gtsam/gtsam_unstable/nonlinear/BatchFixedLagSmoother.cpp

440 lines
14 KiB
C++

/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file BatchFixedLagSmoother.cpp
* @brief An LM-based fixed-lag smoother.
*
* @author Michael Kaess, Stephen Williams
* @date Oct 14, 2012
*/
#include <gtsam_unstable/nonlinear/BatchFixedLagSmoother.h>
#include <gtsam/nonlinear/LinearContainerFactor.h>
#include <gtsam/linear/GaussianJunctionTree.h>
#include <gtsam/linear/GaussianFactorGraph.h>
#include <gtsam/linear/GaussianFactor.h>
using namespace std;
namespace gtsam {
/* ************************************************************************* */
void BatchFixedLagSmoother::print(const string& s,
const KeyFormatter& keyFormatter) const {
FixedLagSmoother::print(s, keyFormatter);
// TODO: What else to print?
}
/* ************************************************************************* */
bool BatchFixedLagSmoother::equals(const FixedLagSmoother& rhs,
double tol) const {
const BatchFixedLagSmoother* e =
dynamic_cast<const BatchFixedLagSmoother*>(&rhs);
return e != nullptr && FixedLagSmoother::equals(*e, tol)
&& factors_.equals(e->factors_, tol) && theta_.equals(e->theta_, tol);
}
/* ************************************************************************* */
Matrix BatchFixedLagSmoother::marginalCovariance(Key key) const {
throw runtime_error(
"BatchFixedLagSmoother::marginalCovariance not implemented");
}
/* ************************************************************************* */
FixedLagSmoother::Result BatchFixedLagSmoother::update(
const NonlinearFactorGraph& newFactors, const Values& newTheta,
const KeyTimestampMap& timestamps, const FactorIndices& factorsToRemove) {
// Update all of the internal variables with the new information
gttic(augment_system);
// Add the new variables to theta
theta_.insert(newTheta);
// Add new variables to the end of the ordering
for (const auto key_value : newTheta) {
ordering_.push_back(key_value.key);
}
// Augment Delta
delta_.insert(newTheta.zeroVectors());
// Add the new factors to the graph, updating the variable index
insertFactors(newFactors);
gttoc(augment_system);
// remove factors in factorToRemove
for(const size_t i : factorsToRemove){
if(factors_[i])
factors_[i].reset();
}
// Update the Timestamps associated with the factor keys
updateKeyTimestampMap(timestamps);
// Get current timestamp
double current_timestamp = getCurrentTimestamp();
// Find the set of variables to be marginalized out
KeyVector marginalizableKeys = findKeysBefore(
current_timestamp - smootherLag_);
// Reorder
gttic(reorder);
reorder(marginalizableKeys);
gttoc(reorder);
// Optimize
gttic(optimize);
Result result;
if (factors_.size() > 0) {
result = optimize();
}
gttoc(optimize);
// Marginalize out old variables.
gttic(marginalize);
if (marginalizableKeys.size() > 0) {
marginalize(marginalizableKeys);
}
gttoc(marginalize);
return result;
}
/* ************************************************************************* */
void BatchFixedLagSmoother::insertFactors(
const NonlinearFactorGraph& newFactors) {
for(const auto& factor: newFactors) {
Key index;
// Insert the factor into an existing hole in the factor graph, if possible
if (availableSlots_.size() > 0) {
index = availableSlots_.front();
availableSlots_.pop();
factors_.replace(index, factor);
} else {
index = factors_.size();
factors_.push_back(factor);
}
// Update the FactorIndex
for(Key key: *factor) {
factorIndex_[key].insert(index);
}
}
}
/* ************************************************************************* */
void BatchFixedLagSmoother::removeFactors(
const set<size_t>& deleteFactors) {
for(size_t slot: deleteFactors) {
if (factors_.at(slot)) {
// Remove references to this factor from the FactorIndex
for(Key key: *(factors_.at(slot))) {
factorIndex_[key].erase(slot);
}
// Remove the factor from the factor graph
factors_.remove(slot);
// Add the factor's old slot to the list of available slots
availableSlots_.push(slot);
} else {
// TODO: Throw an error??
