remove changes so we can break up PR into smaller ones

release/4.3a0
Varun Agrawal 2024-08-20 15:48:07 -04:00
parent 6d9fc8e5f2
commit fd2062b207
16 changed files with 37 additions and 666 deletions

View File

@ -24,7 +24,6 @@
#include <gtsam/hybrid/GaussianMixtureFactor.h>
#include <gtsam/hybrid/HybridValues.h>
#include <gtsam/inference/Conditional-inst.h>
#include <gtsam/linear/GaussianBayesNet.h>
#include <gtsam/linear/GaussianFactorGraph.h>
namespace gtsam {
@ -93,35 +92,6 @@ GaussianFactorGraphTree GaussianMixture::asGaussianFactorGraphTree() const {
return {conditionals_, wrap};
}
/*
*******************************************************************************/
GaussianBayesNetTree GaussianMixture::add(
const GaussianBayesNetTree &sum) const {
using Y = GaussianBayesNet;
auto add = [](const Y &graph1, const Y &graph2) {
auto result = graph1;
if (graph2.size() == 0) {
return GaussianBayesNet();
}
result.push_back(graph2);
return result;
};
const auto tree = asGaussianBayesNetTree();
return sum.empty() ? tree : sum.apply(tree, add);
}
/* *******************************************************************************/
GaussianBayesNetTree GaussianMixture::asGaussianBayesNetTree() const {
auto wrap = [](const GaussianConditional::shared_ptr &gc) {
if (gc) {
return GaussianBayesNet{gc};
} else {
return GaussianBayesNet();
}
};
return {conditionals_, wrap};
}
/* *******************************************************************************/
size_t GaussianMixture::nrComponents() const {
size_t total = 0;
@ -348,15 +318,8 @@ AlgebraicDecisionTree<Key> GaussianMixture::logProbability(
AlgebraicDecisionTree<Key> GaussianMixture::errorTree(
const VectorValues &continuousValues) const {
auto errorFunc = [&](const GaussianConditional::shared_ptr &conditional) {
// Check if valid pointer
if (conditional) {
return conditional->error(continuousValues) + //
logConstant_ - conditional->logNormalizationConstant();
} else {
// If not valid, pointer, it means this conditional was pruned,
// so we return maximum error.
return std::numeric_limits<double>::max();
}
return conditional->error(continuousValues) + //
logConstant_ - conditional->logNormalizationConstant();
};
DecisionTree<Key, double> error_tree(conditionals_, errorFunc);
return error_tree;
@ -364,32 +327,10 @@ AlgebraicDecisionTree<Key> GaussianMixture::errorTree(
/* *******************************************************************************/
double GaussianMixture::error(const HybridValues &values) const {
// Check if discrete keys in discrete assignment are
// present in the GaussianMixture
KeyVector dKeys = this->discreteKeys_.indices();
bool valid_assignment = false;
for (auto &&kv : values.discrete()) {
if (std::find(dKeys.begin(), dKeys.end(), kv.first) != dKeys.end()) {
valid_assignment = true;
break;
}
}
// The discrete assignment is not valid so we return 0.0 erorr.
if (!valid_assignment) {
return 0.0;
}
// Directly index to get the conditional, no need to build the whole tree.
auto conditional = conditionals_(values.discrete());
if (conditional) {
return conditional->error(values.continuous()) + //
logConstant_ - conditional->logNormalizationConstant();
} else {
// If not valid, pointer, it means this conditional was pruned,
// so we return maximum error.
return std::numeric_limits<double>::max();
}
return conditional->error(values.continuous()) + //
logConstant_ - conditional->logNormalizationConstant();
}
/* *******************************************************************************/

View File

@ -72,12 +72,6 @@ class GTSAM_EXPORT GaussianMixture
*/
GaussianFactorGraphTree asGaussianFactorGraphTree() const;
/**
* @brief Convert a DecisionTree of conditionals into
* a DecisionTree of Gaussian Bayes nets.
*/
GaussianBayesNetTree asGaussianBayesNetTree() const;
/**
* @brief Helper function to get the pruner functor.
*
@ -221,7 +215,8 @@ class GTSAM_EXPORT GaussianMixture
* @return AlgebraicDecisionTree<Key> A decision tree on the discrete keys
* only, with the leaf values as the error for each assignment.
*/
AlgebraicDecisionTree<Key> errorTree(const VectorValues &continuousValues) const;
AlgebraicDecisionTree<Key> errorTree(
const VectorValues &continuousValues) const;
/**
* @brief Compute the logProbability of this Gaussian Mixture.
@ -255,15 +250,6 @@ class GTSAM_EXPORT GaussianMixture
* @return GaussianFactorGraphTree
*/
GaussianFactorGraphTree add(const GaussianFactorGraphTree &sum) const;
/**
* @brief Merge the Gaussian Bayes Nets in `this` and `sum` while
* maintaining the decision tree structure.
*
* @param sum Decision Tree of Gaussian Bayes Nets
* @return GaussianBayesNetTree
*/
GaussianBayesNetTree add(const GaussianBayesNetTree &sum) const;
/// @}
private:

