IntegrationMatrix and DoubleIntegrationWeights
parent
e32ccdfec7
commit
5ef8c0ae1a
|
@ -17,6 +17,9 @@
|
|||
*/
|
||||
|
||||
#include <gtsam/basis/Chebyshev2.h>
|
||||
|
||||
#include <Eigen/Dense>
|
||||
|
||||
#include <cassert>
|
||||
|
||||
namespace gtsam {
|
||||
|
@ -93,24 +96,20 @@ namespace {
|
|||
// Helper function to calculate a row of the differentiation matrix, [-1,1] interval
|
||||
Vector differentiationMatrixRow(size_t N, const Vector& points, size_t i) {
|
||||
Vector row(N);
|
||||
const size_t K = N - 1;
|
||||
double xi = points(i);
|
||||
double ci = (i == 0 || i == N - 1) ? 2. : 1.;
|
||||
for (size_t j = 0; j < N; j++) {
|
||||
if (i == 0 && j == 0) {
|
||||
// we reverse the sign since we order the cheb points from -1 to 1
|
||||
row(j) = -(ci * (N - 1) * (N - 1) + 1) / 6.0;
|
||||
}
|
||||
else if (i == N - 1 && j == N - 1) {
|
||||
// we reverse the sign since we order the cheb points from -1 to 1
|
||||
row(j) = (ci * (N - 1) * (N - 1) + 1) / 6.0;
|
||||
}
|
||||
else if (i == j) {
|
||||
double xi2 = xi * xi;
|
||||
row(j) = -xi / (2 * (1 - xi2));
|
||||
if (i == j) {
|
||||
// Diagonal elements
|
||||
if (i == 0 || i == K)
|
||||
row(j) = (i == 0 ? -1 : 1) * (2.0 * K * K + 1) / 6.0;
|
||||
else
|
||||
row(j) = -xi / (2.0 * (1.0 - xi * xi));
|
||||
}
|
||||
else {
|
||||
double xj = points(j);
|
||||
double cj = (j == 0 || j == N - 1) ? 2. : 1.;
|
||||
double ci = (i == 0 || i == K) ? 2. : 1.;
|
||||
double cj = (j == 0 || j == K) ? 2. : 1.;
|
||||
double t = ((i + j) % 2) == 0 ? 1 : -1;
|
||||
row(j) = (ci / cj) * t / (xi - xj);
|
||||
}
|
||||
|
@ -225,6 +224,43 @@ Chebyshev2::DiffMatrix Chebyshev2::DifferentiationMatrix(size_t N, double a, dou
|
|||
return DifferentiationMatrix(N) / ((b - a) / 2.0);
|
||||
}
|
||||
|
||||
Matrix Chebyshev2::IntegrationMatrix(size_t N) {
|
||||
// Obtain the differentiation matrix.
|
||||
const Matrix D = DifferentiationMatrix(N);
|
||||
|
||||
// Compute the pseudo-inverse of the differentiation matrix.
|
||||
Eigen::JacobiSVD<Matrix> svd(D, Eigen::ComputeThinU | Eigen::ComputeThinV);
|
||||
const auto& S = svd.singularValues();
|
||||
Matrix invS = Matrix::Zero(N, N);
|
||||
for (int i = 0; i < N - 1; ++i) invS(i, i) = 1.0 / S(i);
|
||||
Matrix P = svd.matrixV() * invS * svd.matrixU().transpose();
|
||||
|
||||
// Return a version of P that makes sure (P*f)(0) = 0.
|
||||
const Weights row0 = P.row(0);
|
||||
P.rowwise() -= row0;
|
||||
return P;
|
||||
}
|
||||
|
||||
Matrix Chebyshev2::IntegrationMatrix(size_t N, double a, double b) {
|
||||
return IntegrationMatrix(N) * (b - a) / 2.0;
|
||||
}
|
||||
|
||||
/*
|
||||
Trefethen00book, pg 128, clencurt.m
|
||||
Note that N in clencurt.m is 1 less than our N, we call it K below.
