gtsam/linear/GaussianFactorGraph.h

274 lines
9.3 KiB
C++

/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file GaussianFactorGraph.h
* @brief Linear Factor Graph where all factors are Gaussians
* @author Kai Ni
* @author Christian Potthast
* @author Alireza Fathi
*/
#pragma once
#include <boost/shared_ptr.hpp>
#include <gtsam/inference/FactorGraph.h>
#include <gtsam/linear/Errors.h>
#include <gtsam/linear/GaussianFactor.h>
#include <gtsam/linear/GaussianBayesNet.h>
namespace gtsam {
/**
* A Linear Factor Graph is a factor graph where all factors are Gaussian, i.e.
* Factor == GaussianFactor
* VectorValues = A values structure of vectors
* Most of the time, linear factor graphs arise by linearizing a non-linear factor graph.
*/
class GaussianFactorGraph : public FactorGraph<GaussianFactor> {
public:
typedef boost::shared_ptr<GaussianFactorGraph> shared_ptr;
typedef GaussianBayesNet bayesnet_type;
typedef GaussianVariableIndex<> variableindex_type;
/**
* Default constructor
*/
GaussianFactorGraph() {}
/**
* Constructor that receives a Chordal Bayes Net and returns a GaussianFactorGraph
*/
GaussianFactorGraph(const GaussianBayesNet& CBN);
/** Constructor from a factor graph of GaussianFactor or a derived type */
template<class DERIVEDFACTOR>
GaussianFactorGraph(const FactorGraph<DERIVEDFACTOR>& fg) {
push_back(fg);
}
/** Add a null factor */
void add(const Vector& b) {
push_back(sharedFactor(new GaussianFactor(b)));
}
/** Add a unary factor */
void add(Index key1, const Matrix& A1,
const Vector& b, const SharedDiagonal& model) {
push_back(sharedFactor(new GaussianFactor(key1,A1,b,model)));
}
/** Add a binary factor */
void add(Index key1, const Matrix& A1,
Index key2, const Matrix& A2,
const Vector& b, const SharedDiagonal& model) {
push_back(sharedFactor(new GaussianFactor(key1,A1,key2,A2,b,model)));
}
/** Add a ternary factor */
void add(Index key1, const Matrix& A1,
Index key2, const Matrix& A2,
Index key3, const Matrix& A3,
const Vector& b, const SharedDiagonal& model) {
push_back(sharedFactor(new GaussianFactor(key1,A1,key2,A2,key3,A3,b,model)));
}
/** Add an n-ary factor */
void add(const std::vector<std::pair<Index, Matrix> > &terms,
const Vector &b, const SharedDiagonal& model) {
push_back(sharedFactor(new GaussianFactor(terms,b,model)));
}
/**
* Return the set of variables involved in the factors (computes a set
* union).
*/
typedef std::set<Index, std::less<Index>, boost::fast_pool_allocator<Index> > Keys;
Keys keys() const;
/** Permute the variables in the factors */
void permuteWithInverse(const Permutation& inversePermutation);
/** return A*x-b */
Errors errors(const VectorValues& x) const;
/** shared pointer version */
boost::shared_ptr<Errors> errors_(const VectorValues& x) const;
/** unnormalized error */
double error(const VectorValues& x) const;
/** return A*x */
Errors operator*(const VectorValues& x) const;
/* In-place version e <- A*x that overwrites e. */
void multiplyInPlace(const VectorValues& x, Errors& e) const;
/* In-place version e <- A*x that takes an iterator. */
void multiplyInPlace(const VectorValues& x, const Errors::iterator& e) const;
/** x += alpha*A'*e */
void transposeMultiplyAdd(double alpha, const Errors& e, VectorValues& x) const;
/**
* Calculate Gradient of A^(A*x-b) for a given config
* @param x: VectorValues specifying where to calculate gradient
* @return gradient, as a VectorValues as well
*/
VectorValues gradient(const VectorValues& x) const;
/** Unnormalized probability. O(n) */
double probPrime(const VectorValues& c) const {
return exp(-0.5 * error(c));
}
/**
* static function that combines two factor graphs
* @param const &lfg1 Linear factor graph
* @param const &lfg2 Linear factor graph
* @return a new combined factor graph
*/
static GaussianFactorGraph combine2(const GaussianFactorGraph& lfg1,
const GaussianFactorGraph& lfg2);
/**
* combine two factor graphs
* @param *lfg Linear factor graph
*/
void combine(const GaussianFactorGraph &lfg);
/**
* Add zero-mean i.i.d. Gaussian prior terms to each variable
* @param sigma Standard deviation of Gaussian
*/
GaussianFactorGraph add_priors(double sigma, const GaussianVariableIndex<>& variableIndex) const;
GaussianFactorGraph add_priors(double sigma) const;
};
/* ************************************************************************* */
template<class VARIABLEINDEXSTORAGE>
class GaussianVariableIndex : public VariableIndex<VARIABLEINDEXSTORAGE> {
public:
typedef VariableIndex<VARIABLEINDEXSTORAGE> Base;
typedef typename VARIABLEINDEXSTORAGE::template type_factory<size_t>::type storage_type;
storage_type dims_;
public:
typedef boost::shared_ptr<GaussianVariableIndex> shared_ptr;
/** Construct an empty GaussianVariableIndex */
GaussianVariableIndex() {}
/**
* Constructor from a GaussianFactorGraph, lets the base class build the
* column-wise index then fills the dims_ array.