View File

@ -28,86 +28,11 @@
namespace gtsam {
/**
* @brief Helper function to correct the [A|b] matrices in the factor components
* with the normalizer values.
* This is done by storing the normalizer value in
* the `b` vector as an additional row.
*
* @param factors DecisionTree of GaussianFactor shared pointers.
* @param varyingNormalizers Flag indicating the normalizers are different for
* each component.
* @return GaussianMixtureFactor::Factors
*/
GaussianMixtureFactor::Factors correct(
const GaussianMixtureFactor::Factors &factors, bool varyingNormalizers) {
if (!varyingNormalizers) {
return factors;
}
// First compute all the sqrt(|2 pi Sigma|) terms
auto computeNormalizers = [](const GaussianMixtureFactor::sharedFactor &gf) {
auto jf = std::dynamic_pointer_cast<JacobianFactor>(gf);
// If we have, say, a Hessian factor, then no need to do anything
if (!jf) return 0.0;
auto model = jf->get_model();
// If there is no noise model, there is nothing to do.
if (!model) {
return 0.0;
}
// Since noise models are Gaussian, we can get the logDeterminant using the
// same trick as in GaussianConditional
double logDetR =
model->R().diagonal().unaryExpr([](double x) { return log(x); }).sum();
double logDeterminantSigma = -2.0 * logDetR;
size_t n = model->dim();
constexpr double log2pi = 1.8378770664093454835606594728112;
return n * log2pi + logDeterminantSigma;
};
AlgebraicDecisionTree<Key> log_normalizers =
DecisionTree<Key, double>(factors, computeNormalizers);
// Find the minimum value so we can "proselytize" to positive values.
// Done because we can't have sqrt of negative numbers.
double min_log_normalizer = log_normalizers.min();
log_normalizers = log_normalizers.apply(
[&min_log_normalizer](double n) { return n - min_log_normalizer; });
// Finally, update the [A|b] matrices.
auto update = [&log_normalizers](
const Assignment<Key> &assignment,
const GaussianMixtureFactor::sharedFactor &gf) {
auto jf = std::dynamic_pointer_cast<JacobianFactor>(gf);
if (!jf) return gf;
// If there is no noise model, there is nothing to do.
if (!jf->get_model()) return gf;
// If the log_normalizer is 0, do nothing
if (log_normalizers(assignment) == 0.0) return gf;
GaussianFactorGraph gfg;
gfg.push_back(jf);
Vector c(1);
c << std::sqrt(log_normalizers(assignment));
auto constantFactor = std::make_shared<JacobianFactor>(c);
gfg.push_back(constantFactor);
return std::dynamic_pointer_cast<GaussianFactor>(
std::make_shared<JacobianFactor>(gfg));
};
return factors.apply(update);
}
/* *******************************************************************************/
GaussianMixtureFactor::GaussianMixtureFactor(const KeyVector &continuousKeys,
const DiscreteKeys &discreteKeys,
const Factors &factors,
bool varyingNormalizers)
: Base(continuousKeys, discreteKeys),
factors_(correct(factors, varyingNormalizers)) {}
const Factors &factors)
: Base(continuousKeys, discreteKeys), factors_(factors) {}
/* *******************************************************************************/
bool GaussianMixtureFactor::equals(const HybridFactor &lf, double tol) const {
@ -129,9 +54,7 @@ bool GaussianMixtureFactor::equals(const HybridFactor &lf, double tol) const {
/* *******************************************************************************/
void GaussianMixtureFactor::print(const std::string &s,
const KeyFormatter &formatter) const {
std::cout << (s.empty() ? "" : s + "\n");
std::cout << "GaussianMixtureFactor" << std::endl;
HybridFactor::print("", formatter);
HybridFactor::print(s, formatter);
std::cout << "{\n";
if (factors_.empty()) {
std::cout << " empty" << std::endl;

View File

@ -82,13 +82,10 @@ class GTSAM_EXPORT GaussianMixtureFactor : public HybridFactor {
* their cardinalities.
* @param factors The decision tree of Gaussian factors stored as the mixture
* density.
* @param varyingNormalizers Flag indicating factor components have varying
* normalizer values.
*/
GaussianMixtureFactor(const KeyVector &continuousKeys,
const DiscreteKeys &discreteKeys,
const Factors &factors,
bool varyingNormalizers = false);
const Factors &factors);
/**
* @brief Construct a new GaussianMixtureFactor object using a vector of
@ -97,16 +94,12 @@ class GTSAM_EXPORT GaussianMixtureFactor : public HybridFactor {
* @param continuousKeys Vector of keys for continuous factors.
* @param discreteKeys Vector of discrete keys.
* @param factors Vector of gaussian factor shared pointers.
* @param varyingNormalizers Flag indicating factor components have varying
* normalizer values.
*/
GaussianMixtureFactor(const KeyVector &continuousKeys,
const DiscreteKeys &discreteKeys,
const std::vector<sharedFactor> &factors,
bool varyingNormalizers = false)
const std::vector<sharedFactor> &factors)
: GaussianMixtureFactor(continuousKeys, discreteKeys,
Factors(discreteKeys, factors),
varyingNormalizers) {}
Factors(discreteKeys, factors)) {}
/// @}
/// @name Testable
@ -114,8 +107,9 @@ class GTSAM_EXPORT GaussianMixtureFactor : public HybridFactor {
bool equals(const HybridFactor &lf, double tol = 1e-9) const override;
void print(const std::string &s = "", const KeyFormatter &formatter =
DefaultKeyFormatter) const override;
void print(
const std::string &s = "GaussianMixtureFactor\n",
const KeyFormatter &formatter = DefaultKeyFormatter) const override;
/// @}
/// @name Standard API

