int -> size_t
							parent
							
								
									5ef8c0ae1a
								
							
						
					
					
						commit
						f75e41be0e
					
				|  | @ -232,7 +232,7 @@ Matrix Chebyshev2::IntegrationMatrix(size_t N) { | |||
|   Eigen::JacobiSVD<Matrix> svd(D, Eigen::ComputeThinU | Eigen::ComputeThinV); | ||||
|   const auto& S = svd.singularValues(); | ||||
|   Matrix invS = Matrix::Zero(N, N); | ||||
|   for (int i = 0; i < N - 1; ++i) invS(i, i) = 1.0 / S(i); | ||||
|   for (size_t i = 0; i < N - 1; ++i) invS(i, i) = 1.0 / S(i); | ||||
|   Matrix P = svd.matrixV() * invS * svd.matrixU().transpose(); | ||||
| 
 | ||||
|   // Return a version of P that makes sure (P*f)(0) = 0.
 | ||||
|  |  | |||
|  | @ -32,7 +32,7 @@ using namespace gtsam; | |||
| 
 | ||||
| //******************************************************************************
 | ||||
| TEST(Chebyshev2, Point) { | ||||
|   static const int N = 5; | ||||
|   static const size_t N = 5; | ||||
|   auto points = Chebyshev2::Points(N); | ||||
|   Vector expected(N); | ||||
|   expected << -1., -sqrt(2.) / 2., 0., sqrt(2.) / 2., 1.; | ||||
|  | @ -50,7 +50,7 @@ TEST(Chebyshev2, Point) { | |||
| 
 | ||||
| //******************************************************************************
 | ||||
| TEST(Chebyshev2, PointInInterval) { | ||||
|   static const int N = 5; | ||||
|   static const size_t N = 5; | ||||
|   auto points = Chebyshev2::Points(N, 0, 20); | ||||
|   Vector expected(N); | ||||
|   expected << 0., 1. - sqrt(2.) / 2., 1., 1. + sqrt(2.) / 2., 2.; | ||||
|  | @ -470,7 +470,7 @@ TEST(Chebyshev2, ComponentDerivativeFunctor) { | |||
| 
 | ||||
| //******************************************************************************
 | ||||
| TEST(Chebyshev2, IntegrationMatrix) { | ||||
|   const int N = 10;  // number of intervals => N+1 nodes
 | ||||
|   const size_t N = 10;  // number of intervals => N+1 nodes
 | ||||
|   const double a = 0, b = 10; | ||||
| 
 | ||||
|   // Create integration matrix
 | ||||
|  | @ -482,7 +482,7 @@ TEST(Chebyshev2, IntegrationMatrix) { | |||
|   EXPECT_DOUBLES_EQUAL(0, F(0), 1e-9); // check first value is 0
 | ||||
|   Vector points = Chebyshev2::Points(N, a, b); | ||||
|   Vector ramp(N); | ||||
|   for (int i = 0; i < N; ++i) ramp(i) = points(i) - a; | ||||
|   for (size_t i = 0; i < N; ++i) ramp(i) = points(i) - a; | ||||
|   EXPECT(assert_equal(ramp, F, 1e-9)); | ||||
| 
 | ||||
|   // Get values of the derivative (fprime) at the Chebyshev nodes
 | ||||
|  |  | |||
		Loading…
	
		Reference in New Issue