*/
GaussianVariableIndex(const GaussianFactorGraph& factorGraph);
/**
* Constructor to "upgrade" from the base class without recomputing the
* column index, i.e. just fills the dims_ array.
*/
GaussianVariableIndex(const VariableIndex<VARIABLEINDEXSTORAGE>& variableIndex, const GaussianFactorGraph& factorGraph);
/**
* Another constructor to upgrade from the base class using an existing
* array of variable dimensions.
*/
GaussianVariableIndex(const VariableIndex<VARIABLEINDEXSTORAGE>& variableIndex, const storage_type& dimensions);
const storage_type& dims() const { return dims_; }
size_t dim(Index variable) const { Base::checkVar(variable); return dims_[variable]; }
/** Permute */
void permute(const Permutation& permutation);
/** Augment this variable index with the contents of another one */
void augment(const GaussianFactorGraph& factorGraph);
protected:
GaussianVariableIndex(size_t nVars) : Base(nVars), dims_(nVars) {}
void fillDims(const GaussianFactorGraph& factorGraph);
};
/* ************************************************************************* */
template<class STORAGE>
GaussianVariableIndex<STORAGE>::GaussianVariableIndex(const GaussianFactorGraph& factorGraph) :
Base(factorGraph), dims_(Base::index_.size()) {
fillDims(factorGraph); }
/* ************************************************************************* */
template<class STORAGE>
GaussianVariableIndex<STORAGE>::GaussianVariableIndex(
const VariableIndex<STORAGE>& variableIndex, const GaussianFactorGraph& factorGraph) :
Base(variableIndex), dims_(Base::index_.size()) {
fillDims(factorGraph); }
/* ************************************************************************* */
template<class STORAGE>
GaussianVariableIndex<STORAGE>::GaussianVariableIndex(
const VariableIndex<STORAGE>& variableIndex, const storage_type& dimensions) :
Base(variableIndex), dims_(dimensions) {
assert(Base::index_.size() == dims_.size()); }
/* ************************************************************************* */
template<class STORAGE>
void GaussianVariableIndex<STORAGE>::fillDims(const GaussianFactorGraph& factorGraph) {
// Store dimensions of each variable
assert(dims_.size() == Base::index_.size());
for(Index var=0; var<Base::index_.size(); ++var)
if(!Base::index_[var].empty()) {
size_t factorIndex = Base::operator [](var).front().factorIndex;
size_t variablePosition = Base::operator [](var).front().variablePosition;
boost::shared_ptr<const GaussianFactor> factor(factorGraph[factorIndex]);
dims_[var] = factor->getDim(factor->begin() + variablePosition);
} else
dims_[var] = 0;
}
/* ************************************************************************* */
template<class STORAGE>
void GaussianVariableIndex<STORAGE>::permute(const Permutation& permutation) {
VariableIndex<STORAGE>::permute(permutation);
storage_type original(this->dims_.size());
this->dims_.swap(original);
for(Index j=0; j<permutation.size(); ++j)
this->dims_[j] = original[permutation[j]];
}
/* ************************************************************************* */
template<class STORAGE>
void GaussianVariableIndex<STORAGE>::augment(const GaussianFactorGraph& factorGraph) {
Base::augment(factorGraph);
dims_.resize(Base::index_.size(), 0);
BOOST_FOREACH(boost::shared_ptr<const GaussianFactor> factor, factorGraph) {
for(GaussianFactor::const_iterator var=factor->begin(); var!=factor->end(); ++var) {
#ifndef NDEBUG
if(dims_[*var] != 0)
assert(dims_[*var] == factor->getDim(var));
#endif
if(dims_[*var] == 0)
dims_[*var] = factor->getDim(var);
}
}
}
} // namespace gtsam