395 lines
14 KiB
C++
395 lines
14 KiB
C++
/* ----------------------------------------------------------------------------
|
|
|
|
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
|
|
* Atlanta, Georgia 30332-0415
|
|
* All Rights Reserved
|
|
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
|
|
|
|
* See LICENSE for the license information
|
|
|
|
* -------------------------------------------------------------------------- */
|
|
|
|
/**
|
|
* @file testProjectionFactor.cpp
|
|
* @brief Unit tests for ProjectionFactor Class
|
|
* @author Frank Dellaert
|
|
* @date Nov 2009
|
|
*/
|
|
|
|
#include <gtsam_unstable/nonlinear/ConcurrentBatchFilter.h>
|
|
#include <gtsam/slam/PriorFactor.h>
|
|
#include <gtsam/slam/BetweenFactor.h>
|
|
#include <gtsam/slam/ProjectionFactor.h>
|
|
#include <gtsam_unstable/slam/SmartProjectionFactor.h>
|
|
#include <gtsam/nonlinear/ISAM2.h>
|
|
#include <gtsam/nonlinear/LevenbergMarquardtOptimizer.h>
|
|
#include <gtsam/nonlinear/NonlinearFactorGraph.h>
|
|
#include <gtsam/nonlinear/LinearContainerFactor.h>
|
|
#include <gtsam/nonlinear/Ordering.h>
|
|
#include <gtsam/nonlinear/Values.h>
|
|
#include <gtsam/nonlinear/Symbol.h>
|
|
#include <gtsam/nonlinear/Key.h>
|
|
#include <gtsam/linear/GaussianSequentialSolver.h>
|
|
#include <gtsam/inference/JunctionTree.h>
|
|
#include <gtsam_unstable/geometry/triangulation.h>
|
|
#include <gtsam/geometry/Pose3.h>
|
|
#include <gtsam/geometry/Point3.h>
|
|
#include <gtsam/geometry/Point2.h>
|
|
#include <gtsam/geometry/Cal3DS2.h>
|
|
#include <gtsam/geometry/Cal3_S2.h>
|
|
#include <gtsam/geometry/SimpleCamera.h>
|
|
#include <CppUnitLite/TestHarness.h>
|
|
|
|
|
|
using namespace std;
|
|
using namespace gtsam;
|
|
|
|
// make a realistic calibration matrix
|
|
static double fov = 60; // degrees
|
|
static size_t w=640,h=480;
|
|
static Cal3_S2::shared_ptr K(new Cal3_S2(fov,w,h));
|
|
|
|
// Create a noise model for the pixel error
|
|
static SharedNoiseModel model(noiseModel::Unit::Create(2));
|
|
|
|
// Convenience for named keys
|
|
//using symbol_shorthand::X;
|
|
//using symbol_shorthand::L;
|
|
|
|
//typedef GenericProjectionFactor<Pose3, Point3> TestProjectionFactor;
|
|
|
|
|
|
///* ************************************************************************* */
|
|
TEST( MultiProjectionFactor, noiseless ){
|
|
cout << " ************************ MultiProjectionFactor: noiseless ****************************" << endl;
|
|
Values theta;
|
|
NonlinearFactorGraph graph;
|
|
|
|
Symbol x1('X', 1);
|
|
Symbol x2('X', 2);
|
|
// Symbol x3('X', 3);
|
|
|
|
const SharedDiagonal noiseProjection = noiseModel::Isotropic::Sigma(2, 1);
|
|
|
|
std::vector<Key> views;
|
|
views += x1, x2; //, x3;
|
|
|
|
Cal3_S2::shared_ptr K(new Cal3_S2(1500, 1200, 0, 640, 480));
|
|
// create first camera. Looking along X-axis, 1 meter above ground plane (x-y)
|
|
Pose3 level_pose = Pose3(Rot3::ypr(-M_PI/2, 0., -M_PI/2), gtsam::Point3(0,0,1));
|
|
SimpleCamera level_camera(level_pose, *K);
|
|
