
self.R = np.diag(input_cost)
self.P = np.diag(input_rate_cost)
def get_linear_model_matrices(self, x_bar, u_bar):
"""
Computes the LTI approximated state space model x' = Ax + Bu + C
:param x_bar:
:param u_bar:
:return:
"""
x = x_bar[0]
y = x_bar[1]
v = x_bar[2]
theta = x_bar[3]
a = u_bar[0]
delta = u_bar[1]
ct = np.cos(theta)
st = np.sin(theta)
cd = np.cos(delta)
td = np.tan(delta)
A = np.zeros((self.nx, self.nx))
A[0, 2] = ct
A[0, 3] = -v * st
A[1, 2] = st
A[1, 3] = v * ct
A[3, 2] = v * td / self.vehicle.wheelbase
A_lin = np.eye(self.nx) + self.dt * A
B = np.zeros((self.nx, self.nu))
B[2, 0] = 1
B[3, 1] = v / (self.vehicle.wheelbase * cd**2)
B_lin = self.dt * B
f_xu = np.array([v * ct, v * st, a, v * td / self.vehicle.wheelbase]).reshape(
self.nx, 1
)
C_lin = (
self.dt
* (
f_xu
- np.dot(A, x_bar.reshape(self.nx, 1))
- np.dot(B, u_bar.reshape(self.nu, 1))
).flatten()
)
return A_lin, B_lin, C_lin
def step(
self,
initial_state,
target,
prev_cmd,
verbose=False,
):
"""
Optimisation problem defined for the linearised model,
:param initial_state:
:param target:
:param verbose:
:return:
"""
assert len(initial_state) == self.nx
# Create variables needed for setting up cvxpy problem
x = opt.Variable((self.nx, self.control_horizon + 1), name="states")
u = opt.Variable((self.nu, self.control_horizon), name="actions")
cost = 0
constr = []
# NOTE: here the state linearization is performed around the starting condition to simplify the controller.
# This approximation gets more inaccurate as the controller looks at the future.
# To improve performance we can keep track of previous optimized x, u and compute these matrices for each timestep k
# Ak, Bk, Ck = self.get_linear_model_matrices(x_prev[:,k], u_prev[:,k])
A, B, C = self.get_linear_model_matrices(initial_state, prev_cmd)
for k in range(self.control_horizon):
cost += opt.quad_form(target[:, k] - x[:, k + 1], self.Q)
cost += opt.quad_form(u[:, k], self.R)
# Actuation rate of change
if k < (self.control_horizon - 1):
cost += opt.quad_form(u[:, k + 1] - u[:, k], self.P)
# Kinematics Constrains
constr += [x[:, k + 1] == A @ x[:, k] + B @ u[:, k] + C]
# Actuation rate of change bounds
if k < (self.control_horizon - 1):
constr += [
opt.abs(u[0, k + 1] - u[0, k]) / self.dt <= self.vehicle.max_d_acc
]
constr += [
opt.abs(u[1, k + 1] - u[1, k]) / self.dt <= self.vehicle.max_d_steer
]
# Final Point tracking
cost += opt.quad_form(x[:, -1] - target[:, -1], self.Qf)
# initial state
constr += [x[:, 0] == initial_state]
# actuation bounds
constr += [opt.abs(u[:, 0]) <= self.vehicle.max_acc]
constr += [opt.abs(u[:, 1]) <= self.vehicle.max_steer]
prob = opt.Problem(opt.Minimize(cost), constr)
solution = prob.solve(solver=opt.OSQP, warm_start=True, verbose=False)
return x, u