|
||||
K = N-1;
|
||||
theta = pi*(0:K)'/K;
|
||||
w = zeros(1,N); ii = 2:K; v = ones(K-1, 1);
|
||||
if mod(K,2) == 0
|
||||
w(1) = 1/(K^2-1); w(N) = w(1);
|
||||
for k=1:K/2-1, v = v-2*cos(2*k*theta(ii))/(4*k^2-1); end
|
||||
v = v - cos(K*theta(ii))/(K^2-1);
|
||||
else
|
||||
w(1) = 1/K^2; w(N) = w(1);
|
||||
for k=1:K/2, v = v-2*cos(2*k*theta(ii))/(4*k^2-1); end
|
||||
end
|
||||
w(ii) = 2*v/K;
|
||||
*/
|
||||
Weights Chebyshev2::IntegrationWeights(size_t N) {
|
||||
Weights weights(N);
|
||||
const size_t K = N - 1, // number of intervals between N points
|
||||
|
@ -254,17 +290,14 @@ Weights Chebyshev2::IntegrationWeights(size_t N, double a, double b) {
|
|||
return IntegrationWeights(N) * (b - a) / 2.0;
|
||||
}
|
||||
|
||||
Matrix Chebyshev2::IntegrationMatrix(size_t N) {
|
||||
// Obtain the differentiation matrix.
|
||||
Matrix D = DifferentiationMatrix(N);
|
||||
Weights Chebyshev2::DoubleIntegrationWeights(size_t N) {
|
||||
// we have w * P, where w are the Clenshaw-Curtis weights and P is the integration matrix
|
||||
// But P does not by default return a function starting at zero.
|
||||
return Chebyshev2::IntegrationWeights(N) * Chebyshev2::IntegrationMatrix(N);
|
||||
}
|
||||
|
||||
// We want f = D * F, where F is the anti-derivative of f.
|
||||
// However, D is singular, so we enforce F(0) = f(0) by modifying its first row.
|
||||
D.row(0).setZero();
|
||||
D(0, 0) = 1.0;
|
||||
|
||||
// Now D is invertible; its inverse is the integration operator.
|
||||
return D.inverse();
|
||||
Weights Chebyshev2::DoubleIntegrationWeights(size_t N, double a, double b) {
|
||||
return Chebyshev2::IntegrationWeights(N, a, b) * Chebyshev2::IntegrationMatrix(N, a, b);
|
||||
}
|
||||
|
||||
/**
|
||||
|
|
|
@ -102,19 +102,32 @@ class GTSAM_EXPORT Chebyshev2 : public Basis<Chebyshev2> {
|
|||
/// Compute D = differentiation matrix, for interval [a,b]
|
||||
static DiffMatrix DifferentiationMatrix(size_t N, double a, double b);
|
||||
|
||||
/// IntegrationMatrix returns the (N+1)×(N+1) matrix P such that for any f,
|
||||
/// F = P * f recovers F (the antiderivative) satisfying f = D * F and F(0)=0.
|
||||
static Matrix IntegrationMatrix(size_t N);
|
||||
|
||||
/// IntegrationMatrix returns the (N+1)×(N+1) matrix P for interval [a,b]
|
||||
static Matrix IntegrationMatrix(size_t N, double a, double b);
|
||||
|
||||
/**
|
||||
* Evaluate Clenshaw-Curtis integration weights.
|
||||
* Calculate Clenshaw-Curtis integration weights.
|
||||
* Trefethen00book, pg 128, clencurt.m
|
||||
* Note that N in clencurt.m is 1 less than our N
|
||||
*/
|
||||
static Weights IntegrationWeights(size_t N);
|
||||
|
||||
/// Evaluate Clenshaw-Curtis integration weights, for interval [a,b]
|
||||
/// Calculate Clenshaw-Curtis integration weights, for interval [a,b]
|
||||
static Weights IntegrationWeights(size_t N, double a, double b);
|
||||
|
||||
/// IntegrationMatrix returns the (N+1)×(N+1) matrix P such that for any f,
|
||||
/// F = P * f recovers F (the antiderivative) satisfying f = D * F and F(0)=0.
|
||||
static Matrix IntegrationMatrix(size_t N);
|
||||
/**
|
||||
* Calculate Double Clenshaw-Curtis integration weights
|
||||
* We compute them as W * P, where W are the Clenshaw-Curtis weights and P is
|
||||
* the integration matrix.
|
||||
*/
|
||||
static Weights DoubleIntegrationWeights(size_t N);
|
||||
|
||||
/// Calculate Double Clenshaw-Curtis integration weights, for interval [a,b]
|
||||
static Weights DoubleIntegrationWeights(size_t N, double a, double b);
|
||||
|
||||
/// Create matrix of values at Chebyshev points given vector-valued function.
