gtsam/gtsam_unstable/slam/AHRS.cpp

245 lines
7.6 KiB
C++

/*
* @file AHRS.cpp
* @brief Attitude and Heading Reference System implementation
* Created on: Jan 26, 2012
* Author: cbeall3
*/
#include "AHRS.h"
#include <cmath>
using namespace std;
namespace gtsam {
Matrix cov(const Matrix& m) {
const double num_observations = m.cols();
const Vector mean = m.rowwise().sum() / num_observations;
Matrix D = m.colwise() - mean;
Matrix DDt = D * trans(D);
return DDt / (num_observations - 1);
}
Matrix I3 = eye(3);
Matrix Z3 = zeros(3, 3);
/* ************************************************************************* */
AHRS::AHRS(const Matrix& stationaryU, const Matrix& stationaryF, double g_e) :
KF_(9) {
// Initial state
mech0_ = Mechanization_bRn2::initialize(stationaryU, stationaryF, g_e);
size_t T = stationaryU.cols();
// estimate standard deviation on gyroscope readings
Pg_ = cov(stationaryU);
Vector sigmas_v_g = esqrt(Pg_.diagonal() * T);
// estimate standard deviation on accelerometer readings
Pa_ = cov(stationaryF);
// Quantities needed for integration
// dynamics, Chris' email September 23, 2011 3:38:05 PM EDT
double tau_g = 730; // correlation time for gyroscope
double tau_a = 730; // correlation time for accelerometer
F_g_ = -I3 / tau_g;
F_a_ = -I3 / tau_a;
Vector var_omega_w = 0 * ones(3); // TODO
Vector var_omega_g = (0.0034 * 0.0034) * ones(3);
Vector var_omega_a = (0.034 * 0.034) * ones(3);
Vector sigmas_v_g_sq = emul(sigmas_v_g, sigmas_v_g);
Vector vars = concatVectors(4, &var_omega_w, &var_omega_g, &sigmas_v_g_sq,
&var_omega_a);
var_w_ = diag(vars);
// Quantities needed for aiding
sigmas_v_a_ = esqrt(T * Pa_.diagonal());
// gravity in nav frame
n_g_ = Vector_(3, 0.0, 0.0, g_e);
n_g_cross_ = skewSymmetric(n_g_); // nav frame has Z down !!!
}
/* ************************************************************************* */
std::pair<Mechanization_bRn2, KalmanFilter::State> AHRS::initialize(double g_e) {
// Calculate Omega_T, formula 2.80 in Farrell08book
double cp = cos(mech0_.bRn().inverse().pitch());
double sp = sin(mech0_.bRn().inverse().pitch());
double cy = cos(0);
double sy = sin(0);
Matrix Omega_T = Matrix_(3, 3, cy * cp, -sy, 0.0, sy * cp, cy, 0.0, -sp, 0.0, 1.0);
// Calculate Jacobian of roll/pitch/yaw wrpt (g1,g2,g3), see doc/ypr.nb
Vector b_g = mech0_.b_g(g_e);
double g1 = b_g(0);
double g2 = b_g(1);
double g3 = b_g(2);
double g23 = g2 * g2 + g3 * g3;
double g123 = g1 * g1 + g23;
double f = 1 / (sqrt(g23) * g123);
Matrix H_g = Matrix_(3, 3,
0.0, g3 / g23, -(g2 / g23), // roll
sqrt(g23) / g123, -f * (g1 * g2), -f * (g1 * g3), // pitch
0.0, 0.0, 0.0); // we don't know anything on yaw
// Calculate the initial covariance matrix for the error state dx, Farrell08book eq. 10.66
Matrix Pa = 0.025 * 0.025 * eye(3);
Matrix P11 = Omega_T * (H_g * (Pa + Pa_) * trans(H_g)) * trans(Omega_T);
P11(2, 2) = 0.0001;
Matrix P12 = -Omega_T * H_g * Pa;
Matrix P_plus_k2 = Matrix(9, 9);
P_plus_k2.block(0, 0, 3, 3) = P11;
P_plus_k2.block(0, 3, 3, 3) = Z3;
P_plus_k2.block(0, 6, 3, 3) = P12;
P_plus_k2.block(3, 0, 3, 3) = Z3;
P_plus_k2.block(3, 3, 3, 3) = Pg_;
P_plus_k2.block(3, 6, 3, 3) = Z3;
P_plus_k2.block(6, 0, 3, 3) = trans(P12);
P_plus_k2.block(6, 3, 3, 3) = Z3;
P_plus_k2.block(6, 6, 3, 3) = Pa;
Vector dx = zero(9);
KalmanFilter::State state = KF_.init(dx, P_plus_k2);
return std::make_pair(mech0_, state);
}
/* ************************************************************************* */
std::pair<Mechanization_bRn2, KalmanFilter::State> AHRS::integrate(
const Mechanization_bRn2& mech, KalmanFilter::State state,
const Vector& u, double dt) {
// Integrate full state
Mechanization_bRn2 newMech = mech.integrate(u, dt);
