rename GaussianMixture to HybridGaussianConditional

release/4.3a0
Varun Agrawal 2024-09-13 05:41:24 -04:00
parent 187935407c
commit aef273bce8
27 changed files with 161 additions and 160 deletions

View File

@ -191,13 +191,13 @@ E_{gc}(x,y)=\frac{1}{2}\|Rx+Sy-d\|_{\Sigma}^{2}.\label{eq:gc_error}
\end_layout
\begin_layout Subsubsection*
GaussianMixture
HybridGaussianConditional
\end_layout
\begin_layout Standard
A
\emph on
GaussianMixture
HybridGaussianConditional
\emph default
(maybe to be renamed to
\emph on
@ -233,7 +233,7 @@ GaussianConditional
to a set of discrete variables.
As
\emph on
GaussianMixture
HybridGaussianConditional
\emph default
is a
\emph on
@ -324,7 +324,7 @@ The key point here is that
\color inherit
is the log-normalization constant for the complete
\emph on
GaussianMixture
HybridGaussianConditional
\emph default
across all values of
\begin_inset Formula $m$
@ -556,7 +556,7 @@ Analogously, a
\emph on
HybridGaussianFactor
\emph default
typically results from a GaussianMixture by having known values
typically results from a HybridGaussianConditional by having known values
\begin_inset Formula $\bar{x}$
\end_inset
@ -817,7 +817,7 @@ E_{mf}(y,m)=\frac{1}{2}\|A_{m}y-b_{m}\|_{\Sigma_{mfm}}^{2}=E_{gcm}(\bar{x},y)+K_
\end_inset
which is identical to the GaussianMixture error
which is identical to the HybridGaussianConditional error
\begin_inset CommandInset ref
LatexCommand eqref
reference "eq:gm_error"