View File

@ -220,16 +220,16 @@ GaussianBayesNet HybridBayesNet::choose(
/* ************************************************************************* */
HybridValues HybridBayesNet::optimize() const {
// Collect all the discrete factors to compute MPE
DiscreteFactorGraph discrete_fg;
DiscreteBayesNet discrete_bn;
for (auto &&conditional : *this) {
if (conditional->isDiscrete()) {
discrete_fg.push_back(conditional->asDiscrete());
discrete_bn.push_back(conditional->asDiscrete());
}
}
// Solve for the MPE
DiscreteValues mpe = discrete_fg.optimize();
DiscreteValues mpe = DiscreteFactorGraph(discrete_bn).optimize();
// Given the MPE, compute the optimal continuous values.
return HybridValues(optimize(mpe), mpe);

View File

@ -13,7 +13,6 @@
* @file HybridFactor.h
* @date Mar 11, 2022
* @author Fan Jiang
* @author Varun Agrawal
*/
#pragma once
@ -34,8 +33,6 @@ class HybridValues;
/// Alias for DecisionTree of GaussianFactorGraphs
using GaussianFactorGraphTree = DecisionTree<Key, GaussianFactorGraph>;
/// Alias for DecisionTree of GaussianBayesNets
using GaussianBayesNetTree = DecisionTree<Key, GaussianBayesNet>;
KeyVector CollectKeys(const KeyVector &continuousKeys,
const DiscreteKeys &discreteKeys);

View File

@ -279,37 +279,21 @@ GaussianFactorGraphTree removeEmpty(const GaussianFactorGraphTree &sum) {
using Result = std::pair<std::shared_ptr<GaussianConditional>,
GaussianMixtureFactor::sharedFactor>;
/**
* Compute the probability q(μ;m) = exp(-error(μ;m)) * sqrt(det(2π Σ_m)
* from the residual error at the mean μ.
* The residual error contains no keys, and only
* depends on the discrete separator if present.
*/
// Integrate the probability mass in the last continuous conditional using
// the unnormalized probability q(μ;m) = exp(-error(μ;m)) at the mean.
// discrete_probability = exp(-error(μ;m)) * sqrt(det(2π Σ_m))
static std::shared_ptr<Factor> createDiscreteFactor(
const DecisionTree<Key, Result> &eliminationResults,
const DiscreteKeys &discreteSeparator) {
auto logProbability = [&](const Result &pair) -> double {
auto probability = [&](const Result &pair) -> double {
const auto &[conditional, factor] = pair;
static const VectorValues kEmpty;
// If the factor is not null, it has no keys, just contains the residual.
if (!factor) return 1.0; // TODO(dellaert): not loving this.
// Logspace version of:
// exp(-factor->error(kEmpty)) / conditional->normalizationConstant();
// We take negative of the logNormalizationConstant `log(1/k)`
// to get `log(k)`.
return -factor->error(kEmpty) + (-conditional->logNormalizationConstant());
return exp(-factor->error(kEmpty)) / conditional->normalizationConstant();
};
AlgebraicDecisionTree<Key> logProbabilities(
DecisionTree<Key, double>(eliminationResults, logProbability));
// Perform normalization
double max_log = logProbabilities.max();
AlgebraicDecisionTree probabilities = DecisionTree<Key, double>(
logProbabilities,
[&max_log](const double x) { return exp(x - max_log); });
probabilities = probabilities.normalize(probabilities.sum());
DecisionTree<Key, double> probabilities(eliminationResults, probability);
return std::make_shared<DecisionTreeFactor>(discreteSeparator, probabilities);
}
@ -370,12 +354,6 @@ hybridElimination(const HybridGaussianFactorGraph &factors,
// Perform elimination!
DecisionTree<Key, Result> eliminationResults(factorGraphTree, eliminate);
// Create the GaussianMixture from the conditionals
GaussianMixture::Conditionals conditionals(
eliminationResults, [](const Result &pair) { return pair.first; });
auto gaussianMixture = std::make_shared<GaussianMixture>(
frontalKeys, continuousSeparator, discreteSeparator, conditionals);
// If there are no more continuous parents we create a DiscreteFactor with the
// error for each discrete choice. Otherwise, create a GaussianMixtureFactor
// on the separator, taking care to correct for conditional constants.
@ -385,6 +363,12 @@ hybridElimination(const HybridGaussianFactorGraph &factors,
: createGaussianMixtureFactor(eliminationResults, continuousSeparator,
discreteSeparator);
// Create the GaussianMixture from the conditionals
GaussianMixture::Conditionals conditionals(
eliminationResults, [](const Result &pair) { return pair.first; });
auto gaussianMixture = std::make_shared<GaussianMixture>(
frontalKeys, continuousSeparator, discreteSeparator, conditionals);
return {std::make_shared<HybridConditional>(gaussianMixture), newFactor};
}