// Integrate error state Kalman filter
// FIXME:
//if nargout>1
Matrix bRn = mech.bRn().matrix();
Matrix I3 = eye(3);
Matrix Z3 = zeros(3, 3);
Matrix F_k = zeros(9, 9);
F_k.block(0, 3, 3, 3) = -bRn;
F_k.block(3, 3, 3, 3) = F_g_;
F_k.block(6, 6, 3, 3) = F_a_;
Matrix G_k = zeros(9, 12);
G_k.block(0, 0, 3, 3) = -bRn;
G_k.block(0, 6, 3, 3) = -bRn;
G_k.block(3, 3, 3, 3) = I3;
G_k.block(6, 9, 3, 3) = I3;
Matrix Q_k = G_k * var_w_ * trans(G_k);
Matrix Psi_k = eye(9) + dt * F_k; // +dt*dt*F_k*F_k/2; // transition matrix
Matrix B = zeros(9, 9);
Vector u2 = zero(9);
KalmanFilter::State newState = KF_.predictQ(state, Psi_k,B,u2,dt*Q_k);
return make_pair(newMech, newState);
}
/* ************************************************************************* */
std::pair<Mechanization_bRn2, KalmanFilter::State> AHRS::aid(
const Mechanization_bRn2& mech, KalmanFilter::State state,
const Vector& f, bool Farrell) {
Matrix bRn = mech.bRn().matrix();
// get gravity in body from accelerometer
Vector measured_b_g = mech.x_a() - f;
Matrix R, H;
Vector z;
if (Farrell) {
// calculate residual gravity measurement
z = n_g_ - trans(bRn) * measured_b_g;
H = collect(3, &n_g_cross_, &Z3, &bRn);
R = trans(bRn) * diag(emul(sigmas_v_a_, sigmas_v_a_)) * bRn;
} else {
// my measurement prediction (in body frame):
// F(:,k) = bias - b_g
// F(:,k) = mech.x_a + dx_a - bRn*n_g;
// F(:,k) = mech.x_a + dx_a - bRn*(I+P)*n_g;
// F(:,k) = mech.x_a + dx_a - b_g - bRn*(rho x n_g); // P = [rho]_x
// b_g - (mech.x_a - F(:,k)) = dx_a + bRn*(n_g x rho);
z = bRn * n_g_ - measured_b_g;
Matrix b_g = bRn * n_g_cross_;
H = collect(3, &b_g, &Z3, &I3);
R = diag(emul(sigmas_v_a_, sigmas_v_a_));
}
// update the Kalman filter
KalmanFilter::State updatedState = KF_.updateQ(state, H, z, R);
// update full state (rotation and accelerometer bias)
Mechanization_bRn2 newMech = mech.correct(updatedState->mean());
// reset KF state
Vector dx = zeros(9, 1);
updatedState = KF_.init(dx, updatedState->covariance());
return make_pair(newMech, updatedState);
}
/* ************************************************************************* */
std::pair<Mechanization_bRn2, KalmanFilter::State> AHRS::aidGeneral(
const Mechanization_bRn2& mech, KalmanFilter::State state,
const Vector& f, const Vector& f_previous,
const Rot3& R_previous) {
Matrix increment = R_previous.between(mech.bRn()).matrix();
// expected - measured
Vector z = f - increment * f_previous;
//Vector z = increment * f_previous - f;
Matrix b_g = skewSymmetric(increment* f_previous);
Matrix H = collect(3, &b_g, &I3, &Z3);
// Matrix R = diag(emul(sigmas_v_a_, sigmas_v_a_));
// Matrix R = diag(Vector_(3, 1.0, 0.2, 1.0)); // good for L_twice
Matrix R = diag(Vector_(3, 0.01, 0.0001, 0.01));
// update the Kalman filter
KalmanFilter::State updatedState = KF_.updateQ(state, H, z, R);
// update full state (rotation and gyro bias)
Mechanization_bRn2 newMech = mech.correct(updatedState->mean());
// reset KF state
Vector dx = zeros(9, 1);
updatedState = KF_.init(dx, updatedState->covariance());
return make_pair(newMech, updatedState);
}
/* ************************************************************************* */
void AHRS::print(const std::string& s) const {
mech0_.print(s + ".mech0_");
gtsam::print(F_g_, s + ".F_g");
gtsam::print(F_a_, s + ".F_a");
gtsam::print(var_w_, s + ".var_w");
gtsam::print(sigmas_v_a_, s + ".sigmas_v_a");
gtsam::print(n_g_, s + ".n_g");
gtsam::print(n_g_cross_, s + ".n_g_cross");
gtsam::print(Pg_, s + ".P_g");
gtsam::print(Pa_, s + ".P_a");
}
/* ************************************************************************* */
AHRS::~AHRS() {
}
/* ************************************************************************* */
} /* namespace gtsam */