|
||||
static Vector vector(std::function<double(double)> f,
|
||||
|
|
|
@ -9,13 +9,13 @@
|
|||
|
||||
* -------------------------------------------------------------------------- */
|
||||
|
||||
/**
|
||||
* @file testChebyshev2.cpp
|
||||
* @date July 4, 2020
|
||||
* @author Varun Agrawal
|
||||
* @brief Unit tests for Chebyshev Basis Decompositions via pseudo-spectral
|
||||
* methods
|
||||
*/
|
||||
/**
|
||||
* @file testChebyshev2.cpp
|
||||
* @date July 4, 2020
|
||||
* @author Varun Agrawal
|
||||
* @brief Unit tests for Chebyshev Basis Decompositions via pseudo-spectral
|
||||
* methods
|
||||
*/
|
||||
|
||||
#include <CppUnitLite/TestHarness.h>
|
||||
#include <gtsam/base/Testable.h>
|
||||
|
@ -28,15 +28,8 @@
|
|||
#include <cstddef>
|
||||
#include <functional>
|
||||
|
||||
using namespace std;
|
||||
using namespace gtsam;
|
||||
|
||||
namespace {
|
||||
noiseModel::Diagonal::shared_ptr model = noiseModel::Unit::Create(1);
|
||||
|
||||
const size_t N = 32;
|
||||
} // namespace
|
||||
|
||||
//******************************************************************************
|
||||
TEST(Chebyshev2, Point) {
|
||||
static const int N = 5;
|
||||
|
@ -77,7 +70,7 @@ TEST(Chebyshev2, PointInInterval) {
|
|||
//******************************************************************************
|
||||
// InterpolatingPolynomial[{{-1, 4}, {0, 2}, {1, 6}}, 0.5]
|
||||
TEST(Chebyshev2, Interpolate2) {
|
||||
size_t N = 3;
|
||||
const size_t N = 3;
|
||||
Chebyshev2::EvaluationFunctor fx(N, 0.5);
|
||||
Vector f(N);
|
||||
f << 4, 2, 6;
|
||||
|
@ -121,16 +114,17 @@ TEST(Chebyshev2, InterpolateVector) {
|
|||
|
||||
// Check derivative
|
||||
std::function<Vector2(Matrix)> f =
|
||||
std::bind(&Chebyshev2::VectorEvaluationFunctor::operator(), fx,
|
||||
std::placeholders::_1, nullptr);
|
||||
std::bind(&Chebyshev2::VectorEvaluationFunctor::operator(), fx,
|
||||
std::placeholders::_1, nullptr);
|
||||
Matrix numericalH =
|
||||
numericalDerivative11<Vector2, Matrix, 2 * N>(f, X);
|
||||
numericalDerivative11<Vector2, Matrix, 2 * N>(f, X);
|
||||
EXPECT(assert_equal(numericalH, actualH, 1e-9));
|
||||
}
|
||||
|
||||
//******************************************************************************
|
||||
// Interpolating poses using the exponential map
|
||||
TEST(Chebyshev2, InterpolatePose2) {
|
||||
const size_t N = 32;
|
||||
double t = 30, a = 0, b = 100;
|
||||
|
||||
Matrix X(3, N);
|
||||
|
@ -149,10 +143,10 @@ TEST(Chebyshev2, InterpolatePose2) {
|
|||
|
||||
// Check derivative
|
||||
std::function<Pose2(Matrix)> f =
|
||||
std::bind(&Chebyshev2::ManifoldEvaluationFunctor<Pose2>::operator(), fx,
|
||||
std::placeholders::_1, nullptr);
|
||||
std::bind(&Chebyshev2::ManifoldEvaluationFunctor<Pose2>::operator(), fx,
|
||||
std::placeholders::_1, nullptr);
|
||||
Matrix numericalH =
|
||||
numericalDerivative11<Pose2, Matrix, 3 * N>(f, X);