View File

@ -22,13 +22,9 @@
#include <gtsam/discrete/DiscreteValues.h>
#include <gtsam/hybrid/GaussianMixture.h>
#include <gtsam/hybrid/GaussianMixtureFactor.h>
#include <gtsam/hybrid/HybridBayesNet.h>
#include <gtsam/hybrid/HybridGaussianFactorGraph.h>
#include <gtsam/hybrid/HybridValues.h>
#include <gtsam/inference/Symbol.h>
#include <gtsam/linear/GaussianFactorGraph.h>
#include <gtsam/nonlinear/PriorFactor.h>
#include <gtsam/slam/BetweenFactor.h>
// Include for test suite
#include <CppUnitLite/TestHarness.h>
@ -60,6 +56,7 @@ TEST(GaussianMixtureFactor, Sum) {
auto b = Matrix::Zero(2, 1);
Vector2 sigmas;
sigmas << 1, 2;
auto model = noiseModel::Diagonal::Sigmas(sigmas, true);
auto f10 = std::make_shared<JacobianFactor>(X(1), A1, X(2), A2, b);
auto f11 = std::make_shared<JacobianFactor>(X(1), A1, X(2), A2, b);
@ -109,8 +106,7 @@ TEST(GaussianMixtureFactor, Printing) {
GaussianMixtureFactor mixtureFactor({X(1), X(2)}, {m1}, factors);
std::string expected =
R"(GaussianMixtureFactor
Hybrid [x1 x2; 1]{
R"(Hybrid [x1 x2; 1]{
Choice(1)
0 Leaf :
A[x1] = [
@ -182,8 +178,7 @@ TEST(GaussianMixtureFactor, Error) {
continuousValues.insert(X(2), Vector2(1, 1));
// error should return a tree of errors, with nodes for each discrete value.
AlgebraicDecisionTree<Key> error_tree =
mixtureFactor.errorTree(continuousValues);
AlgebraicDecisionTree<Key> error_tree = mixtureFactor.errorTree(continuousValues);
std::vector<DiscreteKey> discrete_keys = {m1};
// Error values for regression test
@ -196,240 +191,8 @@ TEST(GaussianMixtureFactor, Error) {
DiscreteValues discreteValues;
discreteValues[m1.first] = 1;
EXPECT_DOUBLES_EQUAL(
4.0, mixtureFactor.error({continuousValues, discreteValues}), 1e-9);
}
/* ************************************************************************* */
// Test components with differing means
TEST(GaussianMixtureFactor, DifferentMeans) {
DiscreteKey m1(M(1), 2), m2(M(2), 2);
Values values;
double x1 = 0.0, x2 = 1.75, x3 = 2.60;
values.insert(X(1), x1);
values.insert(X(2), x2);
values.insert(X(3), x3);
auto model0 = noiseModel::Isotropic::Sigma(1, 1e-0);
auto model1 = noiseModel::Isotropic::Sigma(1, 1e-0);
auto prior_noise = noiseModel::Isotropic::Sigma(1, 1e-0);
auto f0 = std::make_shared<BetweenFactor<double>>(X(1), X(2), 0.0, model0)
->linearize(values);
auto f1 = std::make_shared<BetweenFactor<double>>(X(1), X(2), 2.0, model1)
->linearize(values);
std::vector<GaussianFactor::shared_ptr> factors{f0, f1};
GaussianMixtureFactor mixtureFactor({X(1), X(2)}, {m1}, factors, true);
HybridGaussianFactorGraph hfg;
hfg.push_back(mixtureFactor);
f0 = std::make_shared<BetweenFactor<double>>(X(2), X(3), 0.0, model0)
->linearize(values);
f1 = std::make_shared<BetweenFactor<double>>(X(2), X(3), 2.0, model1)
->linearize(values);
std::vector<GaussianFactor::shared_ptr> factors23{f0, f1};
hfg.push_back(GaussianMixtureFactor({X(2), X(3)}, {m2}, factors23, true));
auto prior = PriorFactor<double>(X(1), x1, prior_noise).linearize(values);
hfg.push_back(prior);
hfg.push_back(PriorFactor<double>(X(2), 2.0, prior_noise).linearize(values));
auto bn = hfg.eliminateSequential();
HybridValues actual = bn->optimize();
HybridValues expected(
VectorValues{
{X(1), Vector1(0.0)}, {X(2), Vector1(0.25)}, {X(3), Vector1(-0.6)}},
DiscreteValues{{M(1), 1}, {M(2), 0}});
EXPECT(assert_equal(expected, actual));
{
DiscreteValues dv{{M(1), 0}, {M(2), 0}};
VectorValues cont = bn->optimize(dv);
double error = bn->error(HybridValues(cont, dv));
// regression
EXPECT_DOUBLES_EQUAL(1.77418393408, error, 1e-9);
}
{
DiscreteValues dv{{M(1), 0}, {M(2), 1}};
VectorValues cont = bn->optimize(dv);
double error = bn->error(HybridValues(cont, dv));
// regression
EXPECT_DOUBLES_EQUAL(1.77418393408, error, 1e-9);
}
{
DiscreteValues dv{{M(1), 1}, {M(2), 0}};
VectorValues cont = bn->optimize(dv);
double error = bn->error(HybridValues(cont, dv));
// regression
EXPECT_DOUBLES_EQUAL(1.10751726741, error, 1e-9);
}
{
DiscreteValues dv{{M(1), 1}, {M(2), 1}};
VectorValues cont = bn->optimize(dv);
double error = bn->error(HybridValues(cont, dv));
// regression
EXPECT_DOUBLES_EQUAL(1.10751726741, error, 1e-9);
}
}
/* ************************************************************************* */
/**
* @brief Test components with differing covariances.
* The factor graph is
* *-X1-*-X2
* |
* M1
*/
TEST(GaussianMixtureFactor, DifferentCovariances) {
DiscreteKey m1(M(1), 2);
Values values;
double x1 = 1.0, x2 = 1.0;