|
|
// create second camera 1 meter to the right of first camera
|
|
Pose3 level_pose_right = level_pose * Pose3(Rot3(), Point3(1,0,0));
|
|
SimpleCamera level_camera_right(level_pose_right, *K);
|
|
|
|
// landmark ~5 meters infront of camera
|
|
Point3 landmark(5, 0.5, 1.2);
|
|
|
|
// 1. Project two landmarks into two cameras and triangulate
|
|
Point2 level_uv = level_camera.project(landmark);
|
|
Point2 level_uv_right = level_camera_right.project(landmark);
|
|
|
|
Values value;
|
|
value.insert(x1, level_pose);
|
|
value.insert(x2, level_pose_right);
|
|
|
|
// poses += level_pose, level_pose_right;
|
|
vector<Point2> measurements;
|
|
measurements += level_uv, level_uv_right;
|
|
|
|
SmartProjectionFactor<Pose3, Point3, Cal3_S2> smartFactor(measurements, noiseProjection, views, K);
|
|
|
|
double actualError = smartFactor.error(value);
|
|
double expectedError = 0.0;
|
|
|
|
DOUBLES_EQUAL(expectedError, actualError, 1e-7);
|
|
}
|
|
|
|
///* ************************************************************************* */
|
|
TEST( MultiProjectionFactor, noisy ){
|
|
cout << " ************************ MultiProjectionFactor: noisy ****************************" << endl;
|
|
|
|
Symbol x1('X', 1);
|
|
Symbol x2('X', 2);
|
|
// Symbol x3('X', 3);
|
|
|
|
const SharedDiagonal noiseProjection = noiseModel::Isotropic::Sigma(2, 1);
|
|
|
|
std::vector<Key> views;
|
|
views += x1, x2; //, x3;
|
|
|
|
Cal3_S2::shared_ptr K(new Cal3_S2(1500, 1200, 0, 640, 480));
|
|
// create first camera. Looking along X-axis, 1 meter above ground plane (x-y)
|
|
Pose3 level_pose = Pose3(Rot3::ypr(-M_PI/2, 0., -M_PI/2), gtsam::Point3(0,0,1));
|
|
SimpleCamera level_camera(level_pose, *K);
|
|
|
|
// create second camera 1 meter to the right of first camera
|
|
Pose3 level_pose_right = level_pose * Pose3(Rot3(), Point3(1,0,0));
|
|
SimpleCamera level_camera_right(level_pose_right, *K);
|
|
|
|
// landmark ~5 meters infront of camera
|
|
Point3 landmark(5, 0.5, 1.2);
|
|
|
|
// 1. Project two landmarks into two cameras and triangulate
|
|
Point2 pixelError(0.2,0.2);
|
|
Point2 level_uv = level_camera.project(landmark) + pixelError;
|
|
Point2 level_uv_right = level_camera_right.project(landmark);
|
|
|
|
Values values;
|
|
values.insert(x1, level_pose);
|
|
Pose3 noise_pose = Pose3(Rot3::ypr(-M_PI/10, 0., -M_PI/10), gtsam::Point3(0.5,0.1,0.3));
|
|
values.insert(x2, level_pose_right.compose(noise_pose));
|
|
|
|
// poses += level_pose, level_pose_right;
|
|
vector<Point2> measurements;
|
|
measurements += level_uv, level_uv_right;
|
|
|
|
SmartProjectionFactor<Pose3, Point3, Cal3_S2>::shared_ptr
|
|
smartFactor(new SmartProjectionFactor<Pose3, Point3, Cal3_S2>(measurements, noiseProjection, views, K));
|
|
|
|
double actualError = smartFactor->error(values);
|
|
double expectedError = sqrt(0.08);
|
|
|
|
// we do not expect to be able to predict the error, since the error on the pixel will change
|
|
// the triangulation of the landmark which is internal to the factor.
