gtsam/gtsam/geometry/Pose3.cpp

250 lines
8.4 KiB
C++

/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file Pose3.cpp
* @brief 3D Pose
*/
#include <gtsam/geometry/Pose3.h>
#include <gtsam/geometry/Pose2.h>
#include <gtsam/geometry/concepts.h>
#include <gtsam/base/Lie-inl.h>
#include <iostream>
#include <cmath>
using namespace std;
namespace gtsam {
/** Explicit instantiation of base class to export members */
INSTANTIATE_LIE(Pose3);
/** instantiate concept checks */
GTSAM_CONCEPT_POSE_INST(Pose3);
static const Matrix I3 = eye(3), Z3 = zeros(3, 3), _I3=-I3, I6 = eye(6);
/* ************************************************************************* */
Pose3::Pose3(const Pose2& pose2) :
R_(Rot3::rodriguez(0, 0, pose2.theta())),
t_(Point3(pose2.x(), pose2.y(), 0)) {
}
/* ************************************************************************* */
// Calculate Adjoint map
// Ad_pose is 6*6 matrix that when applied to twist xi, returns Ad_pose(xi)
// Experimental - unit tests of derivatives based on it do not check out yet
Matrix Pose3::adjointMap() const {
const Matrix R = R_.matrix();
const Vector t = t_.vector();
Matrix A = skewSymmetric(t)*R;
Matrix DR = collect(2, &R, &Z3);
Matrix Dt = collect(2, &A, &R);
return gtsam::stack(2, &DR, &Dt);
}
/* ************************************************************************* */
void Pose3::print(const string& s) const {
R_.print(s + ".R");
t_.print(s + ".t");
}
/* ************************************************************************* */
bool Pose3::equals(const Pose3& pose, double tol) const {
return R_.equals(pose.R_,tol) && t_.equals(pose.t_,tol);
}
/* ************************************************************************* */
/** Modified from Murray94book version (which assumes w and v normalized?) */
Pose3 Pose3::Expmap(const Vector& xi) {
// get angular velocity omega and translational velocity v from twist xi
Point3 w(xi(0),xi(1),xi(2)), v(xi(3),xi(4),xi(5));
double theta = w.norm();
if (theta < 1e-10) {
static const Rot3 I;
return Pose3(I, v);
}
else {
Point3 n(w/theta); // axis unit vector
Rot3 R = Rot3::rodriguez(n.vector(),theta);
double vn = n.dot(v); // translation parallel to n
Point3 n_cross_v = n.cross(v); // points towards axis
Point3 t = (n_cross_v - R*n_cross_v)/theta + vn*n;
return Pose3(R, t);
}
}
/* ************************************************************************* */
Vector Pose3::Logmap(const Pose3& p) {
Vector w = Rot3::Logmap(p.rotation()), T = p.translation().vector();
double t = w.norm();
if (t < 1e-10)
return concatVectors(2, &w, &T);
else {
Matrix W = skewSymmetric(w/t);
// Formula from Agrawal06iros, equation (14)
// simplified with Mathematica, and multiplying in T to avoid matrix math
double Tan = tan(0.5*t);
Vector WT = W*T;
Vector u = T - (0.5*t)*WT + (1 - t/(2.*Tan)) * (W * WT);
return concatVectors(2, &w, &u);
}
}
/* ************************************************************************* */
Pose3 Pose3::retractFirstOrder(const Vector& xi) const {
Vector omega(sub(xi, 0, 3));
Point3 v(sub(xi, 3, 6));
Rot3 R = R_.retract(omega); // R is done exactly
Point3 t = t_ + R_ * v; // First order t approximation
return Pose3(R, t);
}
/* ************************************************************************* */
// Different versions of retract
Pose3 Pose3::retract(const Vector& xi, Pose3::CoordinatesMode mode) const {
if(mode == Pose3::EXPMAP) {
// Lie group exponential map, traces out geodesic
return compose(Expmap(xi));
} else if(mode == Pose3::FIRST_ORDER) {
// First order
return retractFirstOrder(xi);
} else {
// Point3 t = t_.retract(v.vector()); // Incorrect version retracts t independently
// Point3 t = t_ + R_ * (v+Point3(omega).cross(v)/2); // Second order t approximation
assert(false);
exit(1);
}
}
/* ************************************************************************* */