values.insert(X(1), x1);
values.insert(X(2), x2);
double between = 0.0;
auto model0 = noiseModel::Isotropic::Sigma(1, 1e2);
auto model1 = noiseModel::Isotropic::Sigma(1, 1e-2);
auto prior_noise = noiseModel::Isotropic::Sigma(1, 1e-3);
auto f0 =
std::make_shared<BetweenFactor<double>>(X(1), X(2), between, model0);
auto f1 =
std::make_shared<BetweenFactor<double>>(X(1), X(2), between, model1);
std::vector<NonlinearFactor::shared_ptr> factors{f0, f1};
// Create via toFactorGraph
using symbol_shorthand::Z;
Matrix H0_1, H0_2, H1_1, H1_2;
Vector d0 = f0->evaluateError(x1, x2, &H0_1, &H0_2);
std::vector<std::pair<Key, Matrix>> terms0 = {{Z(1), gtsam::I_1x1 /*Rx*/},
//
{X(1), H0_1 /*Sp1*/},
{X(2), H0_2 /*Tp2*/}};
Vector d1 = f1->evaluateError(x1, x2, &H1_1, &H1_2);
std::vector<std::pair<Key, Matrix>> terms1 = {{Z(1), gtsam::I_1x1 /*Rx*/},
//
{X(1), H1_1 /*Sp1*/},
{X(2), H1_2 /*Tp2*/}};
gtsam::GaussianMixtureFactor gmf(
{X(1), X(2)}, {m1},
{std::make_shared<JacobianFactor>(X(1), H0_1, X(2), H0_2, -d0, model0),
std::make_shared<JacobianFactor>(X(1), H1_1, X(2), H1_2, -d1, model1)},
true);
// Create FG with single GaussianMixtureFactor
HybridGaussianFactorGraph mixture_fg;
mixture_fg.add(gmf);
// Linearized prior factor on X1
auto prior = PriorFactor<double>(X(1), x1, prior_noise).linearize(values);
mixture_fg.push_back(prior);
auto hbn = mixture_fg.eliminateSequential();
// hbn->print();
VectorValues cv;
cv.insert(X(1), Vector1(0.0));
cv.insert(X(2), Vector1(0.0));
// Check that the error values at the MLE point μ.
AlgebraicDecisionTree<Key> errorTree = hbn->errorTree(cv);
DiscreteValues dv0{{M(1), 0}};
DiscreteValues dv1{{M(1), 1}};
// regression
EXPECT_DOUBLES_EQUAL(9.90348755254, errorTree(dv0), 1e-9);
EXPECT_DOUBLES_EQUAL(0.69314718056, errorTree(dv1), 1e-9);
DiscreteConditional expected_m1(m1, "0.5/0.5");
DiscreteConditional actual_m1 = *(hbn->at(2)->asDiscrete());
EXPECT(assert_equal(expected_m1, actual_m1));
}
/* ************************************************************************* */
/**
* @brief Test components with differing covariances
* but with a Bayes net P(Z|X, M) converted to a FG.
*/
TEST(GaussianMixtureFactor, DifferentCovariances2) {
DiscreteKey m1(M(1), 2);
Values values;
double x1 = 1.0, x2 = 1.0;
values.insert(X(1), x1);
values.insert(X(2), x2);
double between = 0.0;
auto model0 = noiseModel::Isotropic::Sigma(1, 1e2);
auto model1 = noiseModel::Isotropic::Sigma(1, 1e-2);
auto prior_noise = noiseModel::Isotropic::Sigma(1, 1e-3);
auto f0 =
std::make_shared<BetweenFactor<double>>(X(1), X(2), between, model0);
auto f1 =
std::make_shared<BetweenFactor<double>>(X(1), X(2), between, model1);
std::vector<NonlinearFactor::shared_ptr> factors{f0, f1};
// Create via toFactorGraph
using symbol_shorthand::Z;
Matrix H0_1, H0_2, H1_1, H1_2;
Vector d0 = f0->evaluateError(x1, x2, &H0_1, &H0_2);
std::vector<std::pair<Key, Matrix>> terms0 = {{Z(1), gtsam::I_1x1 /*Rx*/},
//
{X(1), H0_1 /*Sp1*/},
{X(2), H0_2 /*Tp2*/}};
Vector d1 = f1->evaluateError(x1, x2, &H1_1, &H1_2);
std::vector<std::pair<Key, Matrix>> terms1 = {{Z(1), gtsam::I_1x1 /*Rx*/},
//
{X(1), H1_1 /*Sp1*/},
{X(2), H1_2 /*Tp2*/}};
auto gm = new gtsam::GaussianMixture(
{Z(1)}, {X(1), X(2)}, {m1},
{std::make_shared<GaussianConditional>(terms0, 1, -d0, model0),
std::make_shared<GaussianConditional>(terms1, 1, -d1, model1)});
gtsam::HybridBayesNet bn;
bn.emplace_back(gm);
gtsam::VectorValues measurements;
measurements.insert(Z(1), gtsam::Z_1x1);
// Create FG with single GaussianMixtureFactor
HybridGaussianFactorGraph mixture_fg = bn.toFactorGraph(measurements);
// Linearized prior factor on X1
auto prior = PriorFactor<double>(X(1), x1, prior_noise).linearize(values);
mixture_fg.push_back(prior);
auto hbn = mixture_fg.eliminateSequential();
VectorValues cv;
cv.insert(X(1), Vector1(0.0));
cv.insert(X(2), Vector1(0.0));
// Check that the error values at the MLE point μ.
AlgebraicDecisionTree<Key> errorTree = hbn->errorTree(cv);
DiscreteValues dv0{{M(1), 0}};
DiscreteValues dv1{{M(1), 1}};
// regression
EXPECT_DOUBLES_EQUAL(9.90348755254, errorTree(dv0), 1e-9);
EXPECT_DOUBLES_EQUAL(0.69314718056, errorTree(dv1), 1e-9);
DiscreteConditional expected_m1(m1, "0.5/0.5");
DiscreteConditional actual_m1 = *(hbn->at(2)->asDiscrete());
EXPECT(assert_equal(expected_m1, actual_m1));
4.0, mixtureFactor.error({continuousValues, discreteValues}),
1e-9);
}
/* ************************************************************************* */

