iSAM with options
parent
9ef891198b
commit
b10f4d09e3
|
@ -10,18 +10,27 @@
|
|||
% @author Duy-Nguyen Ta
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
|
||||
if 0
|
||||
%% Create a triangle target, just 3 points on a plane
|
||||
clear
|
||||
|
||||
%% Set Options here
|
||||
TRIANGLE = false;
|
||||
NCAMERAS = 10;
|
||||
SHOW_IMAGES = false;
|
||||
HARD_CONSTRAINT = false;
|
||||
POINT_PRIORS = false;
|
||||
BATCH_INIT = true;
|
||||
ALWAYS_RELINEARIZE = false;
|
||||
DRAW_TRUE_POSES = true;
|
||||
|
||||
%% Generate simulated data
|
||||
if TRIANGLE % Create a triangle target, just 3 points on a plane
|
||||
nPoints = 3;
|
||||
r = 10;
|
||||
points = {};
|
||||
for j=1:nPoints
|
||||
theta = (j-1)*2*pi/nPoints;
|
||||
points{j} = gtsamPoint3([r*cos(theta), r*sin(theta), 0]');
|
||||
end
|
||||
else
|
||||
%% Generate simulated data
|
||||
% 3D landmarks as vertices of a cube
|
||||
else % 3D landmarks as vertices of a cube
|
||||
nPoints = 8;
|
||||
points = {gtsamPoint3([10 10 10]'),...
|
||||
gtsamPoint3([-10 10 10]'),...
|
||||
|
@ -34,45 +43,56 @@ else
|
|||
end
|
||||
|
||||
%% Create camera cameras on a circle around the triangle
|
||||
nCameras = 10;
|
||||
height = 0;
|
||||
r = 30;
|
||||
cameras = {};
|
||||
height = 10; r = 40;
|
||||
K = gtsamCal3_S2(500,500,0,640/2,480/2);
|
||||
for i=1:nCameras
|
||||
theta = (i-1)*2*pi/nCameras;
|
||||
for i=1:NCAMERAS
|
||||
theta = (i-1)*2*pi/NCAMERAS;
|
||||
t = gtsamPoint3([r*cos(theta), r*sin(theta), height]');
|
||||
cameras{i} = gtsamSimpleCamera_lookat(t, gtsamPoint3, gtsamPoint3([0,0,1]'), K);
|
||||
if SHOW_IMAGES % show images
|
||||
figure(i);clf;hold on
|
||||
for j=1:nPoints
|
||||
zij = cameras{i}.project(points{j});
|
||||
plot(zij.x,zij.y,'*');
|
||||
axis([1 640 1 480]);
|
||||
end
|
||||
end
|
||||
end
|
||||
odometry = cameras{1}.pose.between(cameras{2}.pose);
|
||||
|
||||
|
||||
%% Set Noise parameters
|
||||
poseNoise = gtsamSharedNoiseModel_Sigmas([0.001 0.001 0.001 0.1 0.1 0.1]');
|
||||
odometryNoise = gtsamSharedNoiseModel_Sigmas([0.001 0.001 0.001 0.1 0.1 0.1]');
|
||||
pointNoise = gtsamSharedNoiseModel_Sigma(3, 0.1);
|
||||
measurementNoise = gtsamSharedNoiseModel_Sigma(2, 1.0);
|
||||
|
||||
%% Initialize iSAM
|
||||
isam = visualSLAMISAM(2);
|
||||
isam = visualSLAMISAM;
|
||||
newFactors = visualSLAMGraph;
|
||||
initialEstimates = visualSLAMValues;
|
||||
if 1 % add hard constraint
|
||||
newFactors.addPoseConstraint(symbol('x',1),cameras{1}.pose);
|
||||
i1 = symbol('x',1);
|
||||
camera1 = cameras{1};
|
||||
pose1 = camera1.pose;
|
||||
if HARD_CONSTRAINT % add hard constraint
|
||||
newFactors.addPoseConstraint(i1,pose1);
|
||||
else
|
||||
newFactors.addPosePrior(symbol('x',1), cameras{1}.pose, poseNoise);
|
||||
newFactors.addPosePrior(i1,pose1, poseNoise);
|
||||
end
|
||||
initialEstimates.insertPose(symbol('x',1), cameras{1}.pose);
|
||||
initialEstimates.insertPose(i1,pose1);
|
||||
% Add visual measurement factors from first pose
|
||||
for j=1:nPoints
|
||||
if 0 % add point priors
|
||||
newFactors.addPointPrior(symbol('l',j), points{j}, pointNoise);
|
||||
jj = symbol('l',j);
|
||||
if POINT_PRIORS % add point priors
|
||||
newFactors.addPointPrior(jj, points{j}, pointNoise);
|
||||
end
|
||||
zij = cameras{i}.project(points{j});
|
||||
newFactors.addMeasurement(zij, measurementNoise, symbol('x',1), symbol('l',j), K);
|
||||
initialEstimates.insertPoint(symbol('l',j), points{j});
|
||||
zij = camera1.project(points{j});
|
||||
newFactors.addMeasurement(zij, measurementNoise, i1, jj, K);
|
||||
initialEstimates.insertPoint(jj, points{j});
|
||||
end
|
||||
|
||||
%% Run iSAM Loop
|
||||
for i=2:nCameras
|
||||
for i=2:NCAMERAS
|
||||
|
||||
%% Add odometry
|
||||
newFactors.addOdometry(symbol('x',i-1), symbol('x',i), odometry, odometryNoise);
|
||||
|
@ -90,16 +110,19 @@ for i=2:nCameras
|
|||
initialEstimates.insertPose(symbol('x',i), prevPose.compose(odometry));
|
||||
|
||||
%% Update ISAM
|
||||
if BATCH_INIT & (i==2) % Do a full optimize for first two poses
|
||||
initialEstimates
|
||||
fullyOptimized = newFactors.optimize(initialEstimates)
|
||||
initialEstimates = fullyOptimized;
|
||||
end
|
||||
isam.update(newFactors, initialEstimates);
|
||||
result = isam.estimate();
|
||||
if 0 % re-linearize
|
||||
if ALWAYS_RELINEARIZE % re-linearize
|
||||
isam.reorder_relinearize();
|
||||
end
|
||||
|
||||
%% Plot results
|
||||
P1 = isam.marginalCovariance(symbol('x',1));
|
||||
sqrt(diag(P1))
|
||||
h=figure(1);clf
|
||||
figure(NCAMERAS+1);clf
|
||||
hold on;
|
||||
for j=1:size(points,2)
|
||||
P = isam.marginalCovariance(symbol('l',j));
|
||||
|
@ -111,7 +134,7 @@ for i=2:nCameras
|
|||
P = isam.marginalCovariance(symbol('x',ii));
|
||||
pose_ii = result.pose(symbol('x',ii));
|
||||
plotPose3(pose_ii,P,10);
|
||||
if 1 % show ground truth
|
||||
if DRAW_TRUE_POSES % show ground truth
|
||||
plotPose3(cameras{ii}.pose,0.001*eye(6),10);
|
||||
end
|
||||
end
|
||||
|
|
Loading…
Reference in New Issue