/* ---------------------------------------------------------------------------- * GTSAM Copyright 2010, Georgia Tech Research Corporation, * Atlanta, Georgia 30332-0415 * All Rights Reserved * Authors: Frank Dellaert, et al. (see THANKS for the full author list) * See LICENSE for the license information * -------------------------------------------------------------------------- */ /** * @file testProjectionFactor.cpp * @brief Unit tests for ProjectionFactor Class * @author Frank Dellaert * @date Nov 2009 */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include using namespace std; using namespace gtsam; // make a realistic calibration matrix static double fov = 60; // degrees static size_t w=640,h=480; static Cal3_S2::shared_ptr K(new Cal3_S2(fov,w,h)); // Create a noise model for the pixel error static SharedNoiseModel model(noiseModel::Unit::Create(2)); // Convenience for named keys //using symbol_shorthand::X; //using symbol_shorthand::L; //typedef GenericProjectionFactor TestProjectionFactor; ///* ************************************************************************* */ TEST( MultiProjectionFactor, noiseless ){ cout << " ************************ MultiProjectionFactor: noiseless ****************************" << endl; Values theta; NonlinearFactorGraph graph; Symbol x1('X', 1); Symbol x2('X', 2); // Symbol x3('X', 3); const SharedDiagonal noiseProjection = noiseModel::Isotropic::Sigma(2, 1); std::vector views; views += x1, x2; //, x3; Cal3_S2::shared_ptr K(new Cal3_S2(1500, 1200, 0, 640, 480)); // create first camera. Looking along X-axis, 1 meter above ground plane (x-y) Pose3 level_pose = Pose3(Rot3::ypr(-M_PI/2, 0., -M_PI/2), gtsam::Point3(0,0,1)); SimpleCamera level_camera(level_pose, *K); // create second camera 1 meter to the right of first camera Pose3 level_pose_right = level_pose * Pose3(Rot3(), Point3(1,0,0)); SimpleCamera level_camera_right(level_pose_right, *K); // landmark ~5 meters infront of camera Point3 landmark(5, 0.5, 1.2); // 1. Project two landmarks into two cameras and triangulate Point2 level_uv = level_camera.project(landmark); Point2 level_uv_right = level_camera_right.project(landmark); Values value; value.insert(x1, level_pose); value.insert(x2, level_pose_right); // poses += level_pose, level_pose_right; vector measurements; measurements += level_uv, level_uv_right; SmartProjectionFactor smartFactor(measurements, noiseProjection, views, K); double actualError = smartFactor.error(value); double expectedError = 0.0; DOUBLES_EQUAL(expectedError, actualError, 1e-7); } ///* ************************************************************************* */ TEST( MultiProjectionFactor, noisy ){ cout << " ************************ MultiProjectionFactor: noisy ****************************" << endl; Symbol x1('X', 1); Symbol x2('X', 2); // Symbol x3('X', 3); const SharedDiagonal noiseProjection = noiseModel::Isotropic::Sigma(2, 1); std::vector views; views += x1, x2; //, x3; Cal3_S2::shared_ptr K(new Cal3_S2(1500, 1200, 0, 640, 480)); // create first camera. Looking along X-axis, 1 meter above ground plane (x-y) Pose3 level_pose = Pose3(Rot3::ypr(-M_PI/2, 0., -M_PI/2), gtsam::Point3(0,0,1)); SimpleCamera level_camera(level_pose, *K); // create second camera 1 meter to the right of first camera Pose3 level_pose_right = level_pose * Pose3(Rot3(), Point3(1,0,0)); SimpleCamera level_camera_right(level_pose_right, *K); // landmark ~5 meters infront of camera Point3 landmark(5, 0.5, 1.2); // 1. Project two landmarks into two cameras and triangulate Point2 pixelError(0.2,0.2); Point2 level_uv = level_camera.project(landmark) + pixelError; Point2 level_uv_right = level_camera_right.project(landmark); Values values; values.insert(x1, level_pose); Pose3 noise_pose = Pose3(Rot3::ypr(-M_PI/10, 0., -M_PI/10), gtsam::Point3(0.5,0.1,0.3)); values.insert(x2, level_pose_right.compose(noise_pose)); // poses += level_pose, level_pose_right; vector measurements; measurements += level_uv, level_uv_right; SmartProjectionFactor::shared_ptr smartFactor(new SmartProjectionFactor(measurements, noiseProjection, views, K)); double actualError = smartFactor->error(values); double expectedError = sqrt(0.08); // we do not expect to be able to predict the error, since the error on the pixel will change // the triangulation of the landmark which is internal to the factor. // DOUBLES_EQUAL(expectedError, actualError, 