gtsam/gtsam_unstable/slam/tests/testPosePriorFactor.cpp

229 lines
8.6 KiB
C++

/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file testProjectionFactor.cpp
* @brief Unit tests for ProjectionFactor Class
* @author Frank Dellaert
* @date Nov 2009
*/
#include <gtsam_unstable/slam/PosePriorFactor.h>
#include <gtsam/inference/Symbol.h>
#include <gtsam/geometry/Pose3.h>
#include <gtsam/base/numericalDerivative.h>
#include <gtsam/base/TestableAssertions.h>
#include <boost/bind/bind.hpp>
#include <CppUnitLite/TestHarness.h>
using namespace boost::placeholders;
using namespace std;
using namespace gtsam;
typedef PosePriorFactor<Pose3> TestPosePriorFactor;
/// traits
namespace gtsam {
template<>
struct traits<TestPosePriorFactor> : public Testable<TestPosePriorFactor> {
};
}
/* ************************************************************************* */
TEST( PosePriorFactor, Constructor) {
Key poseKey(1);
Pose3 measurement(Rot3::RzRyRx(0.15, -0.30, 0.45), Point3(-5.0, 8.0, -11.0));
SharedNoiseModel model = noiseModel::Isotropic::Sigma(6, 0.25);
TestPosePriorFactor factor(poseKey, measurement, model);
}
/* ************************************************************************* */
TEST( PosePriorFactor, ConstructorWithTransform) {
Key poseKey(1);
Pose3 measurement(Rot3::RzRyRx(0.15, -0.30, 0.45), Point3(-5.0, 8.0, -11.0));
SharedNoiseModel model = noiseModel::Isotropic::Sigma(6, 0.25);
Pose3 body_P_sensor(Rot3::RzRyRx(-M_PI_2, 0.0, -M_PI_2), Point3(0.25, -0.10, 1.0));
TestPosePriorFactor factor(poseKey, measurement, model, body_P_sensor);
}
/* ************************************************************************* */
TEST( PosePriorFactor, Equals ) {
// Create two identical factors and make sure they're equal
Key poseKey(1);
Pose3 measurement(Rot3::RzRyRx(0.15, -0.30, 0.45), Point3(-5.0, 8.0, -11.0));
SharedNoiseModel model = noiseModel::Isotropic::Sigma(6, 0.25);
TestPosePriorFactor factor1(poseKey, measurement, model);
TestPosePriorFactor factor2(poseKey, measurement, model);
CHECK(assert_equal(factor1, factor2));
// Create a third, different factor and check for inequality
Pose3 measurement2(Rot3::RzRyRx(0.20, -0.30, 0.45), Point3(-5.0, 8.0, -11.0));
TestPosePriorFactor factor3(poseKey, measurement2, model);
CHECK(assert_inequal(factor1, factor3));
}
/* ************************************************************************* */
TEST( PosePriorFactor, EqualsWithTransform ) {
// Create two identical factors and make sure they're equal
Key poseKey(1);
Pose3 measurement(Rot3::RzRyRx(0.15, -0.30, 0.45), Point3(-5.0, 8.0, -11.0));
SharedNoiseModel model = noiseModel::Isotropic::Sigma(6, 0.25);
Pose3 body_P_sensor(Rot3::RzRyRx(-M_PI_2, 0.0, -M_PI_2), Point3(0.25, -0.10, 1.0));
TestPosePriorFactor factor1(poseKey, measurement, model, body_P_sensor);
TestPosePriorFactor factor2(poseKey, measurement, model, body_P_sensor);
CHECK(assert_equal(factor1, factor2));
// Create a third, different factor and check for inequality
Pose3 body_P_sensor2(Rot3::RzRyRx(-M_PI_2, 0.0, -M_PI_2), Point3(0.30, -0.10, 1.0));
TestPosePriorFactor factor3(poseKey, measurement, model, body_P_sensor2);
CHECK(assert_inequal(factor1, factor3));
}
/* ************************************************************************* */
TEST( PosePriorFactor, Error ) {
// Create the measurement and linearization point
Pose3 measurement(Rot3::RzRyRx(0.15, -0.30, 0.45), Point3(-5.0, 8.0, -11.0));
Pose3 pose(Rot3::RzRyRx(0.0, -0.15, 0.30), Point3(-4.0, 7.0, -10.0));
// The expected error
Vector expectedError(6);
// The solution depends on choice of Pose3 and Rot3 Expmap mode!
