Re-factored iSAM MATLAB example and wrapped more ISAM functions
parent
8e39e6b656
commit
9ef891198b
|
|
@ -1,27 +1,41 @@
|
|||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
% GTSAM Copyright 2010, Georgia Tech Research Corporation,
|
||||
% GTSAM Copyright 2010, Georgia Tech Research Corporation,
|
||||
% Atlanta, Georgia 30332-0415
|
||||
% All Rights Reserved
|
||||
% Authors: Frank Dellaert, et al. (see THANKS for the full author list)
|
||||
%
|
||||
%
|
||||
% See LICENSE for the license information
|
||||
%
|
||||
% @brief A simple visual SLAM example for structure from motion
|
||||
% @author Duy-Nguyen Ta
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
|
||||
%% Create a triangle target, just 3 points on a plane
|
||||
nPoints = 3;
|
||||
r = 10;
|
||||
points = {};
|
||||
for j=1:nPoints
|
||||
theta = (j-1)*2*pi/nPoints;
|
||||
points{j} = gtsamPoint3([r*cos(theta), r*sin(theta), 0]');
|
||||
if 0
|
||||
%% Create a triangle target, just 3 points on a plane
|
||||
nPoints = 3;
|
||||
r = 10;
|
||||
points = {};
|
||||
for j=1:nPoints
|
||||
theta = (j-1)*2*pi/nPoints;
|
||||
points{j} = gtsamPoint3([r*cos(theta), r*sin(theta), 0]');
|
||||
end
|
||||
else
|
||||
%% Generate simulated data
|
||||
% 3D landmarks as vertices of a cube
|
||||
nPoints = 8;
|
||||
points = {gtsamPoint3([10 10 10]'),...
|
||||
gtsamPoint3([-10 10 10]'),...
|
||||
gtsamPoint3([-10 -10 10]'),...
|
||||
gtsamPoint3([10 -10 10]'),...
|
||||
gtsamPoint3([10 10 -10]'),...
|
||||
gtsamPoint3([-10 10 -10]'),...
|
||||
gtsamPoint3([-10 -10 -10]'),...
|
||||
gtsamPoint3([10 -10 -10]')};
|
||||
end
|
||||
|
||||
%% Create camera cameras on a circle around the triangle
|
||||
nCameras = 10;
|
||||
height = 10;
|
||||
height = 0;
|
||||
r = 30;
|
||||
cameras = {};
|
||||
K = gtsamCal3_S2(500,500,0,640/2,480/2);
|
||||
|
|
@ -33,78 +47,80 @@ end
|
|||
odometry = cameras{1}.pose.between(cameras{2}.pose);
|
||||
|
||||
poseNoise = gtsamSharedNoiseModel_Sigmas([0.001 0.001 0.001 0.1 0.1 0.1]');
|
||||
odometryNoise = gtsamSharedNoiseModel_Sigmas([0.001 0.001 0.001 0.1 0.1 0.1]');
|
||||
pointNoise = gtsamSharedNoiseModel_Sigma(3, 0.1);
|
||||
measurementNoise = gtsamSharedNoiseModel_Sigma(2, 1.0);
|
||||
|
||||
%% Create an ISAM object for inference
|
||||
isam = visualSLAMISAM;
|
||||
|
||||
%% Update ISAM
|
||||
%% Initialize iSAM
|
||||
isam = visualSLAMISAM(2);
|
||||
newFactors = visualSLAMGraph;
|
||||
initialEstimates = visualSLAMValues;
|
||||
for i=1:nCameras
|
||||
|
||||
% Prior for the first pose or odometry for subsequent cameras
|
||||
if (i==1)
|
||||
newFactors.addPosePrior(symbol('x',1), cameras{1}.pose, poseNoise);
|
||||
for j=1:nPoints
|
||||
newFactors.addPointPrior(symbol('l',j), points{j}, pointNoise);
|
||||
end
|
||||
else
|
||||
newFactors.addOdometry(symbol('x',i-1), symbol('x',i), odometry, poseNoise);
|
||||
