gtsam/gtsam/linear/GaussianConditional.h

301 lines
11 KiB
C++

/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file GaussianConditional.h
* @brief Conditional Gaussian Base class
* @author Christian Potthast
*/
// \callgraph
#pragma once
#include <boost/utility.hpp>
#include <gtsam/global_includes.h>
#include <gtsam/base/blockMatrices.h>
#include <gtsam/inference/IndexConditional.h>
#include <gtsam/linear/VectorValues.h>
// Forward declaration to friend unit tests
class eliminate2JacobianFactorTest;
class constructorGaussianConditionalTest;
class eliminationGaussianFactorGraphTest;
class complicatedMarginalGaussianJunctionTreeTest;
class informationGaussianConditionalTest;
class isGaussianFactorGaussianConditionalTest;
namespace gtsam {
// Forward declarations
class GaussianFactor;
class JacobianFactor;
/**
* A conditional Gaussian functions as the node in a Bayes network
* It has a set of parents y,z, etc. and implements a probability density on x.
* The negative log-probability is given by \f$ \frac{1}{2} |Rx - (d - Sy - Tz - ...)|^2 \f$
*/
class GTSAM_EXPORT GaussianConditional : public IndexConditional {
public:
typedef GaussianFactor FactorType;
typedef boost::shared_ptr<GaussianConditional> shared_ptr;
/** Store the conditional matrix as upper-triangular column-major */
typedef Matrix RdMatrix;
typedef VerticalBlockView<RdMatrix> rsd_type;
typedef rsd_type::Block r_type;
typedef rsd_type::constBlock const_r_type;
typedef rsd_type::Column d_type;
typedef rsd_type::constColumn const_d_type;
protected:
/** Store the conditional as one big upper-triangular wide matrix, arranged
* as \f$ [ R S1 S2 ... d ] \f$. Access these blocks using a VerticalBlockView.
* */
RdMatrix matrix_;
rsd_type rsd_;
/** vector of standard deviations */
Vector sigmas_;
/** typedef to base class */
typedef IndexConditional Base;
public:
/** default constructor needed for serialization */
GaussianConditional();
/** constructor */
explicit GaussianConditional(Index key);
/** constructor with no parents
* |Rx-d|
*/
GaussianConditional(Index key, const Vector& d, const Matrix& R, const Vector& sigmas);
/** constructor with only one parent
* |Rx+Sy-d|
*/
GaussianConditional(Index key, const Vector& d, const Matrix& R,
Index name1, const Matrix& S, const Vector& sigmas);
/** constructor with two parents
* |Rx+Sy+Tz-d|
*/
GaussianConditional(Index key, const Vector& d, const Matrix& R,
Index name1, const Matrix& S, Index name2, const Matrix& T, const Vector& sigmas);
/**
* constructor with number of arbitrary parents (only used in unit tests,
* std::list is not efficient)
* \f$ |Rx+sum(Ai*xi)-d| \f$
*/
GaussianConditional(Index key, const Vector& d,
const Matrix& R, const std::list<std::pair<Index, Matrix> >& parents, const Vector& sigmas);
/**
* Constructor with arbitrary number of frontals and parents (only used in unit tests,
* std::list is not efficient)
*/
GaussianConditional(const std::list<std::pair<Index, Matrix> >& terms,
size_t nrFrontals, const Vector& d, const Vector& sigmas);
/**
* Constructor when matrices are already stored in a combined matrix, allows
* for multiple frontal variables.
*/
template<typename ITERATOR, class MATRIX>
GaussianConditional(ITERATOR firstKey, ITERATOR lastKey, size_t nrFrontals,
const VerticalBlockView<MATRIX>& matrices, const Vector& sigmas);
/** Copy constructor */
GaussianConditional(const GaussianConditional& rhs);
/** Combine several GaussianConditional into a single dense GC. The
* conditionals enumerated by \c first and \c last must be in increasing
* order, meaning that the parents of any conditional may not include a
* conditional coming before it.
* @param firstConditional Iterator to the first conditional to combine, must dereference to a shared_ptr<GaussianConditional>.
* @param lastConditional Iterator to after the last conditional to combine, must dereference to a shared_ptr<GaussianConditional>. */
template<typename ITERATOR>
static shared_ptr Combine(ITERATOR firstConditional, ITERATOR lastConditional);
/** Assignment operator */
GaussianConditional& operator=(const GaussianConditional& rhs);
/** print */
void print(const std::string& = "GaussianConditional",
const IndexFormatter& formatter = DefaultIndexFormatter) const;
/** equals function */
bool equals(const GaussianConditional &cg, double tol = 1e-9) const;
/** dimension of multivariate variable (same as rows()) */
size_t dim() const { return rsd_.rows(); }
/** dimension of multivariate variable (same as dim()) */
size_t rows() const { return dim(); }
/** Compute the augmented information matrix as
* \f$ [ R S d ]^T [ R S d ] \f$
*/
Matrix augmentedInformation() const {
return rsd_.full().transpose() * rsd_.full().transpose();
}
/** Compute the information matrix */
Matrix information() const {
return get_R().transpose() * get_R();
}
/** Return a view of the upper-triangular R block of the conditional */
rsd_type::constBlock get_R() const { return rsd_.range(0, nrFrontals()); }
/** Return a view of the r.h.s. d vector */
const_d_type get_d() const { return rsd_.column(nrFrontals()+nrParents(), 0); }
/** get the dimension of a variable */
size_t dim(const_iterator variable) const { return rsd_(variable - this->begin()).cols(); }
/** Get a view of the parent block corresponding to the variable pointed to by the given key iterator */
rsd_type::constBlock get_S(const_iterator variable) const { return rsd_(variable - this->begin()); }
/** Get a view of the parent block corresponding to the variable pointed to by the given key iterator (non-const version) */
rsd_type::constBlock get_S() const { return rsd_.range(nrFrontals(), size()); }
/** Get the Vector of sigmas */
const Vector& get_sigmas() const {return sigmas_;}
protected:
const RdMatrix& matrix() const { return matrix_; }
const rsd_type& rsd() const { return rsd_; }
public:
/**
* Copy to a Factor (this creates a JacobianFactor and returns it as its
* base class GaussianFactor.
