Re-factored iSAM MATLAB example and wrapped more ISAM functions

release/4.3a0
Frank Dellaert 2012-06-07 05:19:43 +00:00
parent 8e39e6b656
commit 9ef891198b
2 changed files with 102 additions and 73 deletions

View File

@ -1,27 +1,41 @@
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% GTSAM Copyright 2010, Georgia Tech Research Corporation,
% GTSAM Copyright 2010, Georgia Tech Research Corporation,
% Atlanta, Georgia 30332-0415
% All Rights Reserved
% Authors: Frank Dellaert, et al. (see THANKS for the full author list)
%
%
% See LICENSE for the license information
%
% @brief A simple visual SLAM example for structure from motion
% @author Duy-Nguyen Ta
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% Create a triangle target, just 3 points on a plane
nPoints = 3;
r = 10;
points = {};
for j=1:nPoints
theta = (j-1)*2*pi/nPoints;
points{j} = gtsamPoint3([r*cos(theta), r*sin(theta), 0]');
if 0
%% Create a triangle target, just 3 points on a plane
nPoints = 3;
r = 10;
points = {};
for j=1:nPoints
theta = (j-1)*2*pi/nPoints;
points{j} = gtsamPoint3([r*cos(theta), r*sin(theta), 0]');
end
else
%% Generate simulated data
% 3D landmarks as vertices of a cube
nPoints = 8;
points = {gtsamPoint3([10 10 10]'),...
gtsamPoint3([-10 10 10]'),...
gtsamPoint3([-10 -10 10]'),...
gtsamPoint3([10 -10 10]'),...
gtsamPoint3([10 10 -10]'),...
gtsamPoint3([-10 10 -10]'),...
gtsamPoint3([-10 -10 -10]'),...
gtsamPoint3([10 -10 -10]')};
end
%% Create camera cameras on a circle around the triangle
nCameras = 10;
height = 10;
height = 0;
r = 30;
cameras = {};
K = gtsamCal3_S2(500,500,0,640/2,480/2);
@ -33,78 +47,80 @@ end
odometry = cameras{1}.pose.between(cameras{2}.pose);
poseNoise = gtsamSharedNoiseModel_Sigmas([0.001 0.001 0.001 0.1 0.1 0.1]');
odometryNoise = gtsamSharedNoiseModel_Sigmas([0.001 0.001 0.001 0.1 0.1 0.1]');
pointNoise = gtsamSharedNoiseModel_Sigma(3, 0.1);
measurementNoise = gtsamSharedNoiseModel_Sigma(2, 1.0);
%% Create an ISAM object for inference
isam = visualSLAMISAM;
%% Update ISAM
%% Initialize iSAM
isam = visualSLAMISAM(2);
newFactors = visualSLAMGraph;
initialEstimates = visualSLAMValues;
for i=1:nCameras
% Prior for the first pose or odometry for subsequent cameras
if (i==1)
newFactors.addPosePrior(symbol('x',1), cameras{1}.pose, poseNoise);
for j=1:nPoints
newFactors.addPointPrior(symbol('l',j), points{j}, pointNoise);
end
else
newFactors.addOdometry(symbol('x',i-1), symbol('x',i), odometry, poseNoise);
if 1 % add hard constraint
newFactors.addPoseConstraint(symbol('x',1),cameras{1}.pose);
else
newFactors.addPosePrior(symbol('x',1), cameras{1}.pose, poseNoise);
end
initialEstimates.insertPose(symbol('x',1), cameras{1}.pose);
% Add visual measurement factors from first pose
for j=1:nPoints
if 0 % add point priors
newFactors.addPointPrior(symbol('l',j), points{j}, pointNoise);
end
zij = cameras{i}.project(points{j});
newFactors.addMeasurement(zij, measurementNoise, symbol('x',1), symbol('l',j), K);
initialEstimates.insertPoint(symbol('l',j), points{j});
end
% Visual measurement factors
%% Run iSAM Loop
for i=2:nCameras
%% Add odometry
newFactors.addOdometry(symbol('x',i-1), symbol('x',i), odometry, odometryNoise);
%% Add visual measurement factors
for j=1:nPoints
zij = cameras{i}.project(points{j});
newFactors.addMeasurement(zij, measurementNoise, symbol('x',i), symbol('l',j), K);
end
% Initial estimates for the new pose. Also initialize points while in
% the first frame.
if (i==1)
initialEstimates.insertPose(symbol('x',i), cameras{i}.pose);
for j=1:size(points,2)
initialEstimates.insertPoint(symbol('l',j), points{j});
end
else
%TODO: this might be suboptimal since "result" is not the fully
%optimized result
if (i==2), prevPose = cameras{1}.pose;
else, prevPose = result.pose(symbol('x',i-1)); end
initialEstimates.insertPose(symbol('x',i), prevPose.compose(odometry));
%% Initial estimates for the new pose. Also initialize points while in the first frame.
%TODO: this might be suboptimal since "result" is not the fully optimized result
if (i==2), prevPose = cameras{1}.pose;
else, prevPose = result.pose(symbol('x',i-1)); end
initialEstimates.insertPose(symbol('x',i), prevPose.compose(odometry));
%% Update ISAM
isam.update(newFactors, initialEstimates);
result = isam.estimate();
if 0 % re-linearize
isam.reorder_relinearize();
end
% Update ISAM, only update for the second frame onward
% Update the first frame will cause error, since it's under constrained
if (i>=2)
isam.update(newFactors, initialEstimates);
emptyFactors = visualSLAMGraph;
emptyEstimates = visualSLAMValues;
result = isam.estimate();
% Plot first result
h=figure(1);clf
hold on;
for j=1:size(points,2)
P = isam.marginalCovariance(symbol('l',j));
point_j = result.point(symbol('l',j));
plot3(point_j.x, point_j.y, point_j.z,'marker','o');
covarianceEllipse3D([point_j.x;point_j.y;point_j.z],P);
end
for ii=1:i
P = isam.marginalCovariance(symbol('x',ii));
pose_ii = result.pose(symbol('x',ii));
plotPose3(pose_ii,P,10);
end
axis([-50 50 -50 50 -50 50])
colormap('hot')
%print(h,'-dpng',sprintf('VisualISAM_%03d.png',i));
% Reset newFactors and initialEstimates to prepare for the next
% update
newFactors = visualSLAMGraph;
initialEstimates = visualSLAMValues;
%% Plot results
P1 = isam.marginalCovariance(symbol('x',1));
sqrt(diag(P1))
h=figure(1);clf
hold on;
for j=1:size(points,2)
P = isam.marginalCovariance(symbol('l',j));
point_j = result.point(symbol('l',j));
plot3(point_j.x, point_j.y, point_j.z,'marker','o');
covarianceEllipse3D([point_j.x;point_j.y;point_j.z],P);
end
for ii=1:i
P = isam.marginalCovariance(symbol('x',ii));
pose_ii = result.pose(symbol('x',ii));
plotPose3(pose_ii,P,10);
if 1 % show ground truth
plotPose3(cameras{ii}.pose,0.001*eye(6),10);
end
end
axis([-40 40 -40 40 -10 20]);axis equal
view(2)
colormap('hot')
%print(h,'-dpng',sprintf('VisualISAM_%03d.png',i));
%% Reset newFactors and initialEstimates to prepare for the next update
newFactors = visualSLAMGraph;
initialEstimates = visualSLAMValues;
end

