reduce the diff even more
parent
fd2062b207
commit
cea84b8c89
|
@ -145,8 +145,6 @@ void GaussianMixture::print(const std::string &s,
|
||||||
std::cout << "(" << formatter(dk.first) << ", " << dk.second << "), ";
|
std::cout << "(" << formatter(dk.first) << ", " << dk.second << "), ";
|
||||||
}
|
}
|
||||||
std::cout << "\n";
|
std::cout << "\n";
|
||||||
std::cout << " logNormalizationConstant: " << logConstant_ << "\n"
|
|
||||||
<< std::endl;
|
|
||||||
conditionals_.print(
|
conditionals_.print(
|
||||||
"", [&](Key k) { return formatter(k); },
|
"", [&](Key k) { return formatter(k); },
|
||||||
[&](const GaussianConditional::shared_ptr &gf) -> std::string {
|
[&](const GaussianConditional::shared_ptr &gf) -> std::string {
|
||||||
|
|
|
@ -221,7 +221,6 @@ GaussianBayesNet HybridBayesNet::choose(
|
||||||
HybridValues HybridBayesNet::optimize() const {
|
HybridValues HybridBayesNet::optimize() const {
|
||||||
// Collect all the discrete factors to compute MPE
|
// Collect all the discrete factors to compute MPE
|
||||||
DiscreteBayesNet discrete_bn;
|
DiscreteBayesNet discrete_bn;
|
||||||
|
|
||||||
for (auto &&conditional : *this) {
|
for (auto &&conditional : *this) {
|
||||||
if (conditional->isDiscrete()) {
|
if (conditional->isDiscrete()) {
|
||||||
discrete_bn.push_back(conditional->asDiscrete());
|
discrete_bn.push_back(conditional->asDiscrete());
|
||||||
|
|
|
@ -675,7 +675,6 @@ factor 6: P( m1 | m0 ):
|
||||||
size: 3
|
size: 3
|
||||||
conditional 0: Hybrid P( x0 | x1 m0)
|
conditional 0: Hybrid P( x0 | x1 m0)
|
||||||
Discrete Keys = (m0, 2),
|
Discrete Keys = (m0, 2),
|
||||||
|
|
||||||
Choice(m0)
|
Choice(m0)
|
||||||
0 Leaf p(x0 | x1)
|
0 Leaf p(x0 | x1)
|
||||||
R = [ 10.0499 ]
|
R = [ 10.0499 ]
|
||||||
|
@ -691,7 +690,6 @@ conditional 0: Hybrid P( x0 | x1 m0)
|
||||||
|
|
||||||
conditional 1: Hybrid P( x1 | x2 m0 m1)
|
conditional 1: Hybrid P( x1 | x2 m0 m1)
|
||||||
Discrete Keys = (m0, 2), (m1, 2),
|
Discrete Keys = (m0, 2), (m1, 2),
|
||||||
|
|
||||||
Choice(m1)
|
Choice(m1)
|
||||||
0 Choice(m0)
|
0 Choice(m0)
|
||||||
0 0 Leaf p(x1 | x2)
|
0 0 Leaf p(x1 | x2)
|
||||||
|
@ -721,7 +719,6 @@ conditional 1: Hybrid P( x1 | x2 m0 m1)
|
||||||
|
|
||||||
conditional 2: Hybrid P( x2 | m0 m1)
|
conditional 2: Hybrid P( x2 | m0 m1)
|
||||||
Discrete Keys = (m0, 2), (m1, 2),
|
Discrete Keys = (m0, 2), (m1, 2),
|
||||||
|
|
||||||
Choice(m1)
|
Choice(m1)
|
||||||
0 Choice(m0)
|
0 Choice(m0)
|
||||||
0 0 Leaf p(x2)
|
0 0 Leaf p(x2)
|
||||||
|
|
Loading…
Reference in New Issue