332 lines
12 KiB
C++
332 lines
12 KiB
C++
/**
|
|
* @file testBTransformBtwRobotsUnaryFactorEM.cpp
|
|
* @brief Unit test for the TransformBtwRobotsUnaryFactorEM
|
|
* @author Vadim Indelman
|
|
*/
|
|
|
|
#include <CppUnitLite/TestHarness.h>
|
|
|
|
|
|
#include <gtsam_unstable/slam/TransformBtwRobotsUnaryFactorEM.h>
|
|
#include <gtsam/geometry/Pose2.h>
|
|
#include <gtsam/nonlinear/Values.h>
|
|
#include <gtsam/base/numericalDerivative.h>
|
|
|
|
#include <gtsam/slam/BetweenFactor.h>
|
|
|
|
#include <gtsam/nonlinear/NonlinearOptimizer.h>
|
|
#include <gtsam/nonlinear/NonlinearFactorGraph.h>
|
|
#include <gtsam/nonlinear/GaussNewtonOptimizer.h>
|
|
|
|
#include <boost/bind/bind.hpp>
|
|
|
|
using namespace boost::placeholders;
|
|
using namespace std;
|
|
using namespace gtsam;
|
|
|
|
/* ************************************************************************* */
|
|
Vector predictionError(const Pose2& org1_T_org2, const gtsam::Key& key, const TransformBtwRobotsUnaryFactorEM<gtsam::Pose2>& factor){
|
|
gtsam::Values values;
|
|
values.insert(key, org1_T_org2);
|
|
return factor.whitenedError(values);
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
//Vector predictionError_standard(const Pose2& p1, const Pose2& p2, const gtsam::Key& keyA, const gtsam::Key& keyB, const BetweenFactor<gtsam::Pose2>& factor){
|
|
// gtsam::Values values;
|
|
// values.insert(keyA, p1);
|
|
// values.insert(keyB, p2);
|
|
// // Vector err = factor.whitenedError(values);
|
|
// // return err;
|
|
// return Vector::Expmap(factor.whitenedError(values));
|
|
//}
|
|
|
|
/* ************************************************************************* */
|
|
TEST( TransformBtwRobotsUnaryFactorEM, ConstructorAndEquals)
|
|
{
|
|
gtsam::Key key(0);
|
|
gtsam::Key keyA(1);
|
|
gtsam::Key keyB(2);
|
|
|
|
gtsam::Pose2 p1(10.0, 15.0, 0.1);
|
|
gtsam::Pose2 p2(15.0, 15.0, 0.3);
|
|
gtsam::Pose2 noise(0.5, 0.4, 0.01);
|
|
gtsam::Pose2 rel_pose_ideal = p1.between(p2);
|
|
gtsam::Pose2 rel_pose_msr = rel_pose_ideal.compose(noise);
|
|
|
|
SharedGaussian model_inlier(noiseModel::Diagonal::Sigmas(Vector3(0.5, 0.5, 0.05)));
|
|
SharedGaussian model_outlier(noiseModel::Diagonal::Sigmas(Vector3(5, 5, 1.0)));
|
|
|
|
double prior_outlier = 0.5;
|
|
double prior_inlier = 0.5;
|
|
|
|
gtsam::Values valA, valB;
|
|
valA.insert(keyA, p1);
|
|
valB.insert(keyB, p2);
|
|
|
|
// Constructor
|
|
TransformBtwRobotsUnaryFactorEM<gtsam::Pose2> g(key, rel_pose_msr, keyA, keyB, valA, valB,
|
|
model_inlier, model_outlier,prior_inlier, prior_outlier);
