/* ---------------------------------------------------------------------------- * GTSAM Copyright 2010, Georgia Tech Research Corporation, * Atlanta, Georgia 30332-0415 * All Rights Reserved * Authors: Frank Dellaert, et al. (see THANKS for the full author list) * See LICENSE for the license information * -------------------------------------------------------------------------- */ /** * @file CalibratedCamera.cpp * @brief Calibrated camera for which only pose is unknown * @date Aug 17, 2009 * @author Frank Dellaert */ #include #include namespace gtsam { /* ************************************************************************* */ CalibratedCamera::CalibratedCamera(const Pose3& pose) : pose_(pose) { } /* ************************************************************************* */ CalibratedCamera::CalibratedCamera(const Vector &v) : pose_(Pose3::Expmap(v)) {} /* ************************************************************************* */ Point2 CalibratedCamera::project_to_camera(const Point3& P, boost::optional H1) { if (H1) { double d = 1.0 / P.z(), d2 = d * d; *H1 = Matrix_(2, 3, d, 0.0, -P.x() * d2, 0.0, d, -P.y() * d2); } return Point2(P.x() / P.z(), P.y() / P.z()); } /* ************************************************************************* */ Point3 CalibratedCamera::backproject_from_camera(const Point2& p, const double scale) { return Point3(p.x() * scale, p.y() * scale, scale); } /* ************************************************************************* */ CalibratedCamera CalibratedCamera::level(const Pose2& pose2, double height) { double st = sin(pose2.theta()), ct = cos(pose2.theta()); Point3 x(st, -ct, 0), y(0, 0, -1), z(ct, st, 0); Rot3 wRc(x, y, z); Point3 t(pose2.x(), pose2.y(), height); Pose3 pose3(wRc, t); return CalibratedCamera(pose3); } /* ************************************************************************* */ Point2 CalibratedCamera::project(const Point3& point, boost::optional H1, boost::optional H2) const { #ifdef CALIBRATEDCAMERA_CHAIN_RULE Point3 q = pose_.transform_to(point, H1, H2); #else Point3 q = pose_.transform_to(point); #endif Point2 intrinsic = project_to_camera(q); // Check if point is in front of camera if(q.z() <= 0) throw CheiralityException(); if (H1 || H2) { #ifdef CALIBRATEDCAMERA_CHAIN_RULE // just implement chain rule Matrix H; project_to_camera(q,H); if (H1) *H1 = H * (*H1); if (H2) *H2 = H * (*H2); #else // optimized version, see CalibratedCamera.nb const double z = q.z(), d = 1.0/z; const double u = intrinsic.x(), v = intrinsic.y(), uv = u*v; if (H1) *H1 = Matrix_(2,6, uv,-(1.+u*u), v, -d , 0., d*u, (1.+v*v), -uv,-u, 0.,-d , d*v ); if (H2) { const Matrix R(pose_.rotation().matrix()); *H2 = d * Matrix_(2,3, R(0,0) - u*R(0,2), R(1,0) - u*R(1,2), R(2,0) - u*R(2,2), R(0,1) - v*R(0,2), R(1,1) - v*R(1,2), R(2,1) - v*R(2,2) ); } #endif } return intrinsic; } /* ************************************************************************* */ CalibratedCamera CalibratedCamera::retract(const Vector& d) const { return CalibratedCamera(pose().retract(d)) ; } /* ************************************************************************* */ Vector CalibratedCamera::localCoordinates(const CalibratedCamera& T2) const { return pose().localCoordinates(T2.pose()) ; } /* ************************************************************************* */ }