View File

@ -10,7 +10,7 @@
* -------------------------------------------------------------------------- */
/**
* @file GaussianMixture.cpp
* @file HybridGaussianConditional.cpp
* @brief A hybrid conditional in the Conditional Linear Gaussian scheme
* @author Fan Jiang
* @author Varun Agrawal
@ -20,7 +20,7 @@
#include <gtsam/base/utilities.h>
#include <gtsam/discrete/DiscreteValues.h>
#include <gtsam/hybrid/GaussianMixture.h>
#include <gtsam/hybrid/HybridGaussianConditional.h>
#include <gtsam/hybrid/HybridGaussianFactor.h>
#include <gtsam/hybrid/HybridValues.h>
#include <gtsam/inference/Conditional-inst.h>
@ -29,10 +29,10 @@
namespace gtsam {
GaussianMixture::GaussianMixture(
HybridGaussianConditional::HybridGaussianConditional(
const KeyVector &continuousFrontals, const KeyVector &continuousParents,
const DiscreteKeys &discreteParents,
const GaussianMixture::Conditionals &conditionals)
const HybridGaussianConditional::Conditionals &conditionals)
: BaseFactor(CollectKeys(continuousFrontals, continuousParents),
discreteParents),
BaseConditional(continuousFrontals.size()),
@ -50,30 +50,30 @@ GaussianMixture::GaussianMixture(
}
/* *******************************************************************************/
const GaussianMixture::Conditionals &GaussianMixture::conditionals() const {
const HybridGaussianConditional::Conditionals &HybridGaussianConditional::conditionals() const {
return conditionals_;
}
/* *******************************************************************************/
GaussianMixture::GaussianMixture(
HybridGaussianConditional::HybridGaussianConditional(
KeyVector &&continuousFrontals, KeyVector &&continuousParents,
DiscreteKeys &&discreteParents,
std::vector<GaussianConditional::shared_ptr> &&conditionals)
: GaussianMixture(continuousFrontals, continuousParents, discreteParents,
: HybridGaussianConditional(continuousFrontals, continuousParents, discreteParents,
Conditionals(discreteParents, conditionals)) {}
/* *******************************************************************************/
GaussianMixture::GaussianMixture(
HybridGaussianConditional::HybridGaussianConditional(
const KeyVector &continuousFrontals, const KeyVector &continuousParents,
const DiscreteKeys &discreteParents,
const std::vector<GaussianConditional::shared_ptr> &conditionals)
: GaussianMixture(continuousFrontals, continuousParents, discreteParents,
: HybridGaussianConditional(continuousFrontals, continuousParents, discreteParents,
Conditionals(discreteParents, conditionals)) {}
/* *******************************************************************************/
// TODO(dellaert): This is copy/paste: GaussianMixture should be derived from
// TODO(dellaert): This is copy/paste: HybridGaussianConditional should be derived from
// GaussianMixtureFactor, no?
GaussianFactorGraphTree GaussianMixture::add(
GaussianFactorGraphTree HybridGaussianConditional::add(
const GaussianFactorGraphTree &sum) const {
using Y = GaussianFactorGraph;
auto add = [](const Y &graph1, const Y &graph2) {
@ -86,7 +86,7 @@ GaussianFactorGraphTree GaussianMixture::add(
}
/* *******************************************************************************/
GaussianFactorGraphTree GaussianMixture::asGaussianFactorGraphTree() const {
GaussianFactorGraphTree HybridGaussianConditional::asGaussianFactorGraphTree() const {
auto wrap = [this](const GaussianConditional::shared_ptr &gc) {
// First check if conditional has not been pruned
if (gc) {
@ -109,7 +109,7 @@ GaussianFactorGraphTree GaussianMixture::asGaussianFactorGraphTree() const {
}
/* *******************************************************************************/
size_t GaussianMixture::nrComponents() const {
size_t HybridGaussianConditional::nrComponents() const {
size_t total = 0;
conditionals_.visit([&total](const GaussianFactor::shared_ptr &node) {
if (node) total += 1;
@ -118,7 +118,7 @@ size_t GaussianMixture::nrComponents() const {
}
/* *******************************************************************************/
GaussianConditional::shared_ptr GaussianMixture::operator()(
GaussianConditional::shared_ptr HybridGaussianConditional::operator()(
const DiscreteValues &discreteValues) const {
auto &ptr = conditionals_(discreteValues);
if (!ptr) return nullptr;
@ -127,11 +127,11 @@ GaussianConditional::shared_ptr GaussianMixture::operator()(
return conditional;
else
throw std::logic_error(
"A GaussianMixture unexpectedly contained a non-conditional");
"A HybridGaussianConditional unexpectedly contained a non-conditional");
}
/* *******************************************************************************/
bool GaussianMixture::equals(const HybridFactor &lf, double tol) const {
bool HybridGaussianConditional::equals(const HybridFactor &lf, double tol) const {
const This *e = dynamic_cast<const This *>(&lf);
if (e == nullptr) return false;
@ -149,7 +149,7 @@ bool GaussianMixture::equals(const HybridFactor &lf, double tol) const {
}
/* *******************************************************************************/
void GaussianMixture::print(const std::string &s,