|
|
// DOUBLES_EQUAL(expectedError, actualError, 1e-7);
|
|
}
|
|
|
|
|
|
///* ************************************************************************* */
|
|
TEST( MultiProjectionFactor, 3poses ){
|
|
cout << " ************************ MultiProjectionFactor: 3 cams + 3 landmarks **********************" << endl;
|
|
|
|
Symbol x1('X', 1);
|
|
Symbol x2('X', 2);
|
|
Symbol x3('X', 3);
|
|
|
|
const SharedDiagonal noiseProjection = noiseModel::Isotropic::Sigma(2, 1);
|
|
|
|
std::vector<Key> views;
|
|
views += x1, x2, x3;
|
|
|
|
Cal3_S2::shared_ptr K(new Cal3_S2(1500, 1200, 0, 640, 480));
|
|
// create first camera. Looking along X-axis, 1 meter above ground plane (x-y)
|
|
Pose3 pose1 = Pose3(Rot3::ypr(-M_PI/2, 0., -M_PI/2), gtsam::Point3(0,0,1));
|
|
SimpleCamera cam1(pose1, *K);
|
|
|
|
// create second camera 1 meter to the right of first camera
|
|
Pose3 pose2 = pose1 * Pose3(Rot3(), Point3(1,0,0));
|
|
SimpleCamera cam2(pose2, *K);
|
|
|
|
// create third camera 1 meter above the first camera
|
|
Pose3 pose3 = pose1 * Pose3(Rot3(), Point3(0,-1,0));
|
|
SimpleCamera cam3(pose2, *K);
|
|
|
|
// three landmarks ~5 meters infront of camera
|
|
Point3 landmark1(5, 0.5, 1.2);
|
|
Point3 landmark2(5, -0.5, 1.2);
|
|
Point3 landmark3(5, 0, 3.0);
|
|
|
|
vector<Point2> measurements_cam1, measurements_cam2, measurements_cam3;
|
|
|
|
// 1. Project three landmarks into three cameras and triangulate
|
|
Point2 cam1_uv1 = cam1.project(landmark1);
|
|
Point2 cam2_uv1 = cam2.project(landmark1);
|
|
Point2 cam3_uv1 = cam3.project(landmark1);
|
|
measurements_cam1 += cam1_uv1, cam2_uv1, cam3_uv1;
|
|
|
|
//
|
|
Point2 cam1_uv2 = cam1.project(landmark2);
|
|
Point2 cam2_uv2 = cam2.project(landmark2);
|
|
Point2 cam3_uv2 = cam3.project(landmark2);
|
|
measurements_cam2 += cam1_uv2, cam2_uv2, cam3_uv2;
|
|
|
|
|
|
Point2 cam1_uv3 = cam1.project(landmark3);
|
|
Point2 cam2_uv3 = cam2.project(landmark3);
|
|
Point2 cam3_uv3 = cam3.project(landmark3);
|
|
measurements_cam3 += cam1_uv3, cam2_uv3, cam3_uv3;
|
|
|
|
typedef SmartProjectionFactor<Pose3, Point3, Cal3_S2> SmartFactor;
|
|
|
|
SmartFactor::shared_ptr smartFactor1(new SmartFactor(measurements_cam1, noiseProjection, views, K));
|
|
SmartFactor::shared_ptr smartFactor2(new SmartFactor(measurements_cam2, noiseProjection, views, K));
|
|
SmartFactor::shared_ptr smartFactor3(new SmartFactor(measurements_cam3, noiseProjection, views, K));
|
|
|
|
// double actualError = smartFactor->error(values);
|
|
// double expectedError = sqrt(0.08);
|
|
|
|
const SharedDiagonal noisePrior = noiseModel::Isotropic::Sigma(6, 0.10);
|
|
|
|
NonlinearFactorGraph graph;
|
|
graph.push_back(smartFactor1);
|
|
graph.push_back(smartFactor2);
|
|
graph.push_back(smartFactor3);
|
|
graph.add(PriorFactor<Pose3>(x1, pose1, noisePrior));
|
|
|
|
|
|
Pose3 noise_pose = Pose3(Rot3::ypr(-M_PI/10, 0., -M_PI/10), gtsam::Point3(0.5,0.1,0.3));
|
|
Values values;
|
|
values.insert(x1, pose1);
|
|
values.insert(x2, pose1);
|
|
values.insert(x3, pose3* noise_pose);
|
|
|
|
LevenbergMarquardtParams params;
|
|
params.verbosityLM = LevenbergMarquardtParams::TRYLAMBDA;
|
|
params.verbosity = NonlinearOptimizerParams::ERROR;
|
|
LevenbergMarquardtOptimizer optimizer(graph, values, params);
|
|
Values result = optimizer.optimize();
|
|
|
|
