int -> size_t
parent
5ef8c0ae1a
commit
f75e41be0e
|
@ -232,7 +232,7 @@ Matrix Chebyshev2::IntegrationMatrix(size_t N) {
|
|||
Eigen::JacobiSVD<Matrix> svd(D, Eigen::ComputeThinU | Eigen::ComputeThinV);
|
||||
const auto& S = svd.singularValues();
|
||||
Matrix invS = Matrix::Zero(N, N);
|
||||
for (int i = 0; i < N - 1; ++i) invS(i, i) = 1.0 / S(i);
|
||||
for (size_t i = 0; i < N - 1; ++i) invS(i, i) = 1.0 / S(i);
|
||||
Matrix P = svd.matrixV() * invS * svd.matrixU().transpose();
|
||||
|
||||
// Return a version of P that makes sure (P*f)(0) = 0.
|
||||
|
|
|
@ -32,7 +32,7 @@ using namespace gtsam;
|
|||
|
||||
//******************************************************************************
|
||||
TEST(Chebyshev2, Point) {
|
||||
static const int N = 5;
|
||||
static const size_t N = 5;
|
||||
auto points = Chebyshev2::Points(N);
|
||||
Vector expected(N);
|
||||
expected << -1., -sqrt(2.) / 2., 0., sqrt(2.) / 2., 1.;
|
||||
|
@ -50,7 +50,7 @@ TEST(Chebyshev2, Point) {
|
|||
|
||||
//******************************************************************************
|
||||
TEST(Chebyshev2, PointInInterval) {
|
||||
static const int N = 5;
|
||||
static const size_t N = 5;
|
||||
auto points = Chebyshev2::Points(N, 0, 20);
|
||||
Vector expected(N);
|
||||
expected << 0., 1. - sqrt(2.) / 2., 1., 1. + sqrt(2.) / 2., 2.;
|
||||
|
@ -470,7 +470,7 @@ TEST(Chebyshev2, ComponentDerivativeFunctor) {
|
|||
|
||||
//******************************************************************************
|
||||
TEST(Chebyshev2, IntegrationMatrix) {
|
||||
const int N = 10; // number of intervals => N+1 nodes
|
||||
const size_t N = 10; // number of intervals => N+1 nodes
|
||||
const double a = 0, b = 10;
|
||||
|
||||
// Create integration matrix
|
||||
|
@ -482,7 +482,7 @@ TEST(Chebyshev2, IntegrationMatrix) {
|
|||
EXPECT_DOUBLES_EQUAL(0, F(0), 1e-9); // check first value is 0
|
||||
Vector points = Chebyshev2::Points(N, a, b);
|
||||
Vector ramp(N);
|
||||
for (int i = 0; i < N; ++i) ramp(i) = points(i) - a;
|
||||
for (size_t i = 0; i < N; ++i) ramp(i) = points(i) - a;
|
||||
EXPECT(assert_equal(ramp, F, 1e-9));
|
||||
|
||||
// Get values of the derivative (fprime) at the Chebyshev nodes
|
||||
|
|
Loading…
Reference in New Issue