cout << "Attempting to remove a factor from slot " << slot
<< ", but it is already nullptr." << endl;
}
}
}
/* ************************************************************************* */
void BatchFixedLagSmoother::eraseKeys(const KeyVector& keys) {
for(Key key: keys) {
// Erase the key from the values
theta_.erase(key);
// Erase the key from the factor index
factorIndex_.erase(key);
// Erase the key from the set of linearized keys
if (linearKeys_.exists(key)) {
linearKeys_.erase(key);
}
}
eraseKeyTimestampMap(keys);
// Remove marginalized keys from the ordering and delta
for(Key key: keys) {
ordering_.erase(find(ordering_.begin(), ordering_.end(), key));
delta_.erase(key);
}
}
/* ************************************************************************* */
void BatchFixedLagSmoother::reorder(const KeyVector& marginalizeKeys) {
// COLAMD groups will be used to place marginalize keys in Group 0, and everything else in Group 1
ordering_ = Ordering::ColamdConstrainedFirst(factors_, marginalizeKeys);
}
/* ************************************************************************* */
FixedLagSmoother::Result BatchFixedLagSmoother::optimize() {
// Create output result structure
Result result;
result.nonlinearVariables = theta_.size() - linearKeys_.size();
result.linearVariables = linearKeys_.size();
// Set optimization parameters
double lambda = parameters_.lambdaInitial;
double lambdaFactor = parameters_.lambdaFactor;
double lambdaUpperBound = parameters_.lambdaUpperBound;
double lambdaLowerBound = 1.0e-10;
size_t maxIterations = parameters_.maxIterations;
double relativeErrorTol = parameters_.relativeErrorTol;
double absoluteErrorTol = parameters_.absoluteErrorTol;
double errorTol = parameters_.errorTol;
// Create a Values that holds the current evaluation point
Values evalpoint = theta_.retract(delta_);
result.error = factors_.error(evalpoint);
// check if we're already close enough
if (result.error <= errorTol) {
return result;
}
// Use a custom optimization loop so the linearization points can be controlled
double previousError;
VectorValues newDelta;
do {
previousError = result.error;
// Do next iteration
gttic(optimizer_iteration);
{
// Linearize graph around the linearization point
GaussianFactorGraph linearFactorGraph = *factors_.linearize(theta_);
// Keep increasing lambda until we make make progress
while (true) {
// Add prior factors at the current solution
gttic(damp);
GaussianFactorGraph dampedFactorGraph(linearFactorGraph);
dampedFactorGraph.reserve(linearFactorGraph.size() + delta_.size());
{
// for each of the variables, add a prior at the current solution
double sigma = 1.0 / sqrt(lambda);
for(const auto& key_value: delta_) {
size_t dim = key_value.second.size();
Matrix A = Matrix::Identity(dim, dim);
Vector b = key_value.second;
SharedDiagonal model = noiseModel::Isotropic::Sigma(dim, sigma);
GaussianFactor::shared_ptr prior(
new JacobianFactor(key_value.first, A, b, model));
dampedFactorGraph.push_back(prior);
}
}
gttoc(damp);
result.intermediateSteps++;
gttic(solve);
// Solve Damped Gaussian Factor Graph
newDelta = dampedFactorGraph.optimize(ordering_,
parameters_.getEliminationFunction());
// update the evalpoint with the new delta
evalpoint = theta_.retract(newDelta);
gttoc(solve);
// Evaluate the new error
gttic(compute_error);
double error = factors_.error(evalpoint);
gttoc(compute_error);
if (error < result.error) {
// Keep this change
// Update the error value
result.error = error;
// Update the linearization point
theta_ = evalpoint;
// Reset the deltas to zeros
delta_.setZero();
// Put the linearization points and deltas back for specific variables
if (enforceConsistency_ && (linearKeys_.size() > 0)) {
theta_.update(linearKeys_);
for(const auto key_value: linearKeys_) {
delta_.at(key_value.key) = newDelta.at(key_value.key);
}
}
// Decrease lambda for next time
lambda /= lambdaFactor;
if (lambda < lambdaLowerBound) {
lambda = lambdaLowerBound;
}
// End this lambda search iteration
break;
} else {
// Reject this change
if (lambda >= lambdaUpperBound) {
// The maximum lambda has been used. Print a warning and end the search.
cout
<< "Warning: Levenberg-Marquardt giving up because cannot decrease error with maximum lambda"
<< endl;
break;
} else {
// Increase lambda and continue searching
lambda *= lambdaFactor;
}
}
} // end while
}
gttoc(optimizer_iteration);
result.iterations++;
} while (result.iterations < maxIterations
&& !checkConvergence(relativeErrorTol, absoluteErrorTol, errorTol,
previousError, result.error, NonlinearOptimizerParams::SILENT));
return result;
}
/* ************************************************************************* */
void BatchFixedLagSmoother::marginalize(const KeyVector& marginalizeKeys) {
// In order to marginalize out the selected variables, the factors involved in those variables
// must be identified and removed. Also, the effect of those removed factors on the
// remaining variables needs to be accounted for. This will be done with linear container factors
// from the result of a partial elimination. This function removes the marginalized factors and
// adds the linearized factors back in.
