247 lines
10 KiB
C++
247 lines
10 KiB
C++
/**
|
|
* @file testPoseRTV
|
|
* @author Alex Cunningham
|
|
*/
|
|
|
|
#include <CppUnitLite/TestHarness.h>
|
|
#include <gtsam/base/Testable.h>
|
|
#include <gtsam/base/TestableAssertions.h>
|
|
#include <gtsam/base/numericalDerivative.h>
|
|
|
|
#include <gtsam_unstable/dynamics/PoseRTV.h>
|
|
|
|
using namespace gtsam;
|
|
|
|
GTSAM_CONCEPT_TESTABLE_INST(PoseRTV)
|
|
GTSAM_CONCEPT_LIE_INST(PoseRTV)
|
|
|
|
const double tol=1e-5;
|
|
|
|
Rot3 rot = Rot3::RzRyRx(0.1, 0.2, 0.3);
|
|
Point3 pt(1.0, 2.0, 3.0);
|
|
Velocity3 vel(0.4, 0.5, 0.6);
|
|
|
|
/* ************************************************************************* */
|
|
TEST( testPoseRTV, constructors ) {
|
|
PoseRTV state1(pt, rot, vel);
|
|
EXPECT(assert_equal(pt, state1.t(), tol));
|
|
EXPECT(assert_equal(rot, state1.R(), tol));
|
|
EXPECT(assert_equal(vel, state1.v(), tol));
|
|
EXPECT(assert_equal(Pose3(rot, pt), state1.pose(), tol));
|
|
|
|
PoseRTV state2;
|
|
EXPECT(assert_equal(Point3(), state2.t(), tol));
|
|
EXPECT(assert_equal(Rot3(), state2.R(), tol));
|
|
EXPECT(assert_equal(Velocity3(), state2.v(), tol));
|
|
EXPECT(assert_equal(Pose3(), state2.pose(), tol));
|
|
|
|
PoseRTV state3(Pose3(rot, pt), vel);
|
|
EXPECT(assert_equal(pt, state3.t(), tol));
|
|
EXPECT(assert_equal(rot, state3.R(), tol));
|
|
EXPECT(assert_equal(vel, state3.v(), tol));
|
|
EXPECT(assert_equal(Pose3(rot, pt), state3.pose(), tol));
|
|
|
|
PoseRTV state4(Pose3(rot, pt));
|
|
EXPECT(assert_equal(pt, state4.t(), tol));
|
|
EXPECT(assert_equal(rot, state4.R(), tol));
|
|
EXPECT(assert_equal(Velocity3(), state4.v(), tol));
|
|
EXPECT(assert_equal(Pose3(rot, pt), state4.pose(), tol));
|
|
|
|
Vector vec_init = (Vector(9) << 0.1, 0.2, 0.3, 1.0, 2.0, 3.0, 0.4, 0.5, 0.6).finished();
|
|
PoseRTV state5(vec_init);
|
|
EXPECT(assert_equal(pt, state5.t(), tol));
|
|
EXPECT(assert_equal(rot, state5.R(), tol));
|
|
EXPECT(assert_equal(vel, state5.v(), tol));
|
|
EXPECT(assert_equal(vec_init, state5.vector(), tol));
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST( testPoseRTV, dim ) {
|
|
PoseRTV state1(pt, rot, vel);
|
|
EXPECT_LONGS_EQUAL(9, state1.dim());
|
|
EXPECT_LONGS_EQUAL(9, PoseRTV::Dim());
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST( testPoseRTV, equals ) {
|
|
PoseRTV state1, state2(pt, rot, vel), state3(state2), state4(Pose3(rot, pt));
|
|
EXPECT(assert_equal(state1, state1, tol));
|
|
EXPECT(assert_equal(state2, state3, tol));
|
|
EXPECT(assert_equal(state3, state2, tol));
|
|
EXPECT(assert_inequal(state1, state2, tol));
|
|
EXPECT(assert_inequal(state2, state1, tol));
|
|
EXPECT(assert_inequal(state2, state4, tol));
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST( testPoseRTV, Lie ) {
|
|
// origin and zero deltas
|
|
PoseRTV identity;
|
|
EXPECT(assert_equal(identity, (PoseRTV)identity.retract(zero(9)), tol));
|
|
EXPECT(assert_equal(zero(9), identity.localCoordinates(identity), tol));
|
|
|
|
PoseRTV state1(pt, rot, vel);
|
|
EXPECT(assert_equal(state1, (PoseRTV)state1.retract(zero(9)), tol));
|
|
EXPECT(assert_equal(zero(9), state1.localCoordinates(state1), tol));
|
|
|
|
Vector delta(9);
|
|
delta << 0.1, 0.1, 0.1, 0.2, 0.3, 0.4,-0.1,-0.2,-0.3;
|
|
Pose3 pose2 = Pose3(rot, pt).retract(delta.head<6>());
|
|
Velocity3 vel2 = vel + Velocity3(-0.1, -0.2, -0.3);
|
|
PoseRTV state2(pose2.translation(), pose2.rotation(), vel2);
|
|
EXPECT(assert_equal(state2, (PoseRTV)state1.retract(delta), tol));
|
|
EXPECT(assert_equal(delta, state1.localCoordinates(state2), tol));
|
|
|
|
// roundtrip from state2 to state3 and back
|
|
PoseRTV state3 = state2.retract(delta);
|
|
EXPECT(assert_equal(delta, state2.localCoordinates(state3), tol));
|
|
|
|
// roundtrip from state3 to state4 and back, with expmap.