|
|
TransformBtwRobotsUnaryFactorEM<gtsam::Pose2> h(key, rel_pose_msr, keyA, keyB, valA, valB,
|
|
model_inlier, model_outlier,prior_inlier, prior_outlier);
|
|
|
|
// Equals
|
|
CHECK(assert_equal(g, h, 1e-5));
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST( TransformBtwRobotsUnaryFactorEM, unwhitenedError)
|
|
{
|
|
gtsam::Key key(0);
|
|
gtsam::Key keyA(1);
|
|
gtsam::Key keyB(2);
|
|
|
|
gtsam::Pose2 orgA_T_1(10.0, 15.0, 0.1);
|
|
gtsam::Pose2 orgB_T_2(15.0, 15.0, 0.3);
|
|
|
|
gtsam::Pose2 orgA_T_orgB(100.0, 45.0, 1.8);
|
|
|
|
gtsam::Pose2 orgA_T_2 = orgA_T_orgB.compose(orgB_T_2);
|
|
|
|
gtsam::Pose2 rel_pose_ideal = orgA_T_1.between(orgA_T_2);
|
|
gtsam::Pose2 rel_pose_msr = rel_pose_ideal;
|
|
|
|
SharedGaussian model_inlier(noiseModel::Diagonal::Sigmas(Vector3(0.5, 0.5, 0.05)));
|
|
SharedGaussian model_outlier(noiseModel::Diagonal::Sigmas(Vector3(5, 5, 1.0)));
|
|
|
|
double prior_outlier = 0.01;
|
|
double prior_inlier = 0.99;
|
|
|
|
gtsam::Values valA, valB;
|
|
valA.insert(keyA, orgA_T_1);
|
|
valB.insert(keyB, orgB_T_2);
|
|
|
|
// Constructor
|
|
TransformBtwRobotsUnaryFactorEM<gtsam::Pose2> g(key, rel_pose_msr, keyA, keyB, valA, valB,
|
|
model_inlier, model_outlier,prior_inlier, prior_outlier);
|
|
|
|
gtsam::Values values;
|
|
values.insert(key, orgA_T_orgB);
|
|
Vector err = g.unwhitenedError(values);
|
|
|
|
// Equals
|
|
CHECK(assert_equal(err, Z_3x1, 1e-5));
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST( TransformBtwRobotsUnaryFactorEM, unwhitenedError2)
|
|
{
|
|
gtsam::Key key(0);
|
|
gtsam::Key keyA(1);
|
|
gtsam::Key keyB(2);
|
|
|
|
gtsam::Pose2 orgA_T_currA(0.0, 0.0, 0.0);
|
|
gtsam::Pose2 orgB_T_currB(-10.0, 15.0, 0.1);
|
|
|
|
gtsam::Pose2 orgA_T_orgB(0.0, 0.0, 0.0);
|
|
|
|
gtsam::Pose2 orgA_T_currB = orgA_T_orgB.compose(orgB_T_currB);
|
|
|
|
gtsam::Pose2 rel_pose_ideal = orgA_T_currA.between(orgA_T_currB);
|
|
gtsam::Pose2 rel_pose_msr = rel_pose_ideal;
|
|
|
|
SharedGaussian model_inlier(noiseModel::Diagonal::Sigmas(Vector3(0.5, 0.5, 0.05)));
|
|
SharedGaussian model_outlier(noiseModel::Diagonal::Sigmas(Vector3(5, 5, 1.0)));
|
|
|
|
double prior_outlier = 0.01;
|
|
double prior_inlier = 0.99;
|
|
|
|
gtsam::Values valA, valB;
|
|
valA.insert(keyA, orgA_T_currA);
|
|
valB.insert(keyB, orgB_T_currB);
|
|
|
|
// Constructor
|
|
TransformBtwRobotsUnaryFactorEM<gtsam::Pose2> g(key, rel_pose_msr, keyA, keyB, valA, valB,
|
|
model_inlier, model_outlier,prior_inlier, prior_outlier);
|
|
|
|
gtsam::Values values;
|
|
values.insert(key, orgA_T_orgB);