1e-7); } ///* ************************************************************************* */ TEST( MultiProjectionFactor, 3poses ){ cout << " ************************ MultiProjectionFactor: 3 cams + 3 landmarks **********************" << endl; Symbol x1('X', 1); Symbol x2('X', 2); Symbol x3('X', 3); const SharedDiagonal noiseProjection = noiseModel::Isotropic::Sigma(2, 1); std::vector views; views += x1, x2, x3; Cal3_S2::shared_ptr K(new Cal3_S2(1500, 1200, 0, 640, 480)); // create first camera. Looking along X-axis, 1 meter above ground plane (x-y) Pose3 pose1 = Pose3(Rot3::ypr(-M_PI/2, 0., -M_PI/2), gtsam::Point3(0,0,1)); SimpleCamera cam1(pose1, *K); // create second camera 1 meter to the right of first camera Pose3 pose2 = pose1 * Pose3(Rot3(), Point3(1,0,0)); SimpleCamera cam2(pose2, *K); // create third camera 1 meter above the first camera Pose3 pose3 = pose1 * Pose3(Rot3(), Point3(0,-1,0)); SimpleCamera cam3(pose2, *K); // three landmarks ~5 meters infront of camera Point3 landmark1(5, 0.5, 1.2); Point3 landmark2(5, -0.5, 1.2); Point3 landmark3(5, 0, 3.0); vector measurements_cam1, measurements_cam2, measurements_cam3; // 1. Project three landmarks into three cameras and triangulate Point2 cam1_uv1 = cam1.project(landmark1); Point2 cam2_uv1 = cam2.project(landmark1); Point2 cam3_uv1 = cam3.project(landmark1); measurements_cam1 += cam1_uv1, cam2_uv1, cam3_uv1; // Point2 cam1_uv2 = cam1.project(landmark2); Point2 cam2_uv2 = cam2.project(landmark2); Point2 cam3_uv2 = cam3.project(landmark2); measurements_cam2 += cam1_uv2, cam2_uv2, cam3_uv2; Point2 cam1_uv3 = cam1.project(landmark3); Point2 cam2_uv3 = cam2.project(landmark3); Point2 cam3_uv3 = cam3.project(landmark3); measurements_cam3 += cam1_uv3, cam2_uv3, cam3_uv3; typedef SmartProjectionFactor SmartFactor; SmartFactor::shared_ptr smartFactor1(new SmartFactor(measurements_cam1, noiseProjection, views, K)); SmartFactor::shared_ptr smartFactor2(new SmartFactor(measurements_cam2, noiseProjection, views, K)); SmartFactor::shared_ptr smartFactor3(new SmartFactor(measurements_cam3, noiseProjection, views, K)); // double actualError = smartFactor->error(values); // double expectedError = sqrt(0.08); const SharedDiagonal noisePrior = noiseModel::Isotropic::Sigma(6, 0.10); NonlinearFactorGraph graph; graph.push_back(smartFactor1); graph.push_back(smartFactor2); graph.push_back(smartFactor3); graph.add(PriorFactor(x1, pose1, noisePrior)); Pose3 noise_pose = Pose3(Rot3::ypr(-M_PI/10, 0., -M_PI/10), gtsam::Point3(0.5,0.1,0.3)); Values values; values.insert(x1, pose1); values.insert(x2, pose1); values.insert(x3, pose3* noise_pose); LevenbergMarquardtParams params; params.verbosityLM = LevenbergMarquardtParams::TRYLAMBDA; params.verbosity = NonlinearOptimizerParams::ERROR; LevenbergMarquardtOptimizer optimizer(graph, values, params); Values result = optimizer.optimize(); result.print("results of 3 camera, 3 landmark optimization \n"); } ///* ************************************************************************* */ //TEST( ProjectionFactor, nonStandard ) { // GenericProjectionFactor f; //} // ///* ************************************************************************* */ //TEST( ProjectionFactor, Constructor) { // Key poseKey(X(1)); // Key pointKey(L(1)); // // Point2 measurement(323.0, 240.0); // // TestProjectionFactor factor(measurement, model, poseKey, pointKey, K); //} // ///* ************************************************************************* */ //TEST( ProjectionFactor, ConstructorWithTransform) { // Key poseKey(X(1)); // Key pointKey(L(1)); // // Point2 measurement(323.0, 240.0); // Pose3 body_P_sensor(Rot3::RzRyRx(-M_PI_2, 0.0, -M_PI_2), Point3(0.25, -0.10, 1.0)); // // TestProjectionFactor factor(measurement, model, poseKey, pointKey, K, body_P_sensor); //} // ///* ************************************************************************* */ //TEST( ProjectionFactor, Equals ) { // // Create two identical factors and make sure they're equal // Point2 measurement(323.0, 240.0); // // TestProjectionFactor factor1(measurement, model, X(1), L(1), K); // TestProjectionFactor factor2(measurement, model, X(1), L(1), K); // // CHECK(assert_equal(factor1, factor2)); //} // ///* ************************************************************************* */ //TEST( ProjectionFactor, EqualsWithTransform ) { // // Create two identical factors and make sure they're equal // Point2 measurement(323.0, 