if 1 % add hard constraint
|
||||
newFactors.addPoseConstraint(symbol('x',1),cameras{1}.pose);
|
||||
else
|
||||
newFactors.addPosePrior(symbol('x',1), cameras{1}.pose, poseNoise);
|
||||
end
|
||||
initialEstimates.insertPose(symbol('x',1), cameras{1}.pose);
|
||||
% Add visual measurement factors from first pose
|
||||
for j=1:nPoints
|
||||
if 0 % add point priors
|
||||
newFactors.addPointPrior(symbol('l',j), points{j}, pointNoise);
|
||||
end
|
||||
zij = cameras{i}.project(points{j});
|
||||
newFactors.addMeasurement(zij, measurementNoise, symbol('x',1), symbol('l',j), K);
|
||||
initialEstimates.insertPoint(symbol('l',j), points{j});
|
||||
end
|
||||
|
||||
% Visual measurement factors
|
||||
%% Run iSAM Loop
|
||||
for i=2:nCameras
|
||||
|
||||
%% Add odometry
|
||||
newFactors.addOdometry(symbol('x',i-1), symbol('x',i), odometry, odometryNoise);
|
||||
|
||||
%% Add visual measurement factors
|
||||
for j=1:nPoints
|
||||
zij = cameras{i}.project(points{j});
|
||||
newFactors.addMeasurement(zij, measurementNoise, symbol('x',i), symbol('l',j), K);
|
||||
end
|
||||
|
||||
% Initial estimates for the new pose. Also initialize points while in
|
||||
% the first frame.
|
||||
if (i==1)
|
||||
initialEstimates.insertPose(symbol('x',i), cameras{i}.pose);
|
||||
for j=1:size(points,2)
|
||||
initialEstimates.insertPoint(symbol('l',j), points{j});
|
||||
end
|
||||
else
|
||||
%TODO: this might be suboptimal since "result" is not the fully
|
||||
%optimized result
|
||||
if (i==2), prevPose = cameras{1}.pose;
|
||||
else, prevPose = result.pose(symbol('x',i-1)); end
|
||||
initialEstimates.insertPose(symbol('x',i), prevPose.compose(odometry));
|
||||
%% Initial estimates for the new pose. Also initialize points while in the first frame.
|
||||
%TODO: this might be suboptimal since "result" is not the fully optimized result
|
||||
if (i==2), prevPose = cameras{1}.pose;
|
||||
else, prevPose = result.pose(symbol('x',i-1)); end
|
||||
initialEstimates.insertPose(symbol('x',i), prevPose.compose(odometry));
|
||||
|
||||
%% Update ISAM
|
||||
isam.update(newFactors, initialEstimates);
|
||||
result = isam.estimate();
|
||||
if 0 % re-linearize
|
||||
isam.reorder_relinearize();
|
||||
end
|
||||
|
||||
% Update ISAM, only update for the second frame onward
|
||||
% Update the first frame will cause error, since it's under constrained
|
||||
if (i>=2)
|
||||
isam.update(newFactors, initialEstimates);
|
||||
emptyFactors = visualSLAMGraph;
|
||||
emptyEstimates = visualSLAMValues;
|
||||
result = isam.estimate();
|
||||
|
||||
% Plot first result
|
||||
h=figure(1);clf
|
||||
hold on;
|
||||
for j=1:size(points,2)
|
||||
P = isam.marginalCovariance(symbol('l',j));
|
||||
point_j = result.point(symbol('l',j));
|
||||
plot3(point_j.x, point_j.y, point_j.z,'marker','o');
|
||||
covarianceEllipse3D([point_j.x;point_j.y;point_j.z],P);