|
|
Vector err = g.unwhitenedError(values);
|
|
|
|
// Equals
|
|
CHECK(assert_equal(err, Z_3x1, 1e-5));
|
|
}
|
|
|
|
/* ************************************************************************* */
|
|
TEST( TransformBtwRobotsUnaryFactorEM, Optimize)
|
|
{
|
|
gtsam::Key key(0);
|
|
gtsam::Key keyA(1);
|
|
gtsam::Key keyB(2);
|
|
|
|
gtsam::Pose2 orgA_T_currA(0.0, 0.0, 0.0);
|
|
gtsam::Pose2 orgB_T_currB(1.0, 2.0, 0.05);
|
|
|
|
gtsam::Pose2 orgA_T_orgB_tr(10.0, -15.0, 0.0);
|
|
gtsam::Pose2 orgA_T_currB_tr = orgA_T_orgB_tr.compose(orgB_T_currB);
|
|
gtsam::Pose2 currA_T_currB_tr = orgA_T_currA.between(orgA_T_currB_tr);
|
|
|
|
// some error in measurements
|
|
// gtsam::Pose2 currA_Tmsr_currB1 = currA_T_currB_tr.compose(gtsam::Pose2(0.1, 0.02, 0.01));
|
|
// gtsam::Pose2 currA_Tmsr_currB2 = currA_T_currB_tr.compose(gtsam::Pose2(-0.1, 0.02, 0.01));
|
|
// gtsam::Pose2 currA_Tmsr_currB3 = currA_T_currB_tr.compose(gtsam::Pose2(0.1, -0.02, 0.01));
|
|
// gtsam::Pose2 currA_Tmsr_currB4 = currA_T_currB_tr.compose(gtsam::Pose2(0.1, 0.02, -0.01));
|
|
|
|
// ideal measurements
|
|
gtsam::Pose2 currA_Tmsr_currB1 = currA_T_currB_tr.compose(gtsam::Pose2(0.0, 0.0, 0.0));
|
|
gtsam::Pose2 currA_Tmsr_currB2 = currA_Tmsr_currB1;
|
|
gtsam::Pose2 currA_Tmsr_currB3 = currA_Tmsr_currB1;
|
|
gtsam::Pose2 currA_Tmsr_currB4 = currA_Tmsr_currB1;
|
|
|
|
SharedGaussian model_inlier(noiseModel::Diagonal::Sigmas(Vector3(0.5, 0.5, 0.05)));
|
|
SharedGaussian model_outlier(noiseModel::Diagonal::Sigmas(Vector3(5, 5, 1.0)));
|
|
|
|
double prior_outlier = 0.01;
|
|
double prior_inlier = 0.99;
|
|
|
|
gtsam::Values valA, valB;
|
|
valA.insert(keyA, orgA_T_currA);
|
|
valB.insert(keyB, orgB_T_currB);
|
|
|
|
// Constructor
|
|
TransformBtwRobotsUnaryFactorEM<gtsam::Pose2> g1(key, currA_Tmsr_currB1, keyA, keyB, valA, valB,
|
|
model_inlier, model_outlier,prior_inlier, prior_outlier);
|
|
|
|
TransformBtwRobotsUnaryFactorEM<gtsam::Pose2> g2(key, currA_Tmsr_currB2, keyA, keyB, valA, valB,
|
|
model_inlier, model_outlier,prior_inlier, prior_outlier);
|
|
|
|
TransformBtwRobotsUnaryFactorEM<gtsam::Pose2> g3(key, currA_Tmsr_currB3, keyA, keyB, valA, valB,
|
|
model_inlier, model_outlier,prior_inlier, prior_outlier);
|
|
|
|
TransformBtwRobotsUnaryFactorEM<gtsam::Pose2> g4(key, currA_Tmsr_currB4, keyA, keyB, valA, valB,
|
|
model_inlier, model_outlier,prior_inlier, prior_outlier);
|
|
|
|
gtsam::Values values;
|
|
values.insert(key, gtsam::Pose2());
|
|
|
|
gtsam::NonlinearFactorGraph graph;
|
|
graph.push_back(g1);
|
|