240.0); // Pose3 body_P_sensor(Rot3::RzRyRx(-M_PI_2, 0.0, -M_PI_2), Point3(0.25, -0.10, 1.0)); // // TestProjectionFactor factor1(measurement, model, X(1), L(1), K, body_P_sensor); // TestProjectionFactor factor2(measurement, model, X(1), L(1), K, body_P_sensor); // // CHECK(assert_equal(factor1, factor2)); //} // ///* ************************************************************************* */ //TEST( ProjectionFactor, Error ) { // // Create the factor with a measurement that is 3 pixels off in x // Key poseKey(X(1)); // Key pointKey(L(1)); // Point2 measurement(323.0, 240.0); // TestProjectionFactor factor(measurement, model, poseKey, pointKey, K); // // // Set the linearization point // Pose3 pose(Rot3(), Point3(0,0,-6)); // Point3 point(0.0, 0.0, 0.0); // // // Use the factor to calculate the error // Vector actualError(factor.evaluateError(pose, point)); // // // The expected error is (-3.0, 0.0) pixels / UnitCovariance // Vector expectedError = Vector_(2, -3.0, 0.0); // // // Verify we get the expected error // CHECK(assert_equal(expectedError, actualError, 1e-9)); //} // ///* ************************************************************************* */ //TEST( ProjectionFactor, ErrorWithTransform ) { // // Create the factor with a measurement that is 3 pixels off in x // Key poseKey(X(1)); // Key pointKey(L(1)); // Point2 measurement(323.0, 240.0); // Pose3 body_P_sensor(Rot3::RzRyRx(-M_PI_2, 0.0, -M_PI_2), Point3(0.25, -0.10, 1.0)); // TestProjectionFactor factor(measurement, model, poseKey, pointKey, K, body_P_sensor); // // // Set the linearization point. The vehicle pose has been selected to put the camera at (-6, 0, 0) // Pose3 pose(Rot3(), Point3(-6.25, 0.10 , -1.0)); // Point3 point(0.0, 0.0, 0.0); // // // Use the factor to calculate the error // Vector actualError(factor.evaluateError(pose, point)); // // // The expected error is (-3.0, 0.0) pixels / UnitCovariance // Vector expectedError = Vector_(2, -3.0, 0.0); // // // Verify we get the expected error // CHECK(assert_equal(expectedError, actualError, 1e-9)); //} // ///* ************************************************************************* */ //TEST( ProjectionFactor, Jacobian ) { // // Create the factor with a measurement that is 3 pixels off in x // Key poseKey(X(1)); // Key pointKey(L(1)); // Point2 measurement(323.0, 240.0); // TestProjectionFactor factor(measurement, model, poseKey, pointKey, K); // // // Set the linearization point // Pose3 pose(Rot3(), Point3(0,0,-6)); // Point3 point(0.0, 0.0, 0.0); // // // Use the factor to calculate the Jacobians // Matrix H1Actual, H2Actual; // factor.evaluateError(pose, point, H1Actual, H2Actual); // // // The expected Jacobians // Matrix H1Expected = Matrix_(2, 6, 0., -554.256, 0., -92.376, 0., 0., 554.256, 0., 0., 0., -92.376, 0.); // Matrix H2Expected = Matrix_(2, 3, 92.376, 0., 0., 0., 92.376, 0.); // // // Verify the Jacobians are correct // CHECK(assert_equal(H1Expected, H1Actual, 1e-3)); // CHECK(assert_equal(H2Expected, H2Actual, 1e-3)); //} // ///* ************************************************************************* */ //TEST( ProjectionFactor, JacobianWithTransform ) { // // Create the factor with a measurement that is 3 pixels off in x // Key poseKey(X(1)); // Key pointKey(L(1)); // Point2 measurement(323.0, 240.0); // Pose3 body_P_sensor(Rot3::RzRyRx(-M_PI_2, 0.0, -M_PI_2), Point3(0.25, -0.10, 1.0)); // TestProjectionFactor factor(measurement, model, poseKey, pointKey, K, body_P_sensor); // // // Set the linearization point. The vehicle pose has been selected to put the camera at (-6, 0, 0) // Pose3 pose(Rot3(), Point3(-6.25, 0.10 , -1.0)); // Point3 point(0.0, 0.0, 0.0); // // // Use the factor to calculate the Jacobians // Matrix H1Actual, H2Actual; // factor.evaluateError(pose, point, H1Actual, H2Actual); // // // The expected Jacobians // Matrix H1Expected = Matrix_(2, 6, -92.376, 0., 577.350, 0., 92.376, 0., -9.2376, -577.350, 0., 0., 0., 92.376); // Matrix H2Expected = Matrix_(2, 3, 0., -92.376, 0., 0., 0., -92.376); // // // Verify the Jacobians are correct // CHECK(assert_equal(H1Expected, H1Actual, 1e-3)); // CHECK(assert_equal(H2Expected, H2Actual, 1e-3)); //} /* ************************************************************************* */ int main() { TestResult tr; return TestRegistry::runAllTests(tr); } /* ************************************************************************* */