233 lines
7.4 KiB
C++
233 lines
7.4 KiB
C++
/* ----------------------------------------------------------------------------
|
|
|
|
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
|
|
* Atlanta, Georgia 30332-0415
|
|
* All Rights Reserved
|
|
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
|
|
|
|
* See LICENSE for the license information
|
|
|
|
* -------------------------------------------------------------------------- */
|
|
|
|
/**
|
|
* @file TransformBtwRobotsUnaryFactor.h
|
|
* @brief Unary factor for determining transformation between given trajectories of two robots
|
|
* @author Vadim Indelman
|
|
**/
|
|
#pragma once
|
|
|
|
#include <gtsam/slam/BetweenFactor.h>
|
|
#include <gtsam/nonlinear/NonlinearFactor.h>
|
|
#include <gtsam/linear/GaussianFactor.h>
|
|
#include <gtsam/base/Testable.h>
|
|
#include <gtsam/base/Lie.h>
|
|
|
|
#include <ostream>
|
|
|
|
namespace gtsam {
|
|
|
|
/**
|
|
* A class for a measurement predicted by "between(config[key1],config[key2])"
|
|
* @tparam VALUE the Value type
|
|
* @ingroup slam
|
|
*/
|
|
template<class VALUE>
|
|
class TransformBtwRobotsUnaryFactor: public NonlinearFactor { // TODO why not NoiseModelFactorN ?
|
|
|
|
public:
|
|
|
|
typedef VALUE T;
|
|
|
|
private:
|
|
|
|
typedef TransformBtwRobotsUnaryFactor<VALUE> This;
|
|
typedef gtsam::NonlinearFactor Base;
|
|
|
|
gtsam::Key key_;
|
|
|
|
VALUE measured_; /** The measurement */
|
|
|
|
gtsam::Values valA_; // given values for robot A map\trajectory
|
|
gtsam::Values valB_; // given values for robot B map\trajectory
|
|
gtsam::Key keyA_; // key of robot A to which the measurement refers
|
|
gtsam::Key keyB_; // key of robot B to which the measurement refers
|
|
|
|
SharedGaussian model_;
|
|
|
|
/** concept check by type */
|
|
GTSAM_CONCEPT_LIE_TYPE(T)
|
|
GTSAM_CONCEPT_TESTABLE_TYPE(T)
|
|
|
|
public:
|
|
|
|
// shorthand for a smart pointer to a factor
|
|
typedef typename boost::shared_ptr<TransformBtwRobotsUnaryFactor> shared_ptr;
|
|
|
|
/** default constructor - only use for serialization */
|
|
TransformBtwRobotsUnaryFactor() {}
|
|
|
|
/** Constructor */
|
|
TransformBtwRobotsUnaryFactor(Key key, const VALUE& measured, Key keyA, Key keyB,
|
|
const gtsam::Values& valA, const gtsam::Values& valB,
|
|
const SharedGaussian& model) :
|
|
Base(KeyVector{key}), key_(key), measured_(measured), keyA_(keyA), keyB_(keyB),
|
|
model_(model){
|
|
|
|
setValAValB(valA, valB);
|
|
|
|
}
|
|
|
|
~TransformBtwRobotsUnaryFactor() override {}
|
|
|
|
|
|
/** Clone */
|
|
gtsam::NonlinearFactor::shared_ptr clone() const override { return boost::make_shared<This>(*this); }
|
|
|
|
|
|
/** implement functions needed for Testable */
|
|
|
|
/** print */
|
|
void print(const std::string& s, const KeyFormatter& keyFormatter = DefaultKeyFormatter) const override {
|
|
std::cout << s << "TransformBtwRobotsUnaryFactor("
|
|
<< keyFormatter(key_) << ")\n";
|
|
std::cout << "MR between factor keys: "
|
|
<< keyFormatter(keyA_) << ","
|
|
<< keyFormatter(keyB_) << "\n";
|
|
measured_.print(" measured: ");
|
|
model_->print(" noise model: ");
|
|
// Base::print(s, keyFormatter);
|
|
}
|
|
|
|
/** equals */
|
|
bool equals(const NonlinearFactor& f, double tol=1e-9) const override {
|
|
const This *t = dynamic_cast<const This*> (&f);
|
|
|
|
if(t && Base::equals(f))
|
|
return key_ == t->key_ && measured_.equals(t->measured_);
|
|
else
|
|
return false;
|
|
}
|
|
|
|
/** implement functions needed to derive from Factor */
|
|
|
|
/* ************************************************************************* */
|
|
void setValAValB(const gtsam::Values& valA, const gtsam::Values& valB){
|
|
if ( (!valA.exists(keyA_)) && (!valB.exists(keyA_)) && (!valA.exists(keyB_)) && (!valB.exists(keyB_)) )