|
|
PoseRTV state4 = state3.expmap(delta);
|
|
EXPECT(assert_equal(delta, state3.logmap(state4), tol));
|
|
|
|
// For the expmap/logmap (not necessarily retract/local) -delta goes other way
|
|
EXPECT(assert_equal(state3, (PoseRTV)state4.expmap(-delta), tol));
|
|
EXPECT(assert_equal(delta, -state4.logmap(state3), tol));
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST( testPoseRTV, dynamics_identities ) {
|
|
// general dynamics should produce the same measurements as the imuPrediction function
|
|
PoseRTV x0, x1, x2, x3, x4;
|
|
|
|
const double dt = 0.1;
|
|
Vector accel = Vector3(0.2, 0.0, 0.0), gyro = Vector3(0.0, 0.0, 0.2);
|
|
Vector imu01 = zero(6), imu12 = zero(6), imu23 = zero(6), imu34 = zero(6);
|
|
|
|
x1 = x0.generalDynamics(accel, gyro, dt);
|
|
x2 = x1.generalDynamics(accel, gyro, dt);
|
|
x3 = x2.generalDynamics(accel, gyro, dt);
|
|
x4 = x3.generalDynamics(accel, gyro, dt);
|
|
|
|
// EXPECT(assert_equal(imu01, x0.imuPrediction(x1, dt).first, tol));
|
|
// EXPECT(assert_equal(imu12, x1.imuPrediction(x2, dt).first, tol));
|
|
// EXPECT(assert_equal(imu23, x2.imuPrediction(x3, dt).first, tol));
|
|
// EXPECT(assert_equal(imu34, x3.imuPrediction(x4, dt).first, tol));
|
|
//
|
|
// EXPECT(assert_equal(x1.translation(), x0.imuPrediction(x1, dt).second, tol));
|
|
// EXPECT(assert_equal(x2.translation(), x1.imuPrediction(x2, dt).second, tol));
|
|
// EXPECT(assert_equal(x3.translation(), x2.imuPrediction(x3, dt).second, tol));
|
|
// EXPECT(assert_equal(x4.translation(), x3.imuPrediction(x4, dt).second, tol));
|
|
}
|
|
|
|
|
|
/* ************************************************************************* */
|
|
PoseRTV compose_proxy(const PoseRTV& A, const PoseRTV& B) { return A.compose(B); }
|
|
TEST( testPoseRTV, compose ) {
|
|
PoseRTV state1(pt, rot, vel), state2 = state1;
|
|
|
|
Matrix actH1, actH2;
|
|
state1.compose(state2, actH1, actH2);
|
|
Matrix numericH1 = numericalDerivative21(compose_proxy, state1, state2);
|
|
Matrix numericH2 = numericalDerivative22(compose_proxy, state1, state2);
|
|
EXPECT(assert_equal(numericH1, actH1, tol));
|
|
EXPECT(assert_equal(numericH2, actH2, tol));
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
PoseRTV between_proxy(const PoseRTV& A, const PoseRTV& B) { return A.between(B); }
|
|
TEST( testPoseRTV, between ) {
|
|
PoseRTV state1(pt, rot, vel), state2 = state1;
|
|
|
|
Matrix actH1, actH2;
|
|
state1.between(state2, actH1, actH2);
|
|
Matrix numericH1 = numericalDerivative21(between_proxy, state1, state2);
|
|
Matrix numericH2 = numericalDerivative22(between_proxy, state1, state2);
|
|
EXPECT(assert_equal(numericH1, actH1, tol));
|
|
EXPECT(assert_equal(numericH2, actH2, tol));
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
PoseRTV inverse_proxy(const PoseRTV& A) { return A.inverse(); }
|
|
TEST( testPoseRTV, inverse ) {
|
|
PoseRTV state1(pt, rot, vel);
|
|
|
|
Matrix actH1;
|
|
state1.inverse(actH1);
|
|
Matrix numericH1 = numericalDerivative11(inverse_proxy, state1);
|
|
EXPECT(assert_equal(numericH1, actH1, tol));
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
double range_proxy(const PoseRTV& A, const PoseRTV& B) { return A.range(B); }
|
|
TEST( testPoseRTV, range ) {
|
|
Point3 tA(1.0, 2.0, 3.0), tB(3.0, 2.0, 3.0);
|
|
PoseRTV rtvA(tA), rtvB(tB);
|
|