result.print("results of 3 camera, 3 landmark optimization \n");
|
|
|
|
}
|
|
|
|
|
|
///* ************************************************************************* */
|
|
//TEST( ProjectionFactor, nonStandard ) {
|
|
// GenericProjectionFactor<Pose3, Point3, Cal3DS2> f;
|
|
//}
|
|
//
|
|
///* ************************************************************************* */
|
|
//TEST( ProjectionFactor, Constructor) {
|
|
// Key poseKey(X(1));
|
|
// Key pointKey(L(1));
|
|
//
|
|
// Point2 measurement(323.0, 240.0);
|
|
//
|
|
// TestProjectionFactor factor(measurement, model, poseKey, pointKey, K);
|
|
//}
|
|
//
|
|
///* ************************************************************************* */
|
|
//TEST( ProjectionFactor, ConstructorWithTransform) {
|
|
// Key poseKey(X(1));
|
|
// Key pointKey(L(1));
|
|
//
|
|
// Point2 measurement(323.0, 240.0);
|
|
// Pose3 body_P_sensor(Rot3::RzRyRx(-M_PI_2, 0.0, -M_PI_2), Point3(0.25, -0.10, 1.0));
|
|
//
|
|
// TestProjectionFactor factor(measurement, model, poseKey, pointKey, K, body_P_sensor);
|
|
//}
|
|
//
|
|
///* ************************************************************************* */
|
|
//TEST( ProjectionFactor, Equals ) {
|
|
// // Create two identical factors and make sure they're equal
|
|
// Point2 measurement(323.0, 240.0);
|
|
//
|
|
// TestProjectionFactor factor1(measurement, model, X(1), L(1), K);
|
|
// TestProjectionFactor factor2(measurement, model, X(1), L(1), K);
|
|
//
|
|
// CHECK(assert_equal(factor1, factor2));
|
|
//}
|
|
//
|
|
///* ************************************************************************* */
|
|
//TEST( ProjectionFactor, EqualsWithTransform ) {
|
|
// // Create two identical factors and make sure they're equal
|
|
// Point2 measurement(323.0, 240.0);
|
|
// Pose3 body_P_sensor(Rot3::RzRyRx(-M_PI_2, 0.0, -M_PI_2), Point3(0.25, -0.10, 1.0));
|
|
//
|
|
// TestProjectionFactor factor1(measurement, model, X(1), L(1), K, body_P_sensor);
|
|
// TestProjectionFactor factor2(measurement, model, X(1), L(1), K, body_P_sensor);
|
|
//
|
|
// CHECK(assert_equal(factor1, factor2));
|
|
//}
|
|
//
|
|
///* ************************************************************************* */
|
|
//TEST( ProjectionFactor, Error ) {
|
|
// // Create the factor with a measurement that is 3 pixels off in x
|
|
// Key poseKey(X(1));
|
|
// Key pointKey(L(1));
|
|
// Point2 measurement(323.0, 240.0);
|
|
// TestProjectionFactor factor(measurement, model, poseKey, pointKey, K);
|
|
//
|
|
// // Set the linearization point
|
|
// Pose3 pose(Rot3(), Point3(0,0,-6));
|
|
// Point3 point(0.0, 0.0, 0.0);
|
|
//
|
|
// // Use the factor to calculate the error
|
|
// Vector actualError(factor.evaluateError(pose, point));
|
|
//
|
|
// // The expected error is (-3.0, 0.0) pixels / UnitCovariance
|
|
// Vector expectedError = Vector_(2, -3.0, 0.0);
|
|
//
|
|
// // Verify we get the expected error
|
|
// CHECK(assert_equal(expectedError, actualError, 1e-9));
|
|
//}
|
|
//
|
|
///* ************************************************************************* */
|
|
//TEST( ProjectionFactor, ErrorWithTransform ) {
|
|
// // Create the factor with a measurement that is 3 pixels off in x
|
|
// Key poseKey(X(1));
|
|
// Key pointKey(L(1));
|
|
// Point2 measurement(323.0, 240.0);
|
|
