gtsam/gtsam/basis/tests/testChebyshev2.cpp

592 lines
21 KiB
C++

/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file testChebyshev2.cpp
* @date July 4, 2020
* @author Varun Agrawal
* @brief Unit tests for Chebyshev Basis Decompositions via pseudo-spectral
* methods
*/
#include <CppUnitLite/TestHarness.h>
#include <gtsam/base/Testable.h>
#include <gtsam/basis/Chebyshev2.h>
#include <gtsam/basis/FitBasis.h>
#include <gtsam/geometry/Pose2.h>
#include <gtsam/geometry/Pose3.h>
#include <gtsam/nonlinear/factorTesting.h>
#include <cstddef>
#include <functional>
using namespace gtsam;
//******************************************************************************
TEST(Chebyshev2, Point) {
static const size_t N = 5;
auto points = Chebyshev2::Points(N);
Vector expected(N);
expected << -1., -sqrt(2.) / 2., 0., sqrt(2.) / 2., 1.;
static const double tol = 1e-15; // changing this reveals errors
EXPECT_DOUBLES_EQUAL(expected(0), points(0), tol);
EXPECT_DOUBLES_EQUAL(expected(1), points(1), tol);
EXPECT_DOUBLES_EQUAL(expected(2), points(2), tol);
EXPECT_DOUBLES_EQUAL(expected(3), points(3), tol);
EXPECT_DOUBLES_EQUAL(expected(4), points(4), tol);
// Check symmetry
EXPECT_DOUBLES_EQUAL(Chebyshev2::Point(N, 0), -Chebyshev2::Point(N, 4), tol);
EXPECT_DOUBLES_EQUAL(Chebyshev2::Point(N, 1), -Chebyshev2::Point(N, 3), tol);
}
//******************************************************************************
TEST(Chebyshev2, PointInInterval) {
static const size_t N = 5;
auto points = Chebyshev2::Points(N, 0, 20);
Vector expected(N);
expected << 0., 1. - sqrt(2.) / 2., 1., 1. + sqrt(2.) / 2., 2.;
expected *= 10.0;
static const double tol = 1e-15; // changing this reveals errors
EXPECT_DOUBLES_EQUAL(expected(0), points(0), tol);
EXPECT_DOUBLES_EQUAL(expected(1), points(1), tol);
EXPECT_DOUBLES_EQUAL(expected(2), points(2), tol);
EXPECT_DOUBLES_EQUAL(expected(3), points(3), tol);
EXPECT_DOUBLES_EQUAL(expected(4), points(4), tol);
// all at once
Vector actual = Chebyshev2::Points(N, 0, 20);
CHECK(assert_equal(expected, actual));
}
//******************************************************************************
// InterpolatingPolynomial[{{-1, 4}, {0, 2}, {1, 6}}, 0.5]
TEST(Chebyshev2, Interpolate2) {
const size_t N = 3;
Chebyshev2::EvaluationFunctor fx(N, 0.5);
Vector f(N);
f << 4, 2, 6;
EXPECT_DOUBLES_EQUAL(3.25, fx(f), 1e-9);
}
//******************************************************************************
// InterpolatingPolynomial[{{0, 4}, {1, 2}, {2, 6}}, 1.5]
TEST(Chebyshev2, Interpolate2_Interval) {
Chebyshev2::EvaluationFunctor fx(3, 1.5, 0, 2);
Vector3 f(4, 2, 6);
EXPECT_DOUBLES_EQUAL(3.25, fx(f), 1e-9);
}
//******************************************************************************
// InterpolatingPolynomial[{{-1, 4}, {-Sqrt[2]/2, 2}, {0, 6}, {Sqrt[2]/2,3}, {1,
// 3}}, 0.5]
TEST(Chebyshev2, Interpolate5) {
Chebyshev2::EvaluationFunctor fx(5, 0.5);
Vector f(5);
f << 4, 2, 6, 3, 3;
EXPECT_DOUBLES_EQUAL(4.34283, fx(f), 1e-5);
}
//******************************************************************************
// Interpolating vectors
TEST(Chebyshev2, InterpolateVector) {
double t = 30, a = 0, b = 100;
const size_t N = 3;
// Create 2x3 matrix with Vectors at Chebyshev points
Matrix X = Matrix::Zero(2, N);
X.row(0) = Chebyshev2::Points(N, a, b); // slope 1 ramp
// Check value
Vector expected(2);
expected << t, 0;