graph.push_back(g2);
|
|
graph.push_back(g3);
|
|
graph.push_back(g4);
|
|
|
|
gtsam::GaussNewtonParams params;
|
|
gtsam::GaussNewtonOptimizer optimizer(graph, values, params);
|
|
gtsam::Values result = optimizer.optimize();
|
|
|
|
gtsam::Pose2 orgA_T_orgB_opt = result.at<gtsam::Pose2>(key);
|
|
|
|
CHECK(assert_equal(orgA_T_orgB_opt, orgA_T_orgB_tr, 1e-5));
|
|
}
|
|
|
|
|
|
/* ************************************************************************* */
|
|
TEST( TransformBtwRobotsUnaryFactorEM, Jacobian)
|
|
{
|
|
gtsam::Key key(0);
|
|
gtsam::Key keyA(1);
|
|
gtsam::Key keyB(2);
|
|
|
|
gtsam::Pose2 orgA_T_1(10.0, 15.0, 0.1);
|
|
gtsam::Pose2 orgB_T_2(15.0, 15.0, 0.3);
|
|
|
|
gtsam::Pose2 orgA_T_orgB(100.0, 45.0, 1.8);
|
|
|
|
gtsam::Pose2 orgA_T_2 = orgA_T_orgB.compose(orgB_T_2);
|
|
|
|
gtsam::Pose2 noise(0.5, 0.4, 0.01);
|
|
|
|
gtsam::Pose2 rel_pose_ideal = orgA_T_1.between(orgA_T_2);
|
|
gtsam::Pose2 rel_pose_msr = rel_pose_ideal.compose(noise);
|
|
|
|
SharedGaussian model_inlier(noiseModel::Diagonal::Sigmas(Vector3(0.5, 0.5, 0.05)));
|
|
SharedGaussian model_outlier(noiseModel::Diagonal::Sigmas(Vector3(5, 5, 1.0)));
|
|
|
|
double prior_outlier = 0.5;
|
|
double prior_inlier = 0.5;
|
|
|
|
gtsam::Values valA, valB;
|
|
valA.insert(keyA, orgA_T_1);
|
|
valB.insert(keyB, orgB_T_2);
|
|
|
|
// Constructor
|
|
TransformBtwRobotsUnaryFactorEM<gtsam::Pose2> g(key, rel_pose_msr, keyA, keyB, valA, valB,
|
|
model_inlier, model_outlier,prior_inlier, prior_outlier);
|
|
|
|
gtsam::Values values;
|
|
values.insert(key, orgA_T_orgB);
|
|
|
|
std::vector<gtsam::Matrix> H_actual(1);
|
|
Vector actual_err_wh = g.whitenedError(values, H_actual);
|
|
|
|
Matrix H1_actual = H_actual[0];
|
|
|
|
double stepsize = 1.0e-9;
|
|
Matrix H1_expected = gtsam::numericalDerivative11<Vector, Pose2>(boost::bind(&predictionError, _1, key, g), orgA_T_orgB, stepsize);
|
|
// CHECK( assert_equal(H1_expected, H1_actual, 1e-5));
|
|
}
|
|
/////* ************************************************************************** */
|
|
//TEST (TransformBtwRobotsUnaryFactorEM, jacobian ) {
|
|
//
|
|
// gtsam::Key keyA(1);
|
|
// gtsam::Key keyB(2);
|
|
//
|
|
// // Inlier test
|
|
// gtsam::Pose2 p1(10.0, 15.0, 0.1);
|
|
// gtsam::Pose2 p2(15.0, 15.0, 0.3);
|
|
// gtsam::Pose2 noise(0.5, 0.4, 0.01);
|
|
// gtsam::Pose2 rel_pose_ideal = p1.between(p2);
|
|
// gtsam::Pose2 rel_pose_msr = rel_pose_ideal.compose(noise);
|
|
//
|
|
// SharedGaussian model_inlier(noiseModel::Diagonal::Sigmas(gtsam::Vector3(0.5, 0.5, 0.05)));
|
|