View File

@ -510,7 +510,6 @@ factor 0:
b = [ -10 ]
No noise model
factor 1:
GaussianMixtureFactor
Hybrid [x0 x1; m0]{
Choice(m0)
0 Leaf :
@ -535,7 +534,6 @@ Hybrid [x0 x1; m0]{
}
factor 2:
GaussianMixtureFactor
Hybrid [x1 x2; m1]{
Choice(m1)
0 Leaf :
@ -677,26 +675,22 @@ factor 6: P( m1 | m0 ):
size: 3
conditional 0: Hybrid P( x0 | x1 m0)
Discrete Keys = (m0, 2),
logNormalizationConstant: 1.38862
Choice(m0)
0 Leaf p(x0 | x1)
R = [ 10.0499 ]
S[x1] = [ -0.0995037 ]
d = [ -9.85087 ]
logNormalizationConstant: 1.38862
No noise model
1 Leaf p(x0 | x1)
R = [ 10.0499 ]
S[x1] = [ -0.0995037 ]
d = [ -9.95037 ]
logNormalizationConstant: 1.38862
No noise model
conditional 1: Hybrid P( x1 | x2 m0 m1)
Discrete Keys = (m0, 2), (m1, 2),
logNormalizationConstant: 1.3935
Choice(m1)
0 Choice(m0)
@ -704,14 +698,12 @@ conditional 1: Hybrid P( x1 | x2 m0 m1)
R = [ 10.099 ]
S[x2] = [ -0.0990196 ]
d = [ -9.99901 ]
logNormalizationConstant: 1.3935
No noise model
0 1 Leaf p(x1 | x2)
R = [ 10.099 ]
S[x2] = [ -0.0990196 ]
d = [ -9.90098 ]
logNormalizationConstant: 1.3935
No noise model
1 Choice(m0)
@ -719,19 +711,16 @@ conditional 1: Hybrid P( x1 | x2 m0 m1)
R = [ 10.099 ]
S[x2] = [ -0.0990196 ]
d = [ -10.098 ]
logNormalizationConstant: 1.3935
No noise model
1 1 Leaf p(x1 | x2)
R = [ 10.099 ]
S[x2] = [ -0.0990196 ]
d = [ -10 ]
logNormalizationConstant: 1.3935
No noise model
conditional 2: Hybrid P( x2 | m0 m1)
Discrete Keys = (m0, 2), (m1, 2),
logNormalizationConstant: 1.38857
Choice(m1)
0 Choice(m0)
@ -740,7 +729,6 @@ conditional 2: Hybrid P( x2 | m0 m1)
d = [ -10.1489 ]
mean: 1 elements
x2: -1.0099
logNormalizationConstant: 1.38857
No noise model
0 1 Leaf p(x2)
@ -748,7 +736,6 @@ conditional 2: Hybrid P( x2 | m0 m1)
d = [ -10.1479 ]
mean: 1 elements
x2: -1.0098
logNormalizationConstant: 1.38857
No noise model
1 Choice(m0)
@ -757,7 +744,6 @@ conditional 2: Hybrid P( x2 | m0 m1)
d = [ -10.0504 ]
mean: 1 elements
x2: -1.0001
logNormalizationConstant: 1.38857
No noise model
1 1 Leaf p(x2)
@ -765,7 +751,6 @@ conditional 2: Hybrid P( x2 | m0 m1)
d = [ -10.0494 ]
mean: 1 elements
x2: -1
logNormalizationConstant: 1.38857
No noise model
)";