Eigen::Matrix<double, /*2x2N*/ -1, -1> actualH(2, 2 * N);
Chebyshev2::VectorEvaluationFunctor fx(2, N, t, a, b);
EXPECT(assert_equal(expected, fx(X, actualH), 1e-9));
// Check derivative
std::function<Vector2(Matrix)> f =
std::bind(&Chebyshev2::VectorEvaluationFunctor::operator(), fx,
std::placeholders::_1, nullptr);
Matrix numericalH =
numericalDerivative11<Vector2, Matrix, 2 * N>(f, X);
EXPECT(assert_equal(numericalH, actualH, 1e-9));
}
//******************************************************************************
// Interpolating poses using the exponential map
TEST(Chebyshev2, InterpolatePose2) {
const size_t N = 32;
double t = 30, a = 0, b = 100;
Matrix X(3, N);
X.row(0) = Chebyshev2::Points(N, a, b); // slope 1 ramp
X.row(1) = Vector::Zero(N);
X.row(2) = 0.1 * Vector::Ones(N);
Vector xi(3);
xi << t, 0, 0.1;
Eigen::Matrix<double, /*3x3N*/ -1, -1> actualH(3, 3 * N);
Chebyshev2::ManifoldEvaluationFunctor<Pose2> fx(N, t, a, b);
// We use xi as canonical coordinates via exponential map
Pose2 expected = Pose2::ChartAtOrigin::Retract(xi);
EXPECT(assert_equal(expected, fx(X, actualH)));
// Check derivative
std::function<Pose2(Matrix)> f =
std::bind(&Chebyshev2::ManifoldEvaluationFunctor<Pose2>::operator(), fx,
std::placeholders::_1, nullptr);
Matrix numericalH =
numericalDerivative11<Pose2, Matrix, 3 * N>(f, X);
EXPECT(assert_equal(numericalH, actualH, 1e-9));
}
#ifdef GTSAM_POSE3_EXPMAP
//******************************************************************************
// Interpolating poses using the exponential map
TEST(Chebyshev2, InterpolatePose3) {
const size_t N = 32;
double a = 10, b = 100;
double t = Chebyshev2::Points(N, a, b)(11);
Rot3 R = Rot3::Ypr(-2.21366492e-05, -9.35353636e-03, -5.90463598e-04);
Pose3 pose(R, Point3(1, 2, 3));
Vector6 xi = Pose3::ChartAtOrigin::Local(pose);
Eigen::Matrix<double, /*6x6N*/ -1, -1> actualH(6, 6 * N);
Matrix X = Matrix::Zero(6, N);
X.col(11) = xi;
Chebyshev2::ManifoldEvaluationFunctor<Pose3> fx(N, t, a, b);
// We use xi as canonical coordinates via exponential map
Pose3 expected = Pose3::ChartAtOrigin::Retract(xi);
EXPECT(assert_equal(expected, fx(X, actualH)));
// Check derivative
std::function<Pose3(Matrix)> f =
std::bind(&Chebyshev2::ManifoldEvaluationFunctor<Pose3>::operator(), fx,
std::placeholders::_1, nullptr);
Matrix numericalH =
numericalDerivative11<Pose3, Matrix, 6 * N>(f, X);
EXPECT(assert_equal(numericalH, actualH, 1e-8));
}
#endif
//******************************************************************************
TEST(Chebyshev2, Decomposition) {
// Create example sequence
Sequence sequence;
for (size_t i = 0; i < 16; i++) {
double x = (1.0 / 16) * i - 0.99, y = x;
sequence[x] = y;
}
// Do Chebyshev Decomposition
FitBasis<Chebyshev2> actual(sequence, nullptr, 3);
// Check
Vector expected(3);
expected << -1, 0, 1;
EXPECT(assert_equal(expected, actual.parameters(), 1e-4));
}
//******************************************************************************
TEST(Chebyshev2, DifferentiationMatrix3) {
// Trefethen00book, p.55
const size_t N = 3;
Matrix expected(N, N);
// Differentiation matrix computed from chebfun
expected << 1.5000, -2.0000, 0.5000, //
0.5000, -0.0000, -0.5000, //
-0.5000, 2.0000, -1.5000;
// multiply by -1 since the chebyshev points have a phase shift wrt Trefethen
// This was verified with chebfun
expected = -expected;
