From b10f4d09e3743c21599ec1da2daf0871a3a15c96 Mon Sep 17 00:00:00 2001 From: Frank Dellaert Date: Thu, 7 Jun 2012 06:14:47 +0000 Subject: [PATCH] iSAM with options --- examples/matlab/VisualISAMExample.m | 79 +++++++++++++++++++---------- 1 file changed, 51 insertions(+), 28 deletions(-) diff --git a/examples/matlab/VisualISAMExample.m b/examples/matlab/VisualISAMExample.m index 7eacbf04a..89947cd40 100644 --- a/examples/matlab/VisualISAMExample.m +++ b/examples/matlab/VisualISAMExample.m @@ -10,18 +10,27 @@ % @author Duy-Nguyen Ta %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -if 0 - %% Create a triangle target, just 3 points on a plane +clear + +%% Set Options here +TRIANGLE = false; +NCAMERAS = 10; +SHOW_IMAGES = false; +HARD_CONSTRAINT = false; +POINT_PRIORS = false; +BATCH_INIT = true; +ALWAYS_RELINEARIZE = false; +DRAW_TRUE_POSES = true; + +%% Generate simulated data +if TRIANGLE % Create a triangle target, just 3 points on a plane nPoints = 3; r = 10; - points = {}; for j=1:nPoints theta = (j-1)*2*pi/nPoints; points{j} = gtsamPoint3([r*cos(theta), r*sin(theta), 0]'); end -else - %% Generate simulated data - % 3D landmarks as vertices of a cube +else % 3D landmarks as vertices of a cube nPoints = 8; points = {gtsamPoint3([10 10 10]'),... gtsamPoint3([-10 10 10]'),... @@ -34,45 +43,56 @@ else end %% Create camera cameras on a circle around the triangle -nCameras = 10; -height = 0; -r = 30; -cameras = {}; +height = 10; r = 40; K = gtsamCal3_S2(500,500,0,640/2,480/2); -for i=1:nCameras - theta = (i-1)*2*pi/nCameras; +for i=1:NCAMERAS + theta = (i-1)*2*pi/NCAMERAS; t = gtsamPoint3([r*cos(theta), r*sin(theta), height]'); cameras{i} = gtsamSimpleCamera_lookat(t, gtsamPoint3, gtsamPoint3([0,0,1]'), K); + if SHOW_IMAGES % show images + figure(i);clf;hold on + for j=1:nPoints + zij = cameras{i}.project(points{j}); + plot(zij.x,zij.y,'*'); + axis([1 640 1 480]); + end + end end odometry = cameras{1}.pose.between(cameras{2}.pose); + +%% Set Noise parameters poseNoise = gtsamSharedNoiseModel_Sigmas([0.001 0.001 0.001 0.1 0.1 0.1]'); odometryNoise = gtsamSharedNoiseModel_Sigmas([0.001 0.001 0.001 0.1 0.1 0.1]'); pointNoise = gtsamSharedNoiseModel_Sigma(3, 0.1); measurementNoise = gtsamSharedNoiseModel_Sigma(2, 1.0); %% Initialize iSAM -isam = visualSLAMISAM(2); +isam = visualSLAMISAM; newFactors = visualSLAMGraph; initialEstimates = visualSLAMValues; -if 1 % add hard constraint - newFactors.addPoseConstraint(symbol('x',1),cameras{1}.pose); +i1 = symbol('x',1); +camera1 = cameras{1}; +pose1 = camera1.pose; +if HARD_CONSTRAINT % add hard constraint + newFactors.addPoseConstraint(i1,pose1); else - newFactors.addPosePrior(symbol('x',1), cameras{1}.pose, poseNoise); + newFactors.addPosePrior(i1,pose1, poseNoise); end -initialEstimates.insertPose(symbol('x',1), cameras{1}.pose); +initialEstimates.insertPose(i1,pose1); % Add visual measurement factors from first pose for j=1:nPoints - if 0 % add point priors - newFactors.addPointPrior(symbol('l',j), points{j}, pointNoise); + jj = symbol('l',j); + if POINT_PRIORS % add point priors + newFactors.addPointPrior(jj, points{j}, pointNoise); end - zij = cameras{i}.project(points{j}); - newFactors.addMeasurement(zij, measurementNoise, symbol('x',1), symbol('l',j), K); - initialEstimates.insertPoint(symbol('l',j), points{j}); + zij = camera1.project(points{j}); + newFactors.addMeasurement(zij, measurementNoise, i1, jj, K); + initialEstimates.insertPoint(jj, points{j}); end %% Run iSAM Loop -for i=2:nCameras +for i=2:NCAMERAS %% Add odometry newFactors.addOdometry(symbol('x',i-1), symbol('x',i), odometry, odometryNoise); @@ -90,16 +110,19 @@ for i=2:nCameras initialEstimates.insertPose(symbol('x',i), prevPose.compose(odometry)); %% Update ISAM + if BATCH_INIT & (i==2) % Do a full optimize for first two poses + initialEstimates + fullyOptimized = newFactors.optimize(initialEstimates) + initialEstimates = fullyOptimized; + end isam.update(newFactors, initialEstimates); result = isam.estimate(); - if 0 % re-linearize + if ALWAYS_RELINEARIZE % re-linearize isam.reorder_relinearize(); end %% Plot results - P1 = isam.marginalCovariance(symbol('x',1)); - sqrt(diag(P1)) - h=figure(1);clf + figure(NCAMERAS+1);clf hold on; for j=1:size(points,2) P = isam.marginalCovariance(symbol('l',j)); @@ -111,7 +134,7 @@ for i=2:nCameras P = isam.marginalCovariance(symbol('x',ii)); pose_ii = result.pose(symbol('x',ii)); plotPose3(pose_ii,P,10); - if 1 % show ground truth + if DRAW_TRUE_POSES % show ground truth plotPose3(cameras{ii}.pose,0.001*eye(6),10); end end