|
||||
end
|
||||
|
||||
for ii=1:i
|
||||
P = isam.marginalCovariance(symbol('x',ii));
|
||||
pose_ii = result.pose(symbol('x',ii));
|
||||
plotPose3(pose_ii,P,10);
|
||||
end
|
||||
axis([-50 50 -50 50 -50 50])
|
||||
colormap('hot')
|
||||
%print(h,'-dpng',sprintf('VisualISAM_%03d.png',i));
|
||||
|
||||
% Reset newFactors and initialEstimates to prepare for the next
|
||||
% update
|
||||
newFactors = visualSLAMGraph;
|
||||
initialEstimates = visualSLAMValues;
|
||||
|
||||
%% Plot results
|
||||
P1 = isam.marginalCovariance(symbol('x',1));
|
||||
sqrt(diag(P1))
|
||||
h=figure(1);clf
|
||||
hold on;
|
||||
for j=1:size(points,2)
|
||||
P = isam.marginalCovariance(symbol('l',j));
|
||||
point_j = result.point(symbol('l',j));
|
||||
plot3(point_j.x, point_j.y, point_j.z,'marker','o');
|
||||
covarianceEllipse3D([point_j.x;point_j.y;point_j.z],P);
|
||||
end
|
||||
for ii=1:i
|
||||
P = isam.marginalCovariance(symbol('x',ii));
|
||||
pose_ii = result.pose(symbol('x',ii));
|
||||
plotPose3(pose_ii,P,10);
|
||||
if 1 % show ground truth
|
||||
plotPose3(cameras{ii}.pose,0.001*eye(6),10);
|
||||
end
|
||||
end
|
||||
axis([-40 40 -40 40 -10 20]);axis equal
|
||||
view(2)
|
||||
colormap('hot')
|
||||
%print(h,'-dpng',sprintf('VisualISAM_%03d.png',i));
|
||||
|
||||
%% Reset newFactors and initialEstimates to prepare for the next update
|
||||
newFactors = visualSLAMGraph;
|
||||
initialEstimates = visualSLAMValues;
|
||||
end
|
||||
19
gtsam.h
19
gtsam.h
|
|
@ -600,6 +600,14 @@ class GaussianFactorGraph {
|
|||
Matrix denseHessian() const;
|
||||
};
|
||||
|
||||
class GaussianISAM {
|
||||
GaussianISAM();
|
||||
gtsam::GaussianFactor* marginalFactor(size_t j) const;
|
||||
gtsam::GaussianBayesNet* marginalBayesNet(size_t key) const;
|
||||
Matrix marginalCovariance(size_t key) const;
|
||||
gtsam::GaussianBayesNet* jointBayesNet(size_t key1, size_t key2) const;
|
||||
};
|
||||
|
||||
class GaussianSequentialSolver {
|
||||
GaussianSequentialSolver(const gtsam::GaussianFactorGraph& graph,
|
||||
bool useQR);
|
||||
|
|
@ -925,10 +933,15 @@ class Graph {
|
|||
class ISAM {
|
||||
ISAM();
|
||||
ISAM(int reorderInterval);
|
||||
void print(string s) const;
|
||||
visualSLAM::Values estimate() const;
|
||||
Matrix marginalCovariance(size_t key) const;
|
||||
void update(const visualSLAM::Graph& newFactors, const visualSLAM::Values& initialValues);
|
||||
Matrix marginalCovariance(size_t key) const;
|
||||
int reorderInterval() const;
|
||||
int reorderCounter() const;
|
||||
void print(string s) const;
|
||||
void update(const visualSLAM::Graph& newFactors, const visualSLAM::Values& initialValues);
|
||||
void reorder_relinearize();
|
||||
void addKey(size_t key);
|
||||
void setOrdering(const gtsam::Ordering& new_ordering);
|
||||
};
|
||||
|
||||
}///\namespace visualSLAM
|
||||
|
|
|
|||
Loading…
Reference in New Issue