|
||||
numericalDerivative11<Pose2, Matrix, 3 * N>(f, X);
|
||||
EXPECT(assert_equal(numericalH, actualH, 1e-9));
|
||||
}
|
||||
|
||||
|
@ -160,6 +154,7 @@ TEST(Chebyshev2, InterpolatePose2) {
|
|||
//******************************************************************************
|
||||
// Interpolating poses using the exponential map
|
||||
TEST(Chebyshev2, InterpolatePose3) {
|
||||
const size_t N = 32;
|
||||
double a = 10, b = 100;
|
||||
double t = Chebyshev2::Points(N, a, b)(11);
|
||||
|
||||
|
@ -179,10 +174,10 @@ TEST(Chebyshev2, InterpolatePose3) {
|
|||
|
||||
// Check derivative
|
||||
std::function<Pose3(Matrix)> f =
|
||||
std::bind(&Chebyshev2::ManifoldEvaluationFunctor<Pose3>::operator(), fx,
|
||||
std::placeholders::_1, nullptr);
|
||||
std::bind(&Chebyshev2::ManifoldEvaluationFunctor<Pose3>::operator(), fx,
|
||||
std::placeholders::_1, nullptr);
|
||||
Matrix numericalH =
|
||||
numericalDerivative11<Pose3, Matrix, 6 * N>(f, X);
|
||||
numericalDerivative11<Pose3, Matrix, 6 * N>(f, X);
|
||||
EXPECT(assert_equal(numericalH, actualH, 1e-8));
|
||||
}
|
||||
#endif
|
||||
|
@ -197,7 +192,7 @@ TEST(Chebyshev2, Decomposition) {
|
|||
}
|
||||
|
||||
// Do Chebyshev Decomposition
|
||||
FitBasis<Chebyshev2> actual(sequence, model, 3);
|
||||
FitBasis<Chebyshev2> actual(sequence, nullptr, 3);
|
||||
|
||||
// Check
|
||||
Vector expected(3);
|
||||
|
@ -212,8 +207,8 @@ TEST(Chebyshev2, DifferentiationMatrix3) {
|
|||
Matrix expected(N, N);
|
||||
// Differentiation matrix computed from chebfun
|
||||
expected << 1.5000, -2.0000, 0.5000, //
|
||||
0.5000, -0.0000, -0.5000, //
|
||||
-0.5000, 2.0000, -1.5000;
|
||||
0.5000, -0.0000, -0.5000, //
|
||||
-0.5000, 2.0000, -1.5000;
|
||||
// multiply by -1 since the chebyshev points have a phase shift wrt Trefethen
|
||||
// This was verified with chebfun
|
||||
expected = -expected;
|
||||
|
@ -228,11 +223,11 @@ TEST(Chebyshev2, DerivativeMatrix6) {
|
|||
const size_t N = 6;
|
||||
Matrix expected(N, N);
|
||||
expected << 8.5000, -10.4721, 2.8944, -1.5279, 1.1056, -0.5000, //
|
||||
2.6180, -1.1708, -2.0000, 0.8944, -0.6180, 0.2764, //
|
||||
-0.7236, 2.0000, -0.1708, -1.6180, 0.8944, -0.3820, //
|
||||
0.3820, -0.8944, 1.6180, 0.1708, -2.0000, 0.7236, //
|
||||
-0.2764, 0.6180, -0.8944, 2.0000, 1.1708, -2.6180, //
|
||||
0.5000, -1.1056, 1.5279, -2.8944, 10.4721, -8.5000;
|
||||
2.6180, -1.1708, -2.0000, 0.8944, -0.6180, 0.2764, //
|
||||
-0.7236, 2.0000, -0.1708, -1.6180, 0.8944, -0.3820, //
|
||||
0.3820, -0.8944, 1.6180, 0.1708, -2.0000, 0.7236, //
|
||||
-0.2764, 0.6180, -0.8944, 2.0000, 1.1708, -2.6180, //
|
||||
0.5000, -1.1056, 1.5279, -2.8944, 10.4721, -8.5000;
|
||||
// multiply by -1 since the chebyshev points have a phase shift wrt Trefethen
|
||||
// This was verified with chebfun
|
||||
expected = -expected;
|
||||
|
@ -255,7 +250,8 @@ double fprime(double x) {
|