*/
boost::shared_ptr<JacobianFactor> toFactor() const;
/**
* Solves a conditional Gaussian and writes the solution into the entries of
* \c x for each frontal variable of the conditional. The parents are
* assumed to have already been solved in and their values are read from \c x.
* This function works for multiple frontal variables.
*
* Given the Gaussian conditional with log likelihood \f$ |R x_f - (d - S x_s)|^2,
* where \f$ f \f$ are the frontal variables and \f$ s \f$ are the separator
* variables of this conditional, this solve function computes
* \f$ x_f = R^{-1} (d - S x_s) \f$ using back-substitution.
*
* @param x VectorValues structure with solved parents \f$ x_s \f$, and into which the
* solution \f$ x_f \f$ will be written.
*/
void solveInPlace(VectorValues& x) const;
// functions for transpose backsubstitution
/**
* Performs backsubstition in place on values
*/
void solveTransposeInPlace(VectorValues& gy) const;
void scaleFrontalsBySigma(VectorValues& gy) const;
protected:
rsd_type::Column get_d_() { return rsd_.column(nrFrontals()+nrParents(), 0); }
rsd_type::Block get_R_() { return rsd_.range(0, nrFrontals()); }
rsd_type::Block get_S_(iterator variable) { return rsd_(variable - this->begin()); }
private:
// Friends
friend class JacobianFactor;
friend class ::eliminate2JacobianFactorTest;
friend class ::constructorGaussianConditionalTest;
friend class ::eliminationGaussianFactorGraphTest;
friend class ::complicatedMarginalGaussianJunctionTreeTest;
friend class ::informationGaussianConditionalTest;
friend class ::isGaussianFactorGaussianConditionalTest;
/** Serialization function */
friend class boost::serialization::access;
template<class Archive>
void serialize(Archive & ar, const unsigned int version) {
ar & BOOST_SERIALIZATION_BASE_OBJECT_NVP(IndexConditional);
ar & BOOST_SERIALIZATION_NVP(matrix_);
ar & BOOST_SERIALIZATION_NVP(rsd_);
ar & BOOST_SERIALIZATION_NVP(sigmas_);
}
}; // GaussianConditional
/* ************************************************************************* */
template<typename ITERATOR, class MATRIX>
GaussianConditional::GaussianConditional(ITERATOR firstKey, ITERATOR lastKey,
size_t nrFrontals, const VerticalBlockView<MATRIX>& matrices,
const Vector& sigmas) :
IndexConditional(std::vector<Index>(firstKey, lastKey), nrFrontals), rsd_(
matrix_), sigmas_(sigmas) {
rsd_.assignNoalias(matrices);
}
/* ************************************************************************* */
template<typename ITERATOR>
GaussianConditional::shared_ptr GaussianConditional::Combine(ITERATOR firstConditional, ITERATOR lastConditional) {
// TODO: check for being a clique
// Get dimensions from first conditional
std::vector<size_t> dims; dims.reserve((*firstConditional)->size() + 1);
for(const_iterator j = (*firstConditional)->begin(); j != (*firstConditional)->end(); ++j)
dims.push_back((*firstConditional)->dim(j));
dims.push_back(1);
// We assume the conditionals form clique, so the first n variables will be
// frontal variables in the new conditional.
size_t nFrontals = 0;
size_t nRows = 0;
for(ITERATOR c = firstConditional; c != lastConditional; ++c) {
nRows += dims[nFrontals];
++ nFrontals;
}
// Allocate combined conditional, has same keys as firstConditional
Matrix tempCombined;
VerticalBlockView<Matrix> tempBlockView(tempCombined, dims.begin(), dims.end(), 0);
GaussianConditional::shared_ptr combinedConditional(new GaussianConditional((*firstConditional)->begin(), (*firstConditional)->end(), nFrontals, tempBlockView, zero(nRows)));
// Resize to correct number of rows
combinedConditional->matrix_.resize(nRows, combinedConditional->matrix_.cols());
combinedConditional->rsd_.rowEnd() = combinedConditional->matrix_.rows();
// Copy matrix and sigmas
const size_t totalDims = combinedConditional->matrix_.cols();
size_t currentSlot = 0;
for(ITERATOR c = firstConditional; c != lastConditional; ++c) {
const size_t startRow = combinedConditional->rsd_.offset(currentSlot); // Start row is same as start column
combinedConditional->rsd_.range(0, currentSlot).block(startRow, 0, dims[currentSlot], combinedConditional->rsd_.offset(currentSlot)).operator=(
Matrix::Zero(dims[currentSlot], combinedConditional->rsd_.offset(currentSlot)));
combinedConditional->rsd_.range(currentSlot, dims.size()).block(startRow, 0, dims[currentSlot], totalDims - startRow).operator=(
(*c)->matrix_);
combinedConditional->sigmas_.segment(startRow, dims[currentSlot]) = (*c)->sigmas_;
++ currentSlot;
}
return combinedConditional;
}
} // gtsam