// SharedGaussian model_outlier(noiseModel::Diagonal::Sigmas(gtsam::Vector3(50.0, 50.0, 10.0)));
|
|
//
|
|
// gtsam::Values values;
|
|
// values.insert(keyA, p1);
|
|
// values.insert(keyB, p2);
|
|
//
|
|
// double prior_outlier = 0.0;
|
|
// double prior_inlier = 1.0;
|
|
//
|
|
// TransformBtwRobotsUnaryFactorEM<gtsam::Pose2> f(keyA, keyB, rel_pose_msr, model_inlier, model_outlier,
|
|
// prior_inlier, prior_outlier);
|
|
//
|
|
// std::vector<gtsam::Matrix> H_actual(2);
|
|
// Vector actual_err_wh = f.whitenedError(values, H_actual);
|
|
//
|
|
// Matrix H1_actual = H_actual[0];
|
|
// Matrix H2_actual = H_actual[1];
|
|
//
|
|
// // compare to standard between factor
|
|
// BetweenFactor<gtsam::Pose2> h(keyA, keyB, rel_pose_msr, model_inlier );
|
|
// Vector actual_err_wh_stnd = h.whitenedError(values);
|
|
// Vector actual_err_wh_inlier = (Vector(3) << actual_err_wh[0], actual_err_wh[1], actual_err_wh[2]);
|
|
// CHECK( assert_equal(actual_err_wh_stnd, actual_err_wh_inlier, 1e-8));
|
|
// std::vector<gtsam::Matrix> H_actual_stnd_unwh(2);
|
|
// (void)h.unwhitenedError(values, H_actual_stnd_unwh);
|
|
// Matrix H1_actual_stnd_unwh = H_actual_stnd_unwh[0];
|
|
// Matrix H2_actual_stnd_unwh = H_actual_stnd_unwh[1];
|
|
// Matrix H1_actual_stnd = model_inlier->Whiten(H1_actual_stnd_unwh);
|
|
// Matrix H2_actual_stnd = model_inlier->Whiten(H2_actual_stnd_unwh);
|
|
//// CHECK( assert_equal(H1_actual_stnd, H1_actual, 1e-8));
|
|
//// CHECK( assert_equal(H2_actual_stnd, H2_actual, 1e-8));
|
|
//
|
|
// double stepsize = 1.0e-9;
|
|
// Matrix H1_expected = gtsam::numericalDerivative11<Vector, Pose2>(boost::bind(&predictionError, _1, p2, keyA, keyB, f), p1, stepsize);
|
|
// Matrix H2_expected = gtsam::numericalDerivative11<Vector, Pose2>(boost::bind(&predictionError, p1, _1, keyA, keyB, f), p2, stepsize);
|
|
//
|
|
//
|
|
// // try to check numerical derivatives of a standard between factor
|
|
// Matrix H1_expected_stnd = gtsam::numericalDerivative11<Vector, Pose2>(boost::bind(&predictionError_standard, _1, p2, keyA, keyB, h), p1, stepsize);
|
|
// CHECK( assert_equal(H1_expected_stnd, H1_actual_stnd, 1e-5));
|
|
//
|
|
//
|
|
// CHECK( assert_equal(H1_expected, H1_actual, 1e-8));
|
|
// CHECK( assert_equal(H2_expected, H2_actual, 1e-8));
|
|
//
|
|
//}
|
|
|
|
/* ************************************************************************* */
|
|
int main() { TestResult tr; return TestRegistry::runAllTests(tr);}
|
|
/* ************************************************************************* */
|