|||
|
||||
//******************************************************************************
|
||||
TEST(Chebyshev2, CalculateWeights) {
|
||||
Vector fvals = Chebyshev2::vector(f, N);
|
||||
const size_t N = 32;
|
||||
Vector fvals = Chebyshev2::vector(f, N);
|
||||
double x1 = 0.7, x2 = -0.376;
|
||||
Weights weights1 = Chebyshev2::CalculateWeights(N, x1);
|
||||
Weights weights2 = Chebyshev2::CalculateWeights(N, x2);
|
||||
|
@ -264,6 +260,7 @@ Vector fvals = Chebyshev2::vector(f, N);
|
|||
}
|
||||
|
||||
TEST(Chebyshev2, CalculateWeights2) {
|
||||
const size_t N = 32;
|
||||
double a = 0, b = 10, x1 = 7, x2 = 4.12;
|
||||
Vector fvals = Chebyshev2::vector(f, N, a, b);
|
||||
|
||||
|
@ -291,8 +288,9 @@ TEST(Chebyshev2, CalculateWeights_CoincidingPoint) {
|
|||
}
|
||||
|
||||
TEST(Chebyshev2, DerivativeWeights) {
|
||||
const size_t N = 32;
|
||||
Vector fvals = Chebyshev2::vector(f, N);
|
||||
std::vector<double> testPoints = {0.7, -0.376, 0.0};
|
||||
std::vector<double> testPoints = { 0.7, -0.376, 0.0 };
|
||||
for (double x : testPoints) {
|
||||
Weights dWeights = Chebyshev2::DerivativeWeights(N, x);
|
||||
EXPECT_DOUBLES_EQUAL(fprime(x), dWeights * fvals, 1e-9);
|
||||
|
@ -305,6 +303,7 @@ TEST(Chebyshev2, DerivativeWeights) {
|
|||
}
|
||||
|
||||
TEST(Chebyshev2, DerivativeWeights2) {
|
||||
const size_t N = 32;
|
||||
double x1 = 5, x2 = 4.12, a = 0, b = 10;
|
||||
Vector fvals = Chebyshev2::vector(f, N, a, b);
|
||||
|
||||
|
@ -416,15 +415,15 @@ TEST(Chebyshev2, VectorDerivativeFunctor) {
|
|||
EXPECT(assert_equal(Vector::Zero(M), (Vector)fx(X, actualH), 1e-8));
|
||||
|
||||
// Test Jacobian
|
||||
Matrix expectedH = numericalDerivative11<Vector2, Matrix, M * N>(
|
||||
std::bind(&VecD::operator(), fx, std::placeholders::_1, nullptr), X);
|
||||
Matrix expectedH = numericalDerivative11<Vector2, Matrix, M* N>(
|
||||
std::bind(&VecD::operator(), fx, std::placeholders::_1, nullptr), X);
|
||||
EXPECT(assert_equal(expectedH, actualH, 1e-7));
|
||||
}
|
||||
|
||||
//******************************************************************************
|
||||
// Test VectorDerivativeFunctor with polynomial function
|
||||
TEST(Chebyshev2, VectorDerivativeFunctor2) {
|
||||
const size_t N = 64, M = 1, T = 15;
|
||||
const size_t N = 4, M = 1, T = 15;
|
||||
using VecD = Chebyshev2::VectorDerivativeFunctor;
|
||||
|
||||
const Vector points = Chebyshev2::Points(N, 0, T);
|
||||
|
@ -447,8 +446,8 @@ TEST(Chebyshev2, VectorDerivativeFunctor2) {
|
|||
Matrix actualH(M, M * N);
|
||||
VecD vecd(M, N, points(0), 0, T);
|
||||
vecd(X, actualH);
|
||||
Matrix expectedH = numericalDerivative11<Vector1, Matrix, M * N>(
|
||||
std::bind(&VecD::operator(), vecd, std::placeholders::_1, nullptr), X);
|
||||
Matrix expectedH = numericalDerivative11<Vector1, Matrix, M* N>(
|
||||
std::bind(&VecD::operator(), vecd, std::placeholders::_1, nullptr), X);
|
||||