void HybridGaussianConditional::print(const std::string &s,
const KeyFormatter &formatter) const {
std::cout << (s.empty() ? "" : s + "\n");
if (isContinuous()) std::cout << "Continuous ";
@ -177,7 +177,7 @@ void GaussianMixture::print(const std::string &s,
}
/* ************************************************************************* */
KeyVector GaussianMixture::continuousParents() const {
KeyVector HybridGaussianConditional::continuousParents() const {
// Get all parent keys:
const auto range = parents();
KeyVector continuousParentKeys(range.begin(), range.end());
@ -193,7 +193,7 @@ KeyVector GaussianMixture::continuousParents() const {
}
/* ************************************************************************* */
bool GaussianMixture::allFrontalsGiven(const VectorValues &given) const {
bool HybridGaussianConditional::allFrontalsGiven(const VectorValues &given) const {
for (auto &&kv : given) {
if (given.find(kv.first) == given.end()) {
return false;
@ -203,11 +203,11 @@ bool GaussianMixture::allFrontalsGiven(const VectorValues &given) const {
}
/* ************************************************************************* */
std::shared_ptr<GaussianMixtureFactor> GaussianMixture::likelihood(
std::shared_ptr<GaussianMixtureFactor> HybridGaussianConditional::likelihood(
const VectorValues &given) const {
if (!allFrontalsGiven(given)) {
throw std::runtime_error(
"GaussianMixture::likelihood: given values are missing some frontals.");
"HybridGaussianConditional::likelihood: given values are missing some frontals.");
}
const DiscreteKeys discreteParentKeys = discreteKeys();
@ -252,7 +252,7 @@ std::set<DiscreteKey> DiscreteKeysAsSet(const DiscreteKeys &discreteKeys) {
*/
std::function<GaussianConditional::shared_ptr(
const Assignment<Key> &, const GaussianConditional::shared_ptr &)>
GaussianMixture::prunerFunc(const DecisionTreeFactor &discreteProbs) {
HybridGaussianConditional::prunerFunc(const DecisionTreeFactor &discreteProbs) {
// Get the discrete keys as sets for the decision tree
// and the gaussian mixture.
auto discreteProbsKeySet = DiscreteKeysAsSet(discreteProbs.discreteKeys());
@ -303,7 +303,7 @@ GaussianMixture::prunerFunc(const DecisionTreeFactor &discreteProbs) {
}
/* *******************************************************************************/
void GaussianMixture::prune(const DecisionTreeFactor &discreteProbs) {
void HybridGaussianConditional::prune(const DecisionTreeFactor &discreteProbs) {
// Functional which loops over all assignments and create a set of
// GaussianConditionals
auto pruner = prunerFunc(discreteProbs);
@ -313,7 +313,7 @@ void GaussianMixture::prune(const DecisionTreeFactor &discreteProbs) {
}
/* *******************************************************************************/
AlgebraicDecisionTree<Key> GaussianMixture::logProbability(
AlgebraicDecisionTree<Key> HybridGaussianConditional::logProbability(
const VectorValues &continuousValues) const {
// functor to calculate (double) logProbability value from
// GaussianConditional.
@ -331,7 +331,7 @@ AlgebraicDecisionTree<Key> GaussianMixture::logProbability(
}
/* ************************************************************************* */
double GaussianMixture::conditionalError(
double HybridGaussianConditional::conditionalError(
const GaussianConditional::shared_ptr &conditional,
const VectorValues &continuousValues) const {
// Check if valid pointer
@ -348,7 +348,7 @@ double GaussianMixture::conditionalError(
}
/* *******************************************************************************/
AlgebraicDecisionTree<Key> GaussianMixture::errorTree(
AlgebraicDecisionTree<Key> HybridGaussianConditional::errorTree(
const VectorValues &continuousValues) const {
auto errorFunc = [&](const GaussianConditional::shared_ptr &conditional) {
return conditionalError(conditional, continuousValues);
@ -358,20 +358,20 @@ AlgebraicDecisionTree<Key> GaussianMixture::errorTree(
}
/* *******************************************************************************/
double GaussianMixture::error(const HybridValues &values) const {
double HybridGaussianConditional::error(const HybridValues &values) const {
// Directly index to get the conditional, no need to build the whole tree.
auto conditional = conditionals_(values.discrete());
return conditionalError(conditional, values.continuous());
}
/* *******************************************************************************/
double GaussianMixture::logProbability(const HybridValues &values) const {
double HybridGaussianConditional::logProbability(const HybridValues &values) const {
auto conditional = conditionals_(values.discrete());
return conditional->logProbability(values.continuous());
}
/* *******************************************************************************/
double GaussianMixture::evaluate(const HybridValues &values) const {
double HybridGaussianConditional::evaluate(const HybridValues &values) const {
auto conditional = conditionals_(values.discrete());
return conditional->evaluate(values.continuous());
}