|
|
throw("something is wrong!");
|
|
|
|
// TODO: make sure the two keys belong to different robots
|
|
|
|
if (valA.exists(keyA_)){
|
|
valA_ = valA;
|
|
valB_ = valB;
|
|
}
|
|
else {
|
|
valA_ = valB;
|
|
valB_ = valA;
|
|
}
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
double error(const gtsam::Values& x) const override {
|
|
return whitenedError(x).squaredNorm();
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
/**
|
|
* Linearize a non-linearFactorN to get a gtsam::GaussianFactor,
|
|
* \f$ Ax-b \approx h(x+\delta x)-z = h(x) + A \delta x - z \f$
|
|
* Hence \f$ b = z - h(x) = - \mathtt{error\_vector}(x) \f$
|
|
*/
|
|
/* This version of linearize recalculates the noise model each time */
|
|
boost::shared_ptr<gtsam::GaussianFactor> linearize(const gtsam::Values& x) const override {
|
|
// Only linearize if the factor is active
|
|
if (!this->active(x))
|
|
return boost::shared_ptr<gtsam::JacobianFactor>();
|
|
|
|
//std::cout<<"About to linearize"<<std::endl;
|
|
gtsam::Matrix A1;
|
|
std::vector<gtsam::Matrix> A(this->size());
|
|
gtsam::Vector b = -whitenedError(x, A);
|
|
A1 = A[0];
|
|
|
|
return gtsam::GaussianFactor::shared_ptr(
|
|
new gtsam::JacobianFactor(key_, A1, b, gtsam::noiseModel::Unit::Create(b.size())));
|
|
}
|
|
|
|
|
|
/* ************************************************************************* */
|
|
gtsam::Vector whitenedError(const gtsam::Values& x, OptionalMatrixVecType H = OptionalMatrixVecNone) const {
|
|
|
|
T orgA_T_currA = valA_.at<T>(keyA_);
|
|
T orgB_T_currB = valB_.at<T>(keyB_);
|
|
T orgA_T_orgB = x.at<T>(key_);
|
|
|
|
T currA_T_currB_pred;
|
|
if (H) {
|
|
Matrix H_compose, H_between1;
|
|
T orgA_T_currB = orgA_T_orgB.compose(orgB_T_currB, H_compose, boost::none);
|
|
currA_T_currB_pred = orgA_T_currA.between(orgA_T_currB, boost::none, H_between1);
|
|
(*H)[0] = H_compose * H_between1;
|
|
}
|
|
else {
|
|
T orgA_T_currB = orgA_T_orgB.compose(orgB_T_currB);
|
|
currA_T_currB_pred = orgA_T_currA.between(orgA_T_currB);
|
|
}
|
|
|
|
const T& currA_T_currB_msr = measured_;
|
|
Vector error = currA_T_currB_msr.localCoordinates(currA_T_currB_pred);
|
|
|
|
if (H)
|
|
model_->WhitenSystem(*H, error);
|
|
else
|
|
model_->whitenInPlace(error);
|
|
|
|
return error;
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
gtsam::Vector whitenedError(const gtsam::Values& x, std::vector<Matrix>& H) const {
|
|
return whitenedError(x, &H);
|
|
}
|
|
|
|
|
|
/* ************************************************************************* */
|
|
gtsam::Vector unwhitenedError(const gtsam::Values& x) const {
|
|
|
|
T orgA_T_currA = valA_.at<T>(keyA_);
|
|
T orgB_T_currB = valB_.at<T>(keyB_);
|
|
T orgA_T_orgB = x.at<T>(key_);
|
|
|
|
T orgA_T_currB = orgA_T_orgB.compose(orgB_T_currB);
|
|
T currA_T_currB_pred = orgA_T_currA.between(orgA_T_currB);
|
|
|
|
T currA_T_currB_msr = measured_;
|
|
return currA_T_currB_msr.localCoordinates(currA_T_currB_pred);
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
|
|
size_t dim() const override {
|
|
return model_->R().rows() + model_->R().cols();
|
|
}
|
|
|
|
private:
|
|
|
|
/** Serialization function */
|
|
friend class boost::serialization::access;
|
|
template<class ARCHIVE>
|
|
void serialize(ARCHIVE & ar, const unsigned int /*version*/) {
|
|
ar & boost::serialization::make_nvp("NonlinearFactor",
|
|
boost::serialization::base_object<Base>(*this));
|
|
//ar & BOOST_SERIALIZATION_NVP(measured_);
|
|
}
|
|
}; // \class TransformBtwRobotsUnaryFactor
|
|
|
|
/// traits
|
|
template<class VALUE>
|
|
struct traits<TransformBtwRobotsUnaryFactor<VALUE> > :
|
|
public Testable<TransformBtwRobotsUnaryFactor<VALUE> > {
|
|
};
|
|
|
|
} /// namespace gtsam
|