// different versions of localCoordinates
Vector Pose3::localCoordinates(const Pose3& T, Pose3::CoordinatesMode mode) const {
if(mode == Pose3::EXPMAP) {
// Lie group logarithm map, exact inverse of exponential map
return Logmap(between(T));
} else if(mode == Pose3::FIRST_ORDER) {
// R is always done exactly in all three retract versions below
Vector omega = R_.localCoordinates(T.rotation());
// Incorrect version
// Independently computes the logmap of the translation and rotation
// Vector v = t_.localCoordinates(T.translation());
// Correct first order t inverse
Point3 d = R_.unrotate(T.translation() - t_);
// TODO: correct second order t inverse
return Vector_(6,omega(0),omega(1),omega(2),d.x(),d.y(),d.z());
} else {
assert(false);
exit(1);
}
}
/* ************************************************************************* */
Matrix Pose3::matrix() const {
const Matrix R = R_.matrix(), T = Matrix_(3,1, t_.vector());
const Matrix A34 = collect(2, &R, &T);
const Matrix A14 = Matrix_(1,4, 0.0, 0.0, 0.0, 1.0);
return gtsam::stack(2, &A34, &A14);
}
/* ************************************************************************* */
Pose3 Pose3::transform_to(const Pose3& pose) const {
Rot3 cRv = R_ * Rot3(pose.R_.inverse());
Point3 t = pose.transform_to(t_);
return Pose3(cRv, t);
}
/* ************************************************************************* */
Point3 Pose3::transform_from(const Point3& p,
boost::optional<Matrix&> H1, boost::optional<Matrix&> H2) const {
if (H1) {
const Matrix R = R_.matrix();
Matrix DR = R*skewSymmetric(-p.x(), -p.y(), -p.z());
*H1 = collect(2,&DR,&R);
}
if (H2) *H2 = R_.matrix();
return R_ * p + t_;
}
/* ************************************************************************* */
Point3 Pose3::transform_to(const Point3& p,
boost::optional<Matrix&> H1, boost::optional<Matrix&> H2) const {
const Point3 result = R_.unrotate(p - t_);
if (H1) {
const Point3& q = result;
Matrix DR = skewSymmetric(q.x(), q.y(), q.z());
*H1 = collect(2, &DR, &_I3);
}
if (H2) *H2 = R_.transpose();
return result;
}
/* ************************************************************************* */
Pose3 Pose3::compose(const Pose3& p2,
boost::optional<Matrix&> H1, boost::optional<Matrix&> H2) const {
if (H1) *H1 = p2.inverse().adjointMap();
if (H2) *H2 = I6;
return (*this) * p2;
}
/* ************************************************************************* */
Pose3 Pose3::inverse(boost::optional<Matrix&> H1) const {
if (H1) *H1 = -adjointMap();
Rot3 Rt = R_.inverse();
return Pose3(Rt, Rt*(-t_));
}
/* ************************************************************************* */
// between = compose(p2,inverse(p1));
Pose3 Pose3::between(const Pose3& p2, boost::optional<Matrix&> H1,
boost::optional<Matrix&> H2) const {
Matrix invH;
Pose3 invp1 = inverse(invH);
Matrix composeH1;
Pose3 result = invp1.compose(p2, composeH1, H2);
if (H1) *H1 = composeH1 * invH;
return result;
}
/* ************************************************************************* */
double Pose3::range(const Point3& point,
boost::optional<Matrix&> H1,
boost::optional<Matrix&> H2) const {
if (!H1 && !H2) return transform_to(point).norm();
Point3 d = transform_to(point, H1, H2);
double x = d.x(), y = d.y(), z = d.z(),
d2 = x * x + y * y + z * z, n = sqrt(d2);
Matrix D_result_d = Matrix_(1, 3, x / n, y / n, z / n);
if (H1) *H1 = D_result_d * (*H1);
if (H2) *H2 = D_result_d * (*H2);
return n;
}
/* ************************************************************************* */
double Pose3::range(const Pose3& point,
boost::optional<Matrix&> H1, boost::optional<Matrix&> H2) const {
double r = range(point.translation(), H1, H2);
if (H2) {
Matrix H2_ = *H2 * point.rotation().matrix();
*H2 = zeros(1, 6);
insertSub(*H2, H2_, 0, 3);
}
return r;
}
} // namespace gtsam