View File

@ -10,7 +10,7 @@
* -------------------------------------------------------------------------- */
/**
* @file GaussianMixture.h
* @file HybridGaussianConditional.h
* @brief A hybrid conditional in the Conditional Linear Gaussian scheme
* @author Fan Jiang
* @author Varun Agrawal
@ -50,14 +50,14 @@ class HybridValues;
*
* @ingroup hybrid
*/
class GTSAM_EXPORT GaussianMixture
class GTSAM_EXPORT HybridGaussianConditional
: public HybridFactor,
public Conditional<HybridFactor, GaussianMixture> {
public Conditional<HybridFactor, HybridGaussianConditional> {
public:
using This = GaussianMixture;
using shared_ptr = std::shared_ptr<GaussianMixture>;
using This = HybridGaussianConditional;
using shared_ptr = std::shared_ptr<HybridGaussianConditional>;
using BaseFactor = HybridFactor;
using BaseConditional = Conditional<HybridFactor, GaussianMixture>;
using BaseConditional = Conditional<HybridFactor, HybridGaussianConditional>;
/// typedef for Decision Tree of Gaussian Conditionals
using Conditionals = DecisionTree<Key, GaussianConditional::shared_ptr>;
@ -67,7 +67,7 @@ class GTSAM_EXPORT GaussianMixture
double logConstant_; ///< log of the normalization constant.
/**
* @brief Convert a GaussianMixture of conditionals into
* @brief Convert a HybridGaussianConditional of conditionals into
* a DecisionTree of Gaussian factor graphs.
*/
GaussianFactorGraphTree asGaussianFactorGraphTree() const;
@ -88,10 +88,10 @@ class GTSAM_EXPORT GaussianMixture
/// @{
/// Default constructor, mainly for serialization.
GaussianMixture() = default;
HybridGaussianConditional() = default;
/**
* @brief Construct a new GaussianMixture object.
* @brief Construct a new HybridGaussianConditional object.
*
* @param continuousFrontals the continuous frontals.
* @param continuousParents the continuous parents.
@ -101,7 +101,7 @@ class GTSAM_EXPORT GaussianMixture
* cardinality of the DiscreteKeys in discreteParents, since the
* discreteParents will be used as the labels in the decision tree.
*/
GaussianMixture(const KeyVector &continuousFrontals,
HybridGaussianConditional(const KeyVector &continuousFrontals,
const KeyVector &continuousParents,
const DiscreteKeys &discreteParents,
const Conditionals &conditionals);
@ -114,7 +114,7 @@ class GTSAM_EXPORT GaussianMixture
* @param discreteParents Discrete parents variables
* @param conditionals List of conditionals
*/
GaussianMixture(KeyVector &&continuousFrontals, KeyVector &&continuousParents,
HybridGaussianConditional(KeyVector &&continuousFrontals, KeyVector &&continuousParents,
DiscreteKeys &&discreteParents,
std::vector<GaussianConditional::shared_ptr> &&conditionals);
@ -126,7 +126,7 @@ class GTSAM_EXPORT GaussianMixture
* @param discreteParents Discrete parents variables
* @param conditionals List of conditionals
*/
GaussianMixture(
HybridGaussianConditional(
const KeyVector &continuousFrontals, const KeyVector &continuousParents,
const DiscreteKeys &discreteParents,
const std::vector<GaussianConditional::shared_ptr> &conditionals);
@ -140,7 +140,7 @@ class GTSAM_EXPORT GaussianMixture
/// Print utility
void print(
const std::string &s = "GaussianMixture\n",
const std::string &s = "HybridGaussianConditional\n",
const KeyFormatter &formatter = DefaultKeyFormatter) const override;
/// @}
@ -172,7 +172,7 @@ class GTSAM_EXPORT GaussianMixture
const Conditionals &conditionals() const;
/**
* @brief Compute logProbability of the GaussianMixture as a tree.
* @brief Compute logProbability of the HybridGaussianConditional as a tree.
*
* @param continuousValues The continuous VectorValues.
* @return AlgebraicDecisionTree<Key> A decision tree with the same keys
@ -209,7 +209,7 @@ class GTSAM_EXPORT GaussianMixture
double error(const HybridValues &values) const override;
/**
* @brief Compute error of the GaussianMixture as a tree.
* @brief Compute error of the HybridGaussianConditional as a tree.
*
* @param continuousValues The continuous VectorValues.
* @return AlgebraicDecisionTree<Key> A decision tree on the discrete keys
@ -277,6 +277,6 @@ std::set<DiscreteKey> DiscreteKeysAsSet(const DiscreteKeys &discreteKeys);
// traits
template <>
struct traits<GaussianMixture> : public Testable<GaussianMixture> {};
struct traits<HybridGaussianConditional> : public Testable<HybridGaussianConditional> {};
} // namespace gtsam