19
gtsam.h
View File

@ -600,6 +600,14 @@ class GaussianFactorGraph {
Matrix denseHessian() const;
};
class GaussianISAM {
GaussianISAM();
gtsam::GaussianFactor* marginalFactor(size_t j) const;
gtsam::GaussianBayesNet* marginalBayesNet(size_t key) const;
Matrix marginalCovariance(size_t key) const;
gtsam::GaussianBayesNet* jointBayesNet(size_t key1, size_t key2) const;
};
class GaussianSequentialSolver {
GaussianSequentialSolver(const gtsam::GaussianFactorGraph& graph,
bool useQR);
@ -925,10 +933,15 @@ class Graph {
class ISAM {
ISAM();
ISAM(int reorderInterval);
void print(string s) const;
visualSLAM::Values estimate() const;
Matrix marginalCovariance(size_t key) const;
void update(const visualSLAM::Graph& newFactors, const visualSLAM::Values& initialValues);
Matrix marginalCovariance(size_t key) const;
int reorderInterval() const;
int reorderCounter() const;
void print(string s) const;
void update(const visualSLAM::Graph& newFactors, const visualSLAM::Values& initialValues);
void reorder_relinearize();
void addKey(size_t key);
void setOrdering(const gtsam::Ordering& new_ordering);
};
}///\namespace visualSLAM