gtsam/gtsam/geometry/CalibratedCamera.cpp

114 lines
3.5 KiB
C++

/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file CalibratedCamera.cpp
* @brief Calibrated camera for which only pose is unknown
* @date Aug 17, 2009
* @author Frank Dellaert
*/
#include <gtsam/geometry/Pose2.h>
#include <gtsam/geometry/CalibratedCamera.h>
namespace gtsam {
/* ************************************************************************* */
CalibratedCamera::CalibratedCamera(const Pose3& pose) :
pose_(pose) {
}
/* ************************************************************************* */
CalibratedCamera::CalibratedCamera(const Vector &v) : pose_(Pose3::Expmap(v)) {}
/* ************************************************************************* */
Point2 CalibratedCamera::project_to_camera(const Point3& P,
boost::optional<Matrix&> H1) {
if (H1) {
double d = 1.0 / P.z(), d2 = d * d;
*H1 = Matrix_(2, 3,
d, 0.0, -P.x() * d2,
0.0, d, -P.y() * d2);
}
return Point2(P.x() / P.z(), P.y() / P.z());
}
/* ************************************************************************* */
Point3 CalibratedCamera::backproject_from_camera(const Point2& p, const double scale) {
return Point3(p.x() * scale, p.y() * scale, scale);
}
/* ************************************************************************* */
CalibratedCamera CalibratedCamera::level(const Pose2& pose2, double height) {
double st = sin(pose2.theta()), ct = cos(pose2.theta());
Point3 x(st, -ct, 0), y(0, 0, -1), z(ct, st, 0);
Rot3 wRc(x, y, z);
Point3 t(pose2.x(), pose2.y(), height);
Pose3 pose3(wRc, t);
return CalibratedCamera(pose3);
}
/* ************************************************************************* */
Point2 CalibratedCamera::project(const Point3& point,
boost::optional<Matrix&> H1,
boost::optional<Matrix&> H2) const {
#ifdef CALIBRATEDCAMERA_CHAIN_RULE
Point3 q = pose_.transform_to(point, H1, H2);
#else
Point3 q = pose_.transform_to(point);
#endif
Point2 intrinsic = project_to_camera(q);
// Check if point is in front of camera
if(q.z() <= 0)
throw CheiralityException();
if (H1 || H2) {
#ifdef CALIBRATEDCAMERA_CHAIN_RULE
// just implement chain rule
Matrix H;
project_to_camera(q,H);
if (H1) *H1 = H * (*H1);
if (H2) *H2 = H * (*H2);
#else
// optimized version, see CalibratedCamera.nb
const double z = q.z(), d = 1.0/z;
const double u = intrinsic.x(), v = intrinsic.y(), uv = u*v;
if (H1) *H1 = Matrix_(2,6,
uv,-(1.+u*u), v, -d , 0., d*u,
(1.+v*v), -uv,-u, 0.,-d , d*v
);
if (H2) {
const Matrix R(pose_.rotation().matrix());
*H2 = d * Matrix_(2,3,
R(0,0) - u*R(0,2), R(1,0) - u*R(1,2), R(2,0) - u*R(2,2),
R(0,1) - v*R(0,2), R(1,1) - v*R(1,2), R(2,1) - v*R(2,2)
);
}
#endif
}
return intrinsic;
}
/* ************************************************************************* */
CalibratedCamera CalibratedCamera::retract(const Vector& d) const {
return CalibratedCamera(pose().retract(d)) ;
}
/* ************************************************************************* */
Vector CalibratedCamera::localCoordinates(const CalibratedCamera& T2) const {
return pose().localCoordinates(T2.pose()) ;
}
/* ************************************************************************* */
}