Matrix actual = Chebyshev2::DifferentiationMatrix(N);
EXPECT(assert_equal(expected, actual, 1e-4));
}
//******************************************************************************
TEST(Chebyshev2, DerivativeMatrix6) {
// Trefethen00book, p.55
const size_t N = 6;
Matrix expected(N, N);
expected << 8.5000, -10.4721, 2.8944, -1.5279, 1.1056, -0.5000, //
2.6180, -1.1708, -2.0000, 0.8944, -0.6180, 0.2764, //
-0.7236, 2.0000, -0.1708, -1.6180, 0.8944, -0.3820, //
0.3820, -0.8944, 1.6180, 0.1708, -2.0000, 0.7236, //
-0.2764, 0.6180, -0.8944, 2.0000, 1.1708, -2.6180, //
0.5000, -1.1056, 1.5279, -2.8944, 10.4721, -8.5000;
// multiply by -1 since the chebyshev points have a phase shift wrt Trefethen
// This was verified with chebfun
expected = -expected;
Matrix actual = Chebyshev2::DifferentiationMatrix(N);
EXPECT(assert_equal((Matrix)expected, actual, 1e-4));
}
// test function for CalculateWeights and DerivativeWeights
double f(double x) {
// return 3*(x**3) - 2*(x**2) + 5*x - 11
return 3.0 * pow(x, 3) - 2.0 * pow(x, 2) + 5.0 * x - 11;
}
// its derivative
double fprime(double x) {
// return 9*(x**2) - 4*(x) + 5
return 9.0 * pow(x, 2) - 4.0 * x + 5.0;
}
//******************************************************************************
TEST(Chebyshev2, CalculateWeights) {
const size_t N = 32;
Vector fvals = Chebyshev2::vector(f, N);
double x1 = 0.7, x2 = -0.376;
Weights weights1 = Chebyshev2::CalculateWeights(N, x1);
Weights weights2 = Chebyshev2::CalculateWeights(N, x2);
EXPECT_DOUBLES_EQUAL(f(x1), weights1 * fvals, 1e-8);
EXPECT_DOUBLES_EQUAL(f(x2), weights2 * fvals, 1e-8);
}
TEST(Chebyshev2, CalculateWeights2) {
const size_t N = 32;
double a = 0, b = 10, x1 = 7, x2 = 4.12;
Vector fvals = Chebyshev2::vector(f, N, a, b);
Weights weights1 = Chebyshev2::CalculateWeights(N, x1, a, b);
EXPECT_DOUBLES_EQUAL(f(x1), weights1 * fvals, 1e-8);
Weights weights2 = Chebyshev2::CalculateWeights(N, x2, a, b);
double expected2 = f(x2); // 185.454784
double actual2 = weights2 * fvals;
EXPECT_DOUBLES_EQUAL(expected2, actual2, 1e-8);
}
// Test CalculateWeights when a point coincides with a Chebyshev point
TEST(Chebyshev2, CalculateWeights_CoincidingPoint) {
const size_t N = 5;
const double coincidingPoint = Chebyshev2::Point(N, 1); // Pick the 2nd point
// Generate weights for the coinciding point
Weights weights = Chebyshev2::CalculateWeights(N, coincidingPoint);
// Verify that the weights are zero everywhere except at the coinciding point
for (size_t j = 0; j < N; ++j) {
EXPECT_DOUBLES_EQUAL(j == 1 ? 1.0 : 0.0, weights(j), 1e-9);
}
}
TEST(Chebyshev2, DerivativeWeights) {
const size_t N = 32;
Vector fvals = Chebyshev2::vector(f, N);
std::vector<double> testPoints = { 0.7, -0.376, 0.0 };
for (double x : testPoints) {
Weights dWeights = Chebyshev2::DerivativeWeights(N, x);
EXPECT_DOUBLES_EQUAL(fprime(x), dWeights * fvals, 1e-9);
}
// test if derivative calculation at Chebyshev point is correct
double x4 = Chebyshev2::Point(N, 3);
Weights dWeights4 = Chebyshev2::DerivativeWeights(N, x4);
EXPECT_DOUBLES_EQUAL(fprime(x4), dWeights4 * fvals, 1e-9);
}
TEST(Chebyshev2, DerivativeWeights2) {
const size_t N = 32;
double x1 = 5, x2 = 4.12, a = 0, b = 10;
Vector fvals = Chebyshev2::vector(f, N, a, b);
Weights dWeights1 = Chebyshev2::DerivativeWeights(N, x1, a, b);
EXPECT_DOUBLES_EQUAL(fprime(x1), dWeights1 * fvals, 1e-8);