View File

@ -18,9 +18,6 @@
#include <gtsam/base/TestableAssertions.h>
#include <gtsam/discrete/DiscreteValues.h>
#include <gtsam/hybrid/HybridBayesNet.h>
#include <gtsam/hybrid/HybridGaussianFactorGraph.h>
#include <gtsam/hybrid/HybridNonlinearFactorGraph.h>
#include <gtsam/hybrid/MixtureFactor.h>
#include <gtsam/inference/Symbol.h>
#include <gtsam/slam/BetweenFactor.h>
@ -118,152 +115,6 @@ TEST(MixtureFactor, Dim) {
EXPECT_LONGS_EQUAL(1, mixtureFactor.dim());
}
/* ************************************************************************* */
// Test components with differing means
TEST(MixtureFactor, DifferentMeans) {
DiscreteKey m1(M(1), 2), m2(M(2), 2);
Values values;
double x1 = 0.0, x2 = 1.75, x3 = 2.60;
values.insert(X(1), x1);
values.insert(X(2), x2);
values.insert(X(3), x3);
auto model0 = noiseModel::Isotropic::Sigma(1, 1e-0);
auto model1 = noiseModel::Isotropic::Sigma(1, 1e-0);
auto prior_noise = noiseModel::Isotropic::Sigma(1, 1e-0);
auto f0 = std::make_shared<BetweenFactor<double>>(X(1), X(2), 0.0, model0);
auto f1 = std::make_shared<BetweenFactor<double>>(X(1), X(2), 2.0, model1);
std::vector<NonlinearFactor::shared_ptr> factors{f0, f1};
MixtureFactor mixtureFactor({X(1), X(2)}, {m1}, factors);
HybridNonlinearFactorGraph hnfg;
hnfg.push_back(mixtureFactor);
f0 = std::make_shared<BetweenFactor<double>>(X(2), X(3), 0.0, model0);
f1 = std::make_shared<BetweenFactor<double>>(X(2), X(3), 2.0, model1);
std::vector<NonlinearFactor::shared_ptr> factors23{f0, f1};
hnfg.push_back(MixtureFactor({X(2), X(3)}, {m2}, factors23));
auto prior = PriorFactor<double>(X(1), x1, prior_noise);
hnfg.push_back(prior);
hnfg.emplace_shared<PriorFactor<double>>(X(2), 2.0, prior_noise);
auto hgfg = hnfg.linearize(values);
auto bn = hgfg->eliminateSequential();
HybridValues actual = bn->optimize();
HybridValues expected(
VectorValues{
{X(1), Vector1(0.0)}, {X(2), Vector1(0.25)}, {X(3), Vector1(-0.6)}},
DiscreteValues{{M(1), 1}, {M(2), 0}});
EXPECT(assert_equal(expected, actual));
{
DiscreteValues dv{{M(1), 0}, {M(2), 0}};
VectorValues cont = bn->optimize(dv);
double error = bn->error(HybridValues(cont, dv));
// regression
EXPECT_DOUBLES_EQUAL(1.77418393408, error, 1e-9);
}
{
DiscreteValues dv{{M(1), 0}, {M(2), 1}};
VectorValues cont = bn->optimize(dv);
double error = bn->error(HybridValues(cont, dv));
// regression
EXPECT_DOUBLES_EQUAL(1.77418393408, error, 1e-9);
}
{
DiscreteValues dv{{M(1), 1}, {M(2), 0}};
VectorValues cont = bn->optimize(dv);
double error = bn->error(HybridValues(cont, dv));
// regression
EXPECT_DOUBLES_EQUAL(1.10751726741, error, 1e-9);
}
{
DiscreteValues dv{{M(1), 1}, {M(2), 1}};
VectorValues cont = bn->optimize(dv);
double error = bn->error(HybridValues(cont, dv));
// regression
EXPECT_DOUBLES_EQUAL(1.10751726741, error, 1e-9);
}
}
/* ************************************************************************* */
// Test components with differing covariances
TEST(MixtureFactor, DifferentCovariances) {
DiscreteKey m1(M(1), 2);
Values values;
double x1 = 1.0, x2 = 1.0;
values.insert(X(1), x1);
values.insert(X(2), x2);
double between = 0.0;
auto model0 = noiseModel::Isotropic::Sigma(1, 1e2);
auto model1 = noiseModel::Isotropic::Sigma(1, 1e-2);
auto prior_noise = noiseModel::Isotropic::Sigma(1, 1e-3);
auto f0 =
std::make_shared<BetweenFactor<double>>(X(1), X(2), between, model0);
auto f1 =
std::make_shared<BetweenFactor<double>>(X(1), X(2), between, model1);
std::vector<NonlinearFactor::shared_ptr> factors{f0, f1};
// Create via toFactorGraph
using symbol_shorthand::Z;
Matrix H0_1, H0_2, H1_1, H1_2;
Vector d0 = f0->evaluateError(x1, x2, &H0_1, &H0_2);
std::vector<std::pair<Key, Matrix>> terms0 = {{Z(1), gtsam::I_1x1 /*Rx*/},
//
{X(1), H0_1 /*Sp1*/},
{X(2), H0_2 /*Tp2*/}};
Vector d1 = f1->evaluateError(x1, x2, &H1_1, &H1_2);
std::vector<std::pair<Key, Matrix>> terms1 = {{Z(1), gtsam::I_1x1 /*Rx*/},
//
{X(1), H1_1 /*Sp1*/},
{X(2), H1_2 /*Tp2*/}};
auto gm = new gtsam::GaussianMixture(
{Z(1)}, {X(1), X(2)}, {m1},
{std::make_shared<GaussianConditional>(terms0, 1, -d0, model0),
std::make_shared<GaussianConditional>(terms1, 1, -d1, model1)});
gtsam::HybridBayesNet bn;
bn.emplace_back(gm);
gtsam::VectorValues measurements;
measurements.insert(Z(1), gtsam::Z_1x1);
// Create FG with single GaussianMixtureFactor
HybridGaussianFactorGraph mixture_fg = bn.toFactorGraph(measurements);
// Linearized prior factor on X1
auto prior = PriorFactor<double>(X(1), x1, prior_noise).linearize(values);
mixture_fg.push_back(prior);
auto hbn = mixture_fg.eliminateSequential();
VectorValues cv;
cv.insert(X(1), Vector1(0.0));
cv.insert(X(2), Vector1(0.0));
// Check that we get different error values at the MLE point μ.
AlgebraicDecisionTree<Key> errorTree = hbn->errorTree(cv);
HybridValues hv0(cv, DiscreteValues{{M(1), 0}});
HybridValues hv1(cv, DiscreteValues{{M(1), 1}});
auto cond0 = hbn->at(0)->asMixture();
auto cond1 = hbn->at(1)->asMixture();
auto discrete_cond = hbn->at(2)->asDiscrete();
AlgebraicDecisionTree<Key> expectedErrorTree(m1, 9.90348755254,
0.69314718056);
EXPECT(assert_equal(expectedErrorTree, errorTree));
}
/* ************************************************************************* */
int main() {
TestResult tr;