// Pose3 body_P_sensor(Rot3::RzRyRx(-M_PI_2, 0.0, -M_PI_2), Point3(0.25, -0.10, 1.0));
|
|
// TestProjectionFactor factor(measurement, model, poseKey, pointKey, K, body_P_sensor);
|
|
//
|
|
// // Set the linearization point. The vehicle pose has been selected to put the camera at (-6, 0, 0)
|
|
// Pose3 pose(Rot3(), Point3(-6.25, 0.10 , -1.0));
|
|
// Point3 point(0.0, 0.0, 0.0);
|
|
//
|
|
// // Use the factor to calculate the error
|
|
// Vector actualError(factor.evaluateError(pose, point));
|
|
//
|
|
// // The expected error is (-3.0, 0.0) pixels / UnitCovariance
|
|
// Vector expectedError = Vector_(2, -3.0, 0.0);
|
|
//
|
|
// // Verify we get the expected error
|
|
// CHECK(assert_equal(expectedError, actualError, 1e-9));
|
|
//}
|
|
//
|
|
///* ************************************************************************* */
|
|
//TEST( ProjectionFactor, Jacobian ) {
|
|
// // Create the factor with a measurement that is 3 pixels off in x
|
|
// Key poseKey(X(1));
|
|
// Key pointKey(L(1));
|
|
// Point2 measurement(323.0, 240.0);
|
|
// TestProjectionFactor factor(measurement, model, poseKey, pointKey, K);
|
|
//
|
|
// // Set the linearization point
|
|
// Pose3 pose(Rot3(), Point3(0,0,-6));
|
|
// Point3 point(0.0, 0.0, 0.0);
|
|
//
|
|
// // Use the factor to calculate the Jacobians
|
|
// Matrix H1Actual, H2Actual;
|
|
// factor.evaluateError(pose, point, H1Actual, H2Actual);
|
|
//
|
|
// // The expected Jacobians
|
|
// Matrix H1Expected = Matrix_(2, 6, 0., -554.256, 0., -92.376, 0., 0., 554.256, 0., 0., 0., -92.376, 0.);
|
|
// Matrix H2Expected = Matrix_(2, 3, 92.376, 0., 0., 0., 92.376, 0.);
|
|
//
|
|
// // Verify the Jacobians are correct
|
|
// CHECK(assert_equal(H1Expected, H1Actual, 1e-3));
|
|
// CHECK(assert_equal(H2Expected, H2Actual, 1e-3));
|
|
//}
|
|
//
|
|
///* ************************************************************************* */
|
|
//TEST( ProjectionFactor, JacobianWithTransform ) {
|
|
// // Create the factor with a measurement that is 3 pixels off in x
|
|
// Key poseKey(X(1));
|
|
// Key pointKey(L(1));
|
|
// Point2 measurement(323.0, 240.0);
|
|
// Pose3 body_P_sensor(Rot3::RzRyRx(-M_PI_2, 0.0, -M_PI_2), Point3(0.25, -0.10, 1.0));
|
|
// TestProjectionFactor factor(measurement, model, poseKey, pointKey, K, body_P_sensor);
|
|
//
|
|
// // Set the linearization point. The vehicle pose has been selected to put the camera at (-6, 0, 0)
|
|
// Pose3 pose(Rot3(), Point3(-6.25, 0.10 , -1.0));
|
|
// Point3 point(0.0, 0.0, 0.0);
|
|
//
|
|
// // Use the factor to calculate the Jacobians
|
|
// Matrix H1Actual, H2Actual;
|
|
// factor.evaluateError(pose, point, H1Actual, H2Actual);
|
|
//
|
|
// // The expected Jacobians
|
|
// Matrix H1Expected = Matrix_(2, 6, -92.376, 0., 577.350, 0., 92.376, 0., -9.2376, -577.350, 0., 0., 0., 92.376);
|
|
// Matrix H2Expected = Matrix_(2, 3, 0., -92.376, 0., 0., 0., -92.376);
|
|
//
|
|
// // Verify the Jacobians are correct
|
|
// CHECK(assert_equal(H1Expected, H1Actual, 1e-3));
|
|
// CHECK(assert_equal(H2Expected, H2Actual, 1e-3));
|
|
//}
|
|
|
|
/* ************************************************************************* */
|
|
int main() { TestResult tr; return TestRegistry::runAllTests(tr); }
|
|
/* ************************************************************************* */
|
|
|