View File

@ -168,11 +168,11 @@ HybridBayesNet HybridBayesNet::prune(size_t maxNrLeaves) {
DecisionTreeFactor prunedDiscreteProbs =
this->pruneDiscreteConditionals(maxNrLeaves);
/* To prune, we visitWith every leaf in the GaussianMixture.
/* To prune, we visitWith every leaf in the HybridGaussianConditional.
* For each leaf, using the assignment we can check the discrete decision tree
* for 0.0 probability, then just set the leaf to a nullptr.
*
* We can later check the GaussianMixture for just nullptrs.
* We can later check the HybridGaussianConditional for just nullptrs.
*/
HybridBayesNet prunedBayesNetFragment;
@ -182,14 +182,14 @@ HybridBayesNet HybridBayesNet::prune(size_t maxNrLeaves) {
for (auto &&conditional : *this) {
if (auto gm = conditional->asMixture()) {
// Make a copy of the Gaussian mixture and prune it!
auto prunedGaussianMixture = std::make_shared<GaussianMixture>(*gm);
auto prunedGaussianMixture = std::make_shared<HybridGaussianConditional>(*gm);
prunedGaussianMixture->prune(prunedDiscreteProbs); // imperative :-(
// Type-erase and add to the pruned Bayes Net fragment.
prunedBayesNetFragment.push_back(prunedGaussianMixture);
} else {
// Add the non-GaussianMixture conditional
// Add the non-HybridGaussianConditional conditional
prunedBayesNetFragment.push_back(conditional);
}
}

View File

@ -79,7 +79,7 @@ class GTSAM_EXPORT HybridBayesNet : public BayesNet<HybridConditional> {
*
* Example:
* auto shared_ptr_to_a_conditional =
* std::make_shared<GaussianMixture>(...);
* std::make_shared<HybridGaussianConditional>(...);
* hbn.push_back(shared_ptr_to_a_conditional);
*/
void push_back(HybridConditional &&conditional) {
@ -106,7 +106,7 @@ class GTSAM_EXPORT HybridBayesNet : public BayesNet<HybridConditional> {
* Preferred: Emplace a conditional directly using arguments.
*
* Examples:
* hbn.emplace_shared<GaussianMixture>(...)));
* hbn.emplace_shared<HybridGaussianConditional>(...)));
* hbn.emplace_shared<GaussianConditional>(...)));
* hbn.emplace_shared<DiscreteConditional>(...)));
*/

View File

@ -55,7 +55,7 @@ HybridConditional::HybridConditional(
/* ************************************************************************ */
HybridConditional::HybridConditional(
const std::shared_ptr<GaussianMixture> &gaussianMixture)
const std::shared_ptr<HybridGaussianConditional> &gaussianMixture)
: BaseFactor(KeyVector(gaussianMixture->keys().begin(),
gaussianMixture->keys().begin() +
gaussianMixture->nrContinuous()),

View File

@ -18,7 +18,7 @@
#pragma once
#include <gtsam/discrete/DiscreteConditional.h>
#include <gtsam/hybrid/GaussianMixture.h>
#include <gtsam/hybrid/HybridGaussianConditional.h>
#include <gtsam/hybrid/HybridFactor.h>
#include <gtsam/hybrid/HybridGaussianFactorGraph.h>
#include <gtsam/inference/Conditional.h>
@ -39,7 +39,7 @@ namespace gtsam {
* As a type-erased variant of:
* - DiscreteConditional
* - GaussianConditional
* - GaussianMixture
* - HybridGaussianConditional
*
* The reason why this is important is that `Conditional<T>` is a CRTP class.
* CRTP is static polymorphism such that all CRTP classes, while bearing the
@ -127,7 +127,7 @@ class GTSAM_EXPORT HybridConditional
* @param gaussianMixture Gaussian Mixture Conditional used to create the
* HybridConditional.
*/
HybridConditional(const std::shared_ptr<GaussianMixture>& gaussianMixture);
HybridConditional(const std::shared_ptr<HybridGaussianConditional>& gaussianMixture);
/// @}
/// @name Testable
@ -146,12 +146,12 @@ class GTSAM_EXPORT HybridConditional
/// @{
/**
* @brief Return HybridConditional as a GaussianMixture
* @brief Return HybridConditional as a HybridGaussianConditional
* @return nullptr if not a mixture
* @return GaussianMixture::shared_ptr otherwise
* @return HybridGaussianConditional::shared_ptr otherwise
*/
GaussianMixture::shared_ptr asMixture() const {
return std::dynamic_pointer_cast<GaussianMixture>(inner_);
HybridGaussianConditional::shared_ptr asMixture() const {
return std::dynamic_pointer_cast<HybridGaussianConditional>(inner_);
}
/**
@ -222,8 +222,8 @@ class GTSAM_EXPORT HybridConditional
boost::serialization::void_cast_register<GaussianConditional, Factor>(
static_cast<GaussianConditional*>(NULL), static_cast<Factor*>(NULL));
} else {
boost::serialization::void_cast_register<GaussianMixture, Factor>(
static_cast<GaussianMixture*>(NULL), static_cast<Factor*>(NULL));
boost::serialization::void_cast_register<HybridGaussianConditional, Factor>(
static_cast<HybridGaussianConditional*>(NULL), static_cast<Factor*>(NULL));
}
}
#endif