View File

@ -243,25 +243,5 @@ namespace gtsam {
}
/* ************************************************************************* */
double GaussianBayesNet::logNormalizationConstant() const {
/*
normalization constant = 1.0 / sqrt((2*pi)^n*det(Sigma))
logConstant = -0.5 * n*log(2*pi) - 0.5 * log det(Sigma)
log det(Sigma)) = -2.0 * logDeterminant()
thus, logConstant = -0.5*n*log(2*pi) + logDeterminant()
BayesNet logConstant = sum(-0.5*n_i*log(2*pi) + logDeterminant_i())
= sum(-0.5*n_i*log(2*pi)) + sum(logDeterminant_i())
= sum(-0.5*n_i*log(2*pi)) + bn->logDeterminant()
*/
double logNormConst = 0.0;
for (const sharedConditional& cg : *this) {
logNormConst += cg->logNormalizationConstant();
}
return logNormConst;
}
/* ************************************************************************* */
} // namespace gtsam

View File

@ -82,12 +82,6 @@ namespace gtsam {
/** Check equality */
bool equals(const This& bn, double tol = 1e-9) const;
/// Check exact equality.
friend bool operator==(const GaussianBayesNet& lhs,
const GaussianBayesNet& rhs) {
return lhs.isEqual(rhs);
}
/// print graph
void print(
const std::string& s = "",
@ -234,14 +228,6 @@ namespace gtsam {
* @return The determinant */
double logDeterminant() const;
/**
* @brief Get the log of the normalization constant corresponding to the
* joint Gaussian density represented by this Bayes net.
*
* @return double
*/
double logNormalizationConstant() const;
/**
* Backsubstitute with a different RHS vector than the one stored in this BayesNet.
* gy=inv(R*inv(Sigma))*gx

View File

@ -121,7 +121,6 @@ namespace gtsam {
const auto mean = solve({}); // solve for mean.
mean.print(" mean", formatter);
}
cout << " logNormalizationConstant: " << logNormalizationConstant() << std::endl;
if (model_)
model_->print(" Noise model: ");
else
@ -185,13 +184,8 @@ namespace gtsam {
double GaussianConditional::logNormalizationConstant() const {
constexpr double log2pi = 1.8378770664093454835606594728112;
size_t n = d().size();
// Sigma = (R'R)^{-1}, det(Sigma) = det((R'R)^{-1}) = det(R'R)^{-1}
// log det(Sigma) = -log(det(R'R)) = -2*log(det(R))
// Hence, log det(Sigma)) = -2.0 * logDeterminant()
// which gives log = -0.5*n*log(2*pi) - 0.5*(-2.0 * logDeterminant())
// = -0.5*n*log(2*pi) + (0.5*2.0 * logDeterminant())
// = -0.5*n*log(2*pi) + logDeterminant()
return -0.5 * n * log2pi + logDeterminant();
// log det(Sigma)) = - 2.0 * logDeterminant()
return - 0.5 * n * log2pi + logDeterminant();
}
/* ************************************************************************* */

View File

@ -263,11 +263,6 @@ namespace gtsam {
/** equals required by Testable for unit testing */
bool equals(const VectorValues& x, double tol = 1e-9) const;
/// Check exact equality.
friend bool operator==(const VectorValues& lhs, const VectorValues& rhs) {
return lhs.equals(rhs);
}
/// @{
/// @name Advanced Interface
/// @{

View File

@ -510,17 +510,12 @@ virtual class GaussianConditional : gtsam::JacobianFactor {
GaussianConditional(size_t key, gtsam::Vector d, gtsam::Matrix R, size_t name1, gtsam::Matrix S,
size_t name2, gtsam::Matrix T,
const gtsam::noiseModel::Diagonal* sigmas);
GaussianConditional(const vector<std::pair<gtsam::Key, gtsam::Matrix>> terms,
size_t nrFrontals, gtsam::Vector d,
const gtsam::noiseModel::Diagonal* sigmas);
// Constructors with no noise model
GaussianConditional(size_t key, gtsam::Vector d, gtsam::Matrix R);
GaussianConditional(size_t key, gtsam::Vector d, gtsam::Matrix R, size_t name1, gtsam::Matrix S);
GaussianConditional(size_t key, gtsam::Vector d, gtsam::Matrix R, size_t name1, gtsam::Matrix S,
size_t name2, gtsam::Matrix T);
GaussianConditional(const gtsam::KeyVector& keys, size_t nrFrontals,
const gtsam::VerticalBlockMatrix& augmentedMatrix);
// Named constructors
static gtsam::GaussianConditional FromMeanAndStddev(gtsam::Key key,

View File

@ -516,7 +516,6 @@ TEST(GaussianConditional, Print) {
" d = [ 20 40 ]\n"
" mean: 1 elements\n"
" x0: 20 40\n"
" logNormalizationConstant: -4.0351\n"
"isotropic dim=2 sigma=3\n";
EXPECT(assert_print_equal(expected, conditional, "GaussianConditional"));
@ -531,7 +530,6 @@ TEST(GaussianConditional, Print) {
" S[x1] = [ -1 -2 ]\n"
" [ -3 -4 ]\n"
" d = [ 20 40 ]\n"
" logNormalizationConstant: -4.0351\n"
"isotropic dim=2 sigma=3\n";
EXPECT(assert_print_equal(expected1, conditional1, "GaussianConditional"));
@ -547,7 +545,6 @@ TEST(GaussianConditional, Print) {
" S[y1] = [ -5 -6 ]\n"
" [ -7 -8 ]\n"
" d = [ 20 40 ]\n"
" logNormalizationConstant: -4.0351\n"
"isotropic dim=2 sigma=3\n";
EXPECT(assert_print_equal(expected2, conditional2, "GaussianConditional"));
}