// Identify all of the factors involving any marginalized variable. These must be removed.
set<size_t> removedFactorSlots;
const VariableIndex variableIndex(factors_);
for(Key key: marginalizeKeys) {
const auto& slots = variableIndex[key];
removedFactorSlots.insert(slots.begin(), slots.end());
}
// Add the removed factors to a factor graph
NonlinearFactorGraph removedFactors;
for(size_t slot: removedFactorSlots) {
if (factors_.at(slot)) {
removedFactors.push_back(factors_.at(slot));
}
}
// Calculate marginal factors on the remaining keys
NonlinearFactorGraph marginalFactors = CalculateMarginalFactors(
removedFactors, theta_, marginalizeKeys, parameters_.getEliminationFunction());
// Remove marginalized factors from the factor graph
removeFactors(removedFactorSlots);
// Remove marginalized keys from the system
eraseKeys(marginalizeKeys);
// Insert the new marginal factors
insertFactors(marginalFactors);
}
/* ************************************************************************* */
void BatchFixedLagSmoother::PrintKeySet(const set<Key>& keys,
const string& label) {
cout << label;
for(Key key: keys) {
cout << " " << DefaultKeyFormatter(key);
}
cout << endl;
}
/* ************************************************************************* */
void BatchFixedLagSmoother::PrintKeySet(const KeySet& keys,
const string& label) {
cout << label;
for(Key key: keys) {
cout << " " << DefaultKeyFormatter(key);
}
cout << endl;
}
/* ************************************************************************* */
void BatchFixedLagSmoother::PrintSymbolicFactor(
const NonlinearFactor::shared_ptr& factor) {
cout << "f(";
if (factor) {
for(Key key: factor->keys()) {
cout << " " << DefaultKeyFormatter(key);
}
} else {
cout << " nullptr";
}
cout << " )" << endl;
}
/* ************************************************************************* */
void BatchFixedLagSmoother::PrintSymbolicFactor(
const GaussianFactor::shared_ptr& factor) {
cout << "f(";
for(Key key: factor->keys()) {
cout << " " << DefaultKeyFormatter(key);
}
cout << " )" << endl;
}
/* ************************************************************************* */
void BatchFixedLagSmoother::PrintSymbolicGraph(
const NonlinearFactorGraph& graph, const string& label) {
cout << label << endl;
for(const auto& factor: graph) {
PrintSymbolicFactor(factor);
}
}
/* ************************************************************************* */
void BatchFixedLagSmoother::PrintSymbolicGraph(const GaussianFactorGraph& graph,
const string& label) {
cout << label << endl;
for(const auto& factor: graph) {
PrintSymbolicFactor(factor);
}
}
/* ************************************************************************* */
GaussianFactorGraph BatchFixedLagSmoother::CalculateMarginalFactors(
const GaussianFactorGraph& graph, const KeyVector& keys,
const GaussianFactorGraph::Eliminate& eliminateFunction) {
if (keys.size() == 0) {
// There are no keys to marginalize. Simply return the input factors
return graph;
} else {
// .first is the eliminated Bayes tree, while .second is the remaining factor graph
return *graph.eliminatePartialMultifrontal(keys, eliminateFunction).second;
}
}
/* ************************************************************************* */
NonlinearFactorGraph BatchFixedLagSmoother::CalculateMarginalFactors(
const NonlinearFactorGraph& graph, const Values& theta, const KeyVector& keys,
const GaussianFactorGraph::Eliminate& eliminateFunction) {
if (keys.size() == 0) {
// There are no keys to marginalize. Simply return the input factors
return graph;
} else {
// Create the linear factor graph
const auto linearFactorGraph = graph.linearize(theta);
const auto marginalLinearFactors =
CalculateMarginalFactors(*linearFactorGraph, keys, eliminateFunction);
// Wrap in nonlinear container factors
return LinearContainerFactor::ConvertLinearGraph(marginalLinearFactors, theta);
}
}
/* ************************************************************************* */
} /// namespace gtsam