Weights dWeights2 = Chebyshev2::DerivativeWeights(N, x2, a, b);
EXPECT_DOUBLES_EQUAL(fprime(x2), dWeights2 * fvals, 1e-8);
// test if derivative calculation at Chebyshev point is correct
double x3 = Chebyshev2::Point(N, 3, a, b);
Weights dWeights3 = Chebyshev2::DerivativeWeights(N, x3, a, b);
EXPECT_DOUBLES_EQUAL(fprime(x3), dWeights3 * fvals, 1e-8);
}
//******************************************************************************
// Check two different ways to calculate the derivative weights
TEST(Chebyshev2, DerivativeWeightsDifferentiationMatrix) {
const size_t N6 = 6;
double x1 = 0.311;
Matrix D6 = Chebyshev2::DifferentiationMatrix(N6);
Weights expected = Chebyshev2::CalculateWeights(N6, x1) * D6;
Weights actual = Chebyshev2::DerivativeWeights(N6, x1);
EXPECT(assert_equal(expected, actual, 1e-12));
double a = -3, b = 8, x2 = 5.05;
Matrix D6_2 = Chebyshev2::DifferentiationMatrix(N6, a, b);
Weights expected1 = Chebyshev2::CalculateWeights(N6, x2, a, b) * D6_2;
Weights actual1 = Chebyshev2::DerivativeWeights(N6, x2, a, b);
EXPECT(assert_equal(expected1, actual1, 1e-12));
}
//******************************************************************************
// Check two different ways to calculate the derivative weights
TEST(Chebyshev2, DerivativeWeights6) {
const size_t N6 = 6;
Matrix D6 = Chebyshev2::DifferentiationMatrix(N6);
Chebyshev2::Parameters x = Chebyshev2::Points(N6); // ramp with slope 1
EXPECT(assert_equal(Vector::Ones(N6), Vector(D6 * x)));
}
//******************************************************************************
// Check two different ways to calculate the derivative weights
TEST(Chebyshev2, DerivativeWeights7) {
const size_t N7 = 7;
Matrix D7 = Chebyshev2::DifferentiationMatrix(N7);
Chebyshev2::Parameters x = Chebyshev2::Points(N7); // ramp with slope 1
EXPECT(assert_equal(Vector::Ones(N7), Vector(D7 * x)));
}
//******************************************************************************
// Check derivative in two different ways: numerical and using D on f
Vector6 f3_at_6points = (Vector6() << 4, 2, 6, 2, 4, 3).finished();
double proxy3(double x) {
return Chebyshev2::EvaluationFunctor(6, x)(f3_at_6points);
}
// Check Derivative evaluation at point x=0.2
TEST(Chebyshev2, Derivative6) {
// calculate expected values by numerical derivative of synthesis
const double x = 0.2;
Matrix numeric_dTdx = numericalDerivative11<double, double>(proxy3, x);
// Calculate derivatives at Chebyshev points using D3, interpolate
Matrix D6 = Chebyshev2::DifferentiationMatrix(6);
Vector derivative_at_points = D6 * f3_at_6points;
Chebyshev2::EvaluationFunctor fx(6, x);
EXPECT_DOUBLES_EQUAL(numeric_dTdx(0, 0), fx(derivative_at_points), 1e-8);
// Do directly
Chebyshev2::DerivativeFunctor dfdx(6, x);
EXPECT_DOUBLES_EQUAL(numeric_dTdx(0, 0), dfdx(f3_at_6points), 1e-8);
}
//******************************************************************************
// Assert that derivative also works in non-standard interval [0,3]
double proxy4(double x) {
return Chebyshev2::EvaluationFunctor(6, x, 0, 3)(f3_at_6points);
}
TEST(Chebyshev2, Derivative6_03) {
// Check Derivative evaluation at point x=0.2, in interval [0,3]
// calculate expected values by numerical derivative of synthesis
const double x = 0.2;
Matrix numeric_dTdx = numericalDerivative11<double, double>(proxy4, x);
// Calculate derivatives at Chebyshev points using D3, interpolate