View File

@ -47,7 +47,7 @@ DiscreteKeys CollectDiscreteKeys(const DiscreteKeys &key1,
* Examples:
* - HybridNonlinearFactor
* - HybridGaussianFactor
* - GaussianMixture
* - HybridGaussianConditional
*
* @ingroup hybrid
*/

View File

@ -23,7 +23,7 @@
#include <gtsam/discrete/DiscreteEliminationTree.h>
#include <gtsam/discrete/DiscreteFactorGraph.h>
#include <gtsam/discrete/DiscreteJunctionTree.h>
#include <gtsam/hybrid/GaussianMixture.h>
#include <gtsam/hybrid/HybridGaussianConditional.h>
#include <gtsam/hybrid/HybridGaussianFactor.h>
#include <gtsam/hybrid/HybridConditional.h>
#include <gtsam/hybrid/HybridEliminationTree.h>
@ -180,7 +180,7 @@ GaussianFactorGraphTree HybridGaussianFactorGraph::assembleGraphTree() const {
result = addGaussian(result, gf);
} else if (auto gmf = dynamic_pointer_cast<HybridGaussianFactor>(f)) {
result = gmf->add(result);
} else if (auto gm = dynamic_pointer_cast<GaussianMixture>(f)) {
} else if (auto gm = dynamic_pointer_cast<HybridGaussianConditional>(f)) {
result = gm->add(result);
} else if (auto hc = dynamic_pointer_cast<HybridConditional>(f)) {
if (auto gm = hc->asMixture()) {
@ -408,10 +408,10 @@ hybridElimination(const HybridGaussianFactorGraph &factors,
: createGaussianMixtureFactor(eliminationResults, continuousSeparator,
discreteSeparator);
// Create the GaussianMixture from the conditionals
GaussianMixture::Conditionals conditionals(
// Create the HybridGaussianConditional from the conditionals
HybridGaussianConditional::Conditionals conditionals(
eliminationResults, [](const Result &pair) { return pair.first; });
auto gaussianMixture = std::make_shared<GaussianMixture>(
auto gaussianMixture = std::make_shared<HybridGaussianConditional>(
frontalKeys, continuousSeparator, discreteSeparator, conditionals);
return {std::make_shared<HybridConditional>(gaussianMixture), newFactor};
@ -458,7 +458,7 @@ EliminateHybrid(const HybridGaussianFactorGraph &factors,
// Because of all these reasons, we carefully consider how to
// implement the hybrid factors so that we do not get poor performance.
// The first thing is how to represent the GaussianMixture.
// The first thing is how to represent the HybridGaussianConditional.
// A very possible scenario is that the incoming factors will have different
// levels of discrete keys. For example, imagine we are going to eliminate the
// fragment: $\phi(x1,c1,c2)$, $\phi(x1,c2,c3)$, which is perfectly valid.
@ -599,7 +599,7 @@ GaussianFactorGraph HybridGaussianFactorGraph::operator()(
gfg.push_back(gf);
} else if (auto gmf = std::dynamic_pointer_cast<HybridGaussianFactor>(f)) {
gfg.push_back((*gmf)(assignment));
} else if (auto gm = dynamic_pointer_cast<GaussianMixture>(f)) {
} else if (auto gm = dynamic_pointer_cast<HybridGaussianConditional>(f)) {
gfg.push_back((*gm)(assignment));
} else {
continue;

View File

@ -18,7 +18,7 @@
#include <gtsam/discrete/DecisionTreeFactor.h>
#include <gtsam/discrete/TableFactor.h>
#include <gtsam/hybrid/GaussianMixture.h>
#include <gtsam/hybrid/HybridGaussianConditional.h>
#include <gtsam/hybrid/