EXPECT_DOUBLES_EQUAL(0.0, rtvA.range(rtvA), tol);
|
|
EXPECT_DOUBLES_EQUAL(2.0, rtvA.range(rtvB), tol);
|
|
EXPECT_DOUBLES_EQUAL(2.0, rtvB.range(rtvA), tol);
|
|
|
|
Matrix actH1, actH2;
|
|
rtvA.range(rtvB, actH1, actH2);
|
|
Matrix numericH1 = numericalDerivative21(range_proxy, rtvA, rtvB);
|
|
Matrix numericH2 = numericalDerivative22(range_proxy, rtvA, rtvB);
|
|
EXPECT(assert_equal(numericH1, actH1, tol));
|
|
EXPECT(assert_equal(numericH2, actH2, tol));
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
PoseRTV transformed_from_proxy(const PoseRTV& a, const Pose3& trans) {
|
|
return a.transformed_from(trans);
|
|
}
|
|
TEST( testPoseRTV, transformed_from_1 ) {
|
|
Rot3 R = Rot3::Rodrigues(0.1, 0.2, 0.3);
|
|
Point3 T(1.0, 2.0, 3.0);
|
|
Velocity3 V(2.0, 3.0, 4.0);
|
|
PoseRTV start(R, T, V);
|
|
Pose3 transform(Rot3::yaw(M_PI_2), Point3(1.0, 2.0, 3.0));
|
|
|
|
Matrix actDTrans, actDGlobal;
|
|
PoseRTV actual = start.transformed_from(transform, actDGlobal, actDTrans);
|
|
PoseRTV expected(transform.compose(start.pose()), transform.rotation().rotate(V));
|
|
EXPECT(assert_equal(expected, actual, tol));
|
|
|
|
Matrix numDGlobal = numericalDerivative21(transformed_from_proxy, start, transform, 1e-5); // At 1e-8, fails
|
|
Matrix numDTrans = numericalDerivative22(transformed_from_proxy, start, transform, 1e-8); // Sensitive to step size
|
|
EXPECT(assert_equal(numDGlobal, actDGlobal, tol));
|
|
EXPECT(assert_equal(numDTrans, actDTrans, tol)); // FIXME: still needs analytic derivative
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST( testPoseRTV, transformed_from_2 ) {
|
|
Rot3 R;
|
|
Point3 T(1.0, 2.0, 3.0);
|
|
Velocity3 V(2.0, 3.0, 4.0);
|
|
PoseRTV start(R, T, V);
|
|
Pose3 transform(Rot3::yaw(M_PI_2), Point3(1.0, 2.0, 3.0));
|
|
|
|
Matrix actDTrans, actDGlobal;
|
|
PoseRTV actual = start.transformed_from(transform, actDGlobal, actDTrans);
|
|
PoseRTV expected(transform.compose(start.pose()), transform.rotation().rotate(V));
|
|
EXPECT(assert_equal(expected, actual, tol));
|
|
|
|
Matrix numDGlobal = numericalDerivative21(transformed_from_proxy, start, transform, 1e-5); // At 1e-8, fails
|
|
Matrix numDTrans = numericalDerivative22(transformed_from_proxy, start, transform, 1e-8); // Sensitive to step size
|
|
EXPECT(assert_equal(numDGlobal, actDGlobal, tol));
|
|
EXPECT(assert_equal(numDTrans, actDTrans, tol)); // FIXME: still needs analytic derivative
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST(testPoseRTV, RRTMbn) {
|
|
EXPECT(assert_equal(Matrix::Identity(3,3), PoseRTV::RRTMbn(zero(3)), tol));
|
|
EXPECT(assert_equal(Matrix::Identity(3,3), PoseRTV::RRTMbn(Rot3()), tol));
|
|
EXPECT(assert_equal(PoseRTV::RRTMbn(Vector3(0.3, 0.2, 0.1)), PoseRTV::RRTMbn(Rot3::ypr(0.1, 0.2, 0.3)), tol));
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST(testPoseRTV, RRTMnb) {
|
|
EXPECT(assert_equal(Matrix::Identity(3,3), PoseRTV::RRTMnb(zero(3)), tol));
|
|
EXPECT(assert_equal(Matrix::Identity(3,3), PoseRTV::RRTMnb(Rot3()), tol));
|
|
EXPECT(assert_equal(PoseRTV::RRTMnb(Vector3(0.3, 0.2, 0.1)), PoseRTV::RRTMnb(Rot3::ypr(0.1, 0.2, 0.3)), tol));
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
int main() { TestResult tr; return TestRegistry::runAllTests(tr); }
|
|
/* ************************************************************************* */
|
|
|