Matrix D6 = Chebyshev2::DifferentiationMatrix(6, 0, 3);
Vector derivative_at_points = D6 * f3_at_6points;
Chebyshev2::EvaluationFunctor fx(6, x, 0, 3);
EXPECT_DOUBLES_EQUAL(numeric_dTdx(0, 0), fx(derivative_at_points), 1e-8);
// Do directly
Chebyshev2::DerivativeFunctor dfdx(6, x, 0, 3);
EXPECT_DOUBLES_EQUAL(numeric_dTdx(0, 0), dfdx(f3_at_6points), 1e-8);
}
//******************************************************************************
// Test VectorDerivativeFunctor
TEST(Chebyshev2, VectorDerivativeFunctor) {
const size_t N = 3, M = 2;
const double x = 0.2;
using VecD = Chebyshev2::VectorDerivativeFunctor;
VecD fx(M, N, x, 0, 3);
Matrix X = Matrix::Zero(M, N);
Matrix actualH(M, M * N);
EXPECT(assert_equal(Vector::Zero(M), (Vector)fx(X, actualH), 1e-8));
// Test Jacobian
Matrix expectedH = numericalDerivative11<Vector2, Matrix, M* N>(
std::bind(&VecD::operator(), fx, std::placeholders::_1, nullptr), X);
EXPECT(assert_equal(expectedH, actualH, 1e-7));
}
//******************************************************************************
// Test VectorDerivativeFunctor with polynomial function
TEST(Chebyshev2, VectorDerivativeFunctor2) {
const size_t N = 4, M = 1, T = 15;
using VecD = Chebyshev2::VectorDerivativeFunctor;
const Vector points = Chebyshev2::Points(N, 0, T);
// Assign the parameter matrix 1xN
Matrix X(1, N);
for (size_t i = 0; i < N; ++i) {
X(i) = f(points(i));
}
// Evaluate the derivative at the chebyshev points using
// VectorDerivativeFunctor.
for (size_t i = 0; i < N; ++i) {
VecD d(M, N, points(i), 0, T);
Vector1 Dx = d(X);
EXPECT_DOUBLES_EQUAL(fprime(points(i)), Dx(0), 1e-6);
}
// Test Jacobian at the first chebyshev point.
Matrix actualH(M, M * N);
VecD vecd(M, N, points(0), 0, T);
vecd(X, actualH);
Matrix expectedH = numericalDerivative11<Vector1, Matrix, M* N>(
std::bind(&VecD::operator(), vecd, std::placeholders::_1, nullptr), X);
EXPECT(assert_equal(expectedH, actualH, 1e-6));
}
//******************************************************************************
// Test ComponentDerivativeFunctor
TEST(Chebyshev2, ComponentDerivativeFunctor) {
const size_t N = 6, M = 2;
const double x = 0.2;
using CompFunc = Chebyshev2::ComponentDerivativeFunctor;
size_t row = 1;
CompFunc fx(M, N, row, x, 0, 3);
Matrix X = Matrix::Zero(M, N);
Matrix actualH(1, M * N);
EXPECT_DOUBLES_EQUAL(0, fx(X, actualH), 1e-8);
Matrix expectedH = numericalDerivative11<double, Matrix, M* N>(
std::bind(&CompFunc::operator(), fx, std::placeholders::_1, nullptr), X);
EXPECT(assert_equal(expectedH, actualH, 1e-7));
}
//******************************************************************************
TEST(Chebyshev2, IntegrationMatrix) {
const size_t N = 10; // number of intervals => N+1 nodes
const double a = 0, b = 10;
// Create integration matrix
Matrix P = Chebyshev2::IntegrationMatrix(N, a, b);
// Let's check that integrating a constant yields
// the sum of the lengths of the intervals:
Vector F = P * Vector::Ones(N);
EXPECT_DOUBLES_EQUAL(0, F(0), 1e-9); // check first value is 0
Vector points = Chebyshev2::Points(N, a, b);
Vector ramp(N);
for (size_t i = 0; i < N; ++i) ramp(i) = points(i) - a;
EXPECT(assert_equal(ramp, F, 1e-9));
// Get values of the derivative (fprime) at the Chebyshev nodes
Vector fp = Chebyshev2::vector(fprime, N, a, b);
// Integrate to get back f, using the integration matrix.