#if defined(GTSAM_ROT3_EXPMAP) || defined(GTSAM_USE_QUATERNIONS)
expectedError << -0.182948257976108,
0.13851858011118,
-0.157375974517456,
#if defined(GTSAM_POSE3_EXPMAP)
0.766913166076379,
-1.22976117053126,
0.949345561430261;
#else
0.740211734,
-1.19821028,
1.00815609;
#endif
#else
expectedError << -0.184137861505414,
0.139419283914526,
-0.158399296722242,
0.740211733817804,
-1.198210282560946,
1.008156093015192;
#endif
// Create a factor and calculate the error
Key poseKey(1);
SharedNoiseModel model = noiseModel::Isotropic::Sigma(6, 0.25);
TestPosePriorFactor factor(poseKey, measurement, model);
Vector actualError(factor.evaluateError(pose));
// Verify we get the expected error
CHECK(assert_equal(expectedError, actualError, 1e-8));
}
/* ************************************************************************* */
TEST( PosePriorFactor, ErrorWithTransform ) {
// Create the measurement and linearization point
Pose3 measurement(Rot3::RzRyRx(-M_PI_2+0.15, -0.30, -M_PI_2+0.45), Point3(-4.75, 7.90, -10.0));
Pose3 pose(Rot3::RzRyRx(0.0, -0.15, 0.30), Point3(-4.0, 7.0, -10.0));
Pose3 body_P_sensor(Rot3::RzRyRx(-M_PI_2, 0.0, -M_PI_2), Point3(0.25, -0.10, 1.0));
// The expected error
Vector expectedError(6);
// The solution depends on choice of Pose3 and Rot3 Expmap mode!
#if defined(GTSAM_ROT3_EXPMAP) || defined(GTSAM_USE_QUATERNIONS)
expectedError << -0.0224998729281528,
0.191947887288328,
0.273826035236257,
#if defined(GTSAM_POSE3_EXPMAP)
1.36483391560855,
-0.754590051075035,
0.585710674473659;
#else
1.49751986,
-0.549375791,
0.452761203;
#endif
#else
expectedError << -0.022712885347328,
0.193765110165872,
0.276418420819283,
1.497519863757366,
-0.549375791422721,
0.452761203187666;
#endif
// Create a factor and calculate the error
Key poseKey(1);
SharedNoiseModel model = noiseModel::Isotropic::Sigma(6, 0.25);
TestPosePriorFactor factor(poseKey, measurement, model, body_P_sensor);
Vector actualError(factor.evaluateError(pose));
// Verify we get the expected error
CHECK(assert_equal(expectedError, actualError, 1e-8));
}
/* ************************************************************************* */
TEST( PosePriorFactor, Jacobian ) {
// Create a factor
Key poseKey(1);
Pose3 measurement(Rot3::RzRyRx(0.15, -0.30, 0.45), Point3(-5.0, 8.0, -11.0));
SharedNoiseModel model = noiseModel::Isotropic::Sigma(6, 0.25);
TestPosePriorFactor factor(poseKey, measurement, model);
// Create a linearization point at the zero-error point
Pose3 pose(Rot3::RzRyRx(0.15, -0.30, 0.45), Point3(-5.0, 8.0, -11.0));
// Calculate numerical derivatives
Matrix expectedH1 = numericalDerivative11<Vector,Pose3>(boost::bind(&TestPosePriorFactor::evaluateError, &factor, _1, boost::none), pose);
// Use the factor to calculate the derivative
Matrix actualH1;
factor.evaluateError(pose, actualH1);
// Verify we get the expected error
CHECK(assert_equal(expectedH1, actualH1, 1e-5));
}
/* ************************************************************************* */
TEST( PosePriorFactor, JacobianWithTransform ) {
// Create a factor
Key poseKey(1);
Pose3 measurement(Rot3::RzRyRx(-M_PI_2+0.15, -0.30, -M_PI_2+0.45), Point3(-4.75, 7.90, -10.0));
SharedNoiseModel model = noiseModel::Isotropic::Sigma(6, 0.25);
Pose3 body_P_sensor(Rot3::RzRyRx(-M_PI_2, 0.0, -M_PI_2), Point3(0.25, -0.10, 1.0));
TestPosePriorFactor factor(poseKey, measurement, model, body_P_sensor);
// Create a linearization point at the zero-error point
Pose3 pose(Rot3::RzRyRx(-0.303202977317447, -0.143253159173011, 0.494633847678171),
Point3(-4.74767676, 7.67044942, -11.00985));
// Calculate numerical derivatives
Matrix expectedH1 = numericalDerivative11<Vector,Pose3>(boost::bind(&TestPosePriorFactor::evaluateError, &factor, _1, boost::none), pose);
// Use the factor to calculate the derivative
Matrix actualH1;
factor.evaluateError(pose, actualH1);
// Verify we get the expected error
CHECK(assert_equal(expectedH1, actualH1, 1e-5));
}
/* ************************************************************************* */
int main() { TestResult tr; return TestRegistry::runAllTests(tr); }
/* ************************************************************************* */