EXPECT(assert_equal(expectedH, actualH, 1e-6));
|
||||
}
|
||||
|
||||
|
@ -464,60 +463,124 @@ TEST(Chebyshev2, ComponentDerivativeFunctor) {
|
|||
Matrix actualH(1, M * N);
|
||||
EXPECT_DOUBLES_EQUAL(0, fx(X, actualH), 1e-8);
|
||||
|
||||
Matrix expectedH = numericalDerivative11<double, Matrix, M * N>(
|
||||
std::bind(&CompFunc::operator(), fx, std::placeholders::_1, nullptr), X);
|
||||
Matrix expectedH = numericalDerivative11<double, Matrix, M* N>(
|
||||
std::bind(&CompFunc::operator(), fx, std::placeholders::_1, nullptr), X);
|
||||
EXPECT(assert_equal(expectedH, actualH, 1e-7));
|
||||
}
|
||||
|
||||
//******************************************************************************
|
||||
TEST(Chebyshev2, IntegralWeights) {
|
||||
const size_t N7 = 7;
|
||||
Vector actual = Chebyshev2::IntegrationWeights(N7, -1, 1);
|
||||
Vector expected = (Vector(N7) << 0.0285714285714286, 0.253968253968254,
|
||||
0.457142857142857, 0.520634920634921, 0.457142857142857,
|
||||
0.253968253968254, 0.0285714285714286)
|
||||
.finished();
|
||||
EXPECT(assert_equal(expected, actual));
|
||||
|
||||
const size_t N8 = 8;
|
||||
Vector actual2 = Chebyshev2::IntegrationWeights(N8, -1, 1);
|
||||
Vector expected2 = (Vector(N8) << 0.0204081632653061, 0.190141007218208,
|
||||
0.352242423718159, 0.437208405798326, 0.437208405798326,
|
||||
0.352242423718159, 0.190141007218208, 0.0204081632653061)
|
||||
.finished();
|
||||
EXPECT(assert_equal(expected2, actual2));
|
||||
}
|
||||
|
||||
//******************************************************************************
|
||||
TEST(Chebyshev2, IntegrationMatrixOperator) {
|
||||
TEST(Chebyshev2, IntegrationMatrix) {
|
||||
const int N = 10; // number of intervals => N+1 nodes
|
||||
const double a = -1.0, b = 1.0;
|
||||
const double a = 0, b = 10;
|
||||
|
||||
// Create integration matrix
|
||||
Matrix P = Chebyshev2::IntegrationMatrix(N);
|
||||
Matrix P = Chebyshev2::IntegrationMatrix(N, a, b);
|
||||
|
||||
// Let's check that integrating a constant yields
|
||||
// the sum of the lengths of the intervals:
|
||||
Vector F = P * Vector::Ones(N);
|
||||
EXPECT_DOUBLES_EQUAL(0, F(0), 1e-9); // check first value is 0
|
||||
Vector points = Chebyshev2::Points(N, a, b);
|
||||
Vector ramp(N);
|
||||
for (int i = 0; i < N; ++i) ramp(i) = points(i) - a;
|
||||
EXPECT(assert_equal(ramp, F, 1e-9));
|
||||
|
||||
// Get values of the derivative (fprime) at the Chebyshev nodes
|
||||
Vector ff = Chebyshev2::vector(fprime, N, a, b);
|
||||
Vector fp = Chebyshev2::vector(fprime, N, a, b);
|
||||
|
||||
// Integrate to get back f, using the integration matrix
|
||||
Vector F_est = P * ff;
|
||||
|
||||
// Assert that the first value is ff(0)
|
||||
EXPECT_DOUBLES_EQUAL(ff(0), F_est(0), 1e-9);
|
||||
// Integrate to get back f, using the integration matrix.
|
||||
// Since there is a constant term, we need to add it back.
