iSAM with options

release/4.3a0
Frank Dellaert 2012-06-07 06:14:47 +00:00
parent 9ef891198b
commit b10f4d09e3
1 changed files with 51 additions and 28 deletions

View File

@ -10,18 +10,27 @@
% @author Duy-Nguyen Ta % @author Duy-Nguyen Ta
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
if 0 clear
%% Create a triangle target, just 3 points on a plane
%% Set Options here
TRIANGLE = false;
NCAMERAS = 10;
SHOW_IMAGES = false;
HARD_CONSTRAINT = false;
POINT_PRIORS = false;
BATCH_INIT = true;
ALWAYS_RELINEARIZE = false;
DRAW_TRUE_POSES = true;
%% Generate simulated data
if TRIANGLE % Create a triangle target, just 3 points on a plane
nPoints = 3; nPoints = 3;
r = 10; r = 10;
points = {};
for j=1:nPoints for j=1:nPoints
theta = (j-1)*2*pi/nPoints; theta = (j-1)*2*pi/nPoints;
points{j} = gtsamPoint3([r*cos(theta), r*sin(theta), 0]'); points{j} = gtsamPoint3([r*cos(theta), r*sin(theta), 0]');
end end
else else % 3D landmarks as vertices of a cube
%% Generate simulated data
% 3D landmarks as vertices of a cube
nPoints = 8; nPoints = 8;
points = {gtsamPoint3([10 10 10]'),... points = {gtsamPoint3([10 10 10]'),...
gtsamPoint3([-10 10 10]'),... gtsamPoint3([-10 10 10]'),...
@ -34,45 +43,56 @@ else
end end
%% Create camera cameras on a circle around the triangle %% Create camera cameras on a circle around the triangle
nCameras = 10; height = 10; r = 40;
height = 0;
r = 30;
cameras = {};
K = gtsamCal3_S2(500,500,0,640/2,480/2); K = gtsamCal3_S2(500,500,0,640/2,480/2);
for i=1:nCameras for i=1:NCAMERAS
theta = (i-1)*2*pi/nCameras; theta = (i-1)*2*pi/NCAMERAS;
t = gtsamPoint3([r*cos(theta), r*sin(theta), height]'); t = gtsamPoint3([r*cos(theta), r*sin(theta), height]');
cameras{i} = gtsamSimpleCamera_lookat(t, gtsamPoint3, gtsamPoint3([0,0,1]'), K); cameras{i} = gtsamSimpleCamera_lookat(t, gtsamPoint3, gtsamPoint3([0,0,1]'), K);
if SHOW_IMAGES % show images
figure(i);clf;hold on
for j=1:nPoints
zij = cameras{i}.project(points{j});
plot(zij.x,zij.y,'*');
axis([1 640 1 480]);
end
end
end end
odometry = cameras{1}.pose.between(cameras{2}.pose); odometry = cameras{1}.pose.between(cameras{2}.pose);
%% Set Noise parameters
poseNoise = gtsamSharedNoiseModel_Sigmas([0.001 0.001 0.001 0.1 0.1 0.1]'); poseNoise = gtsamSharedNoiseModel_Sigmas([0.001 0.001 0.001 0.1 0.1 0.1]');
odometryNoise = gtsamSharedNoiseModel_Sigmas([0.001 0.001 0.001 0.1 0.1 0.1]'); odometryNoise = gtsamSharedNoiseModel_Sigmas([0.001 0.001 0.001 0.1 0.1 0.1]');
pointNoise = gtsamSharedNoiseModel_Sigma(3, 0.1); pointNoise = gtsamSharedNoiseModel_Sigma(3, 0.1);
measurementNoise = gtsamSharedNoiseModel_Sigma(2, 1.0); measurementNoise = gtsamSharedNoiseModel_Sigma(2, 1.0);
%% Initialize iSAM %% Initialize iSAM
isam = visualSLAMISAM(2); isam = visualSLAMISAM;
newFactors = visualSLAMGraph; newFactors = visualSLAMGraph;
initialEstimates = visualSLAMValues; initialEstimates = visualSLAMValues;
if 1 % add hard constraint i1 = symbol('x',1);
newFactors.addPoseConstraint(symbol('x',1),cameras{1}.pose); camera1 = cameras{1};
pose1 = camera1.pose;
if HARD_CONSTRAINT % add hard constraint
newFactors.addPoseConstraint(i1,pose1);
else else
newFactors.addPosePrior(symbol('x',1), cameras{1}.pose, poseNoise); newFactors.addPosePrior(i1,pose1, poseNoise);
end end
initialEstimates.insertPose(symbol('x',1), cameras{1}.pose); initialEstimates.insertPose(i1,pose1);
% Add visual measurement factors from first pose % Add visual measurement factors from first pose
for j=1:nPoints for j=1:nPoints
if 0 % add point priors jj = symbol('l',j);
newFactors.addPointPrior(symbol('l',j), points{j}, pointNoise); if POINT_PRIORS % add point priors
newFactors.addPointPrior(jj, points{j}, pointNoise);
end end
zij = cameras{i}.project(points{j}); zij = camera1.project(points{j});
newFactors.addMeasurement(zij, measurementNoise, symbol('x',1), symbol('l',j), K); newFactors.addMeasurement(zij, measurementNoise, i1, jj, K);
initialEstimates.insertPoint(symbol('l',j), points{j}); initialEstimates.insertPoint(jj, points{j});
end end
%% Run iSAM Loop %% Run iSAM Loop
for i=2:nCameras for i=2:NCAMERAS
%% Add odometry %% Add odometry
newFactors.addOdometry(symbol('x',i-1), symbol('x',i), odometry, odometryNoise); newFactors.addOdometry(symbol('x',i-1), symbol('x',i), odometry, odometryNoise);
@ -90,16 +110,19 @@ for i=2:nCameras
initialEstimates.insertPose(symbol('x',i), prevPose.compose(odometry)); initialEstimates.insertPose(symbol('x',i), prevPose.compose(odometry));
%% Update ISAM %% Update ISAM
if BATCH_INIT & (i==2) % Do a full optimize for first two poses
initialEstimates
fullyOptimized = newFactors.optimize(initialEstimates)
initialEstimates = fullyOptimized;
end
isam.update(newFactors, initialEstimates); isam.update(newFactors, initialEstimates);
result = isam.estimate(); result = isam.estimate();
if 0 % re-linearize if ALWAYS_RELINEARIZE % re-linearize
isam.reorder_relinearize(); isam.reorder_relinearize();
end end
%% Plot results %% Plot results
P1 = isam.marginalCovariance(symbol('x',1)); figure(NCAMERAS+1);clf
sqrt(diag(P1))
h=figure(1);clf
hold on; hold on;
for j=1:size(points,2) for j=1:size(points,2)
P = isam.marginalCovariance(symbol('l',j)); P = isam.marginalCovariance(symbol('l',j));
@ -111,7 +134,7 @@ for i=2:nCameras
P = isam.marginalCovariance(symbol('x',ii)); P = isam.marginalCovariance(symbol('x',ii));
pose_ii = result.pose(symbol('x',ii)); pose_ii = result.pose(symbol('x',ii));
plotPose3(pose_ii,P,10); plotPose3(pose_ii,P,10);
if 1 % show ground truth if DRAW_TRUE_POSES % show ground truth
plotPose3(cameras{ii}.pose,0.001*eye(6),10); plotPose3(cameras{ii}.pose,0.001*eye(6),10);
end end
end end