// Since there is a constant term, we need to add it back.
Vector F_est = P * fp;
EXPECT_DOUBLES_EQUAL(0, F_est(0), 1e-9); // check first value is 0
// For comparison, get actual function values at the nodes
Vector F_true = Chebyshev2::vector(f, N, a, b);
// Verify the integration matrix worked correctly, after adding back the
// constant term
F_est.array() += f(a);
EXPECT(assert_equal(F_true, F_est, 1e-9));
// Differentiate the result to get back to our derivative function
Matrix D = Chebyshev2::DifferentiationMatrix(N, a, b);
Vector ff_est = D * F_est;
// Verify the round trip worked
EXPECT(assert_equal(fp, ff_est, 1e-9));
}
//******************************************************************************
TEST(Chebyshev2, IntegrationWeights7) {
const size_t N = 7;
Weights actual = Chebyshev2::IntegrationWeights(N, -1, 1);
// Expected values were calculated using chebfun:
Weights expected = (Weights(N) << 0.0285714285714286, 0.253968253968254,
0.457142857142857, 0.520634920634921, 0.457142857142857,
0.253968253968254, 0.0285714285714286)
.finished();
EXPECT(assert_equal(expected, actual));
// Assert that multiplying with all ones gives the correct integral (2.0)
EXPECT_DOUBLES_EQUAL(2.0, actual.array().sum(), 1e-9);
// Integrating f' over [-1,1] should give f(1) - f(-1)
Vector fp = Chebyshev2::vector(fprime, N);
double expectedF = f(1) - f(-1);
double actualW = actual * fp;
EXPECT_DOUBLES_EQUAL(expectedF, actualW, 1e-9);
// We can calculate an alternate set of weights using the integration matrix:
Matrix P = Chebyshev2::IntegrationMatrix(N);
Weights p7 = P.row(N-1);
// Check that the two sets of weights give the same results
EXPECT_DOUBLES_EQUAL(expectedF, p7 * fp, 1e-9);
// And same for integrate f itself:
Vector fvals = Chebyshev2::vector(f, N);
EXPECT_DOUBLES_EQUAL(p7*fvals, actual * fvals, 1e-9);
}
// Check N=8
TEST(Chebyshev2, IntegrationWeights8) {
const size_t N = 8;
Weights actual = Chebyshev2::IntegrationWeights(N, -1, 1);
Weights expected = (Weights(N) << 0.0204081632653061, 0.190141007218208,
0.352242423718159, 0.437208405798326, 0.437208405798326,
0.352242423718159, 0.190141007218208, 0.0204081632653061)
.finished();
EXPECT(assert_equal(expected, actual));
EXPECT_DOUBLES_EQUAL(2.0, actual.array().sum(), 1e-9);
}
//******************************************************************************
TEST(Chebyshev2, DoubleIntegrationWeights) {
const size_t N = 7;
const double a = 0, b = 10;
// Let's integrate constant twice get a test case:
Matrix P = Chebyshev2::IntegrationMatrix(N, a, b);
auto ones = Vector::Ones(N);
Vector ramp = P * ones;
Vector quadratic = P * ramp;
// Check the sum which should be 0.5*t^2 | [0,b] = b^2/2:
Weights w = Chebyshev2::DoubleIntegrationWeights(N, a, b);
EXPECT_DOUBLES_EQUAL(b*b/2, w * ones, 1e-9);
}
TEST(Chebyshev2, DoubleIntegrationWeights2) {
const size_t N = 8;
const double a = 0, b = 3;
// Let's integrate constant twice get a test case:
Matrix P = Chebyshev2::IntegrationMatrix(N, a, b);
auto ones = Vector::Ones(N);
Vector ramp = P * ones;
Vector quadratic = P * ramp;
// Check the sum which should be 0.5*t^2 | [0,b] = b^2/2:
Weights w = Chebyshev2::DoubleIntegrationWeights(N, a, b);
EXPECT_DOUBLES_EQUAL(b*b/2, w * ones, 1e-9);
}
//******************************************************************************
int main() {
TestResult tr;
return TestRegistry::runAllTests(tr);
}
//******************************************************************************