|
||||
Vector F_est = P * fp;
|
||||
EXPECT_DOUBLES_EQUAL(0, F_est(0), 1e-9); // check first value is 0
|
||||
|
||||
// For comparison, get actual function values at the nodes
|
||||
Vector F_true = Chebyshev2::vector(f, N, a, b);
|
||||
|
||||
// Verify the integration matrix worked correctly
|
||||
F_est.array() += F_true(0) - F_est(0);
|
||||
// Verify the integration matrix worked correctly, after adding back the
|
||||
// constant term
|
||||
F_est.array() += f(a);
|
||||
EXPECT(assert_equal(F_true, F_est, 1e-9));
|
||||
|
||||
// Differentiate the result to get back to our derivative function
|
||||
Matrix D = Chebyshev2::DifferentiationMatrix(N);
|
||||
Matrix D = Chebyshev2::DifferentiationMatrix(N, a, b);
|
||||
Vector ff_est = D * F_est;
|
||||
|
||||
// Verify the round trip worked
|
||||
EXPECT(assert_equal(ff, ff_est, 1e-9));
|
||||
EXPECT(assert_equal(fp, ff_est, 1e-9));
|
||||
}
|
||||
|
||||
//******************************************************************************
|
||||
TEST(Chebyshev2, IntegrationWeights7) {
|
||||
const size_t N = 7;
|
||||
Weights actual = Chebyshev2::IntegrationWeights(N, -1, 1);
|
||||
|
||||
// Expected values were calculated using chebfun:
|
||||
Weights expected = (Weights(N) << 0.0285714285714286, 0.253968253968254,
|
||||
0.457142857142857, 0.520634920634921, 0.457142857142857,
|
||||
0.253968253968254, 0.0285714285714286)
|
||||
.finished();
|
||||
EXPECT(assert_equal(expected, actual));
|
||||
|
||||
// Assert that multiplying with all ones gives the correct integral (2.0)
|
||||
EXPECT_DOUBLES_EQUAL(2.0, actual.array().sum(), 1e-9);
|
||||
|
||||
// Integrating f' over [-1,1] should give f(1) - f(-1)
|
||||
Vector fp = Chebyshev2::vector(fprime, N);
|
||||
double expectedF = f(1) - f(-1);
|
||||
double actualW = actual * fp;
|
||||
EXPECT_DOUBLES_EQUAL(expectedF, actualW, 1e-9);
|
||||
|
||||
// We can calculate an alternate set of weights using the integration matrix:
|
||||
Matrix P = Chebyshev2::IntegrationMatrix(N);
|
||||
Weights p7 = P.row(N-1);
|
||||
|
||||
// Check that the two sets of weights give the same results
|
||||
EXPECT_DOUBLES_EQUAL(expectedF, p7 * fp, 1e-9);
|
||||
|
||||
// And same for integrate f itself:
|
||||
Vector fvals = Chebyshev2::vector(f, N);
|
||||
EXPECT_DOUBLES_EQUAL(p7*fvals, actual * fvals, 1e-9);
|
||||
}
|
||||
|
||||
// Check N=8
|
||||
TEST(Chebyshev2, IntegrationWeights8) {
|
||||
const size_t N = 8;
|
||||
Weights actual = Chebyshev2::IntegrationWeights(N, -1, 1);
|
||||
Weights expected = (Weights(N) << 0.0204081632653061, 0.190141007218208,
|
||||
0.352242423718159, 0.437208405798326, 0.437208405798326,
|
||||
0.352242423718159, 0.190141007218208, 0.0204081632653061)
|
||||
.finished();
|
||||
EXPECT(assert_equal(expected, actual));
|
||||
EXPECT_DOUBLES_EQUAL(2.0, actual.array().sum(), 1e-9);
|
||||
}
|
||||
|
||||
//******************************************************************************
|
||||
TEST(Chebyshev2, DoubleIntegrationWeights) {
|
||||
const size_t N = 7;
|
||||
const double a = 0, b = 10;
|
||||
// Let's integrate constant twice get a test case:
|
||||
Matrix P = Chebyshev2::IntegrationMatrix(N, a, b);
|
||||
auto ones = Vector::Ones(N);
|
||||
Vector ramp = P * ones;
|
||||
Vector quadratic = P * ramp;
|
||||
|
||||
// Check the sum which should be 0.5*t^2 | [0,b] = b^2/2:
|
||||
Weights w = Chebyshev2::DoubleIntegrationWeights(N, a, b);
|
||||
EXPECT_DOUBLES_EQUAL(b*b/2, w * ones, 1e-9);
|
||||
}
|
||||
|
||||
TEST(Chebyshev2, DoubleIntegrationWeights2) {
|
||||
const size_t N = 8;
|
||||
const double a = 0, b = 3;
|
||||
// Let's integrate constant twice get a test case:
|
||||
Matrix P = Chebyshev2::IntegrationMatrix(N, a, b);
|
||||
auto ones = Vector::Ones(N);
|
||||
Vector ramp = P * ones;
|
||||
Vector quadratic = P * ramp;
|
||||
|
||||
// Check the sum which should be 0.5*t^2 | [0,b] = b^2/2:
|
||||
Weights w = Chebyshev2::DoubleIntegrationWeights(N, a, b);
|
||||
EXPECT_DOUBLES_EQUAL(b*b/2, w * ones, 1e-9);
|
||||
}
|
||||
|
||||
//******************************************************************************
|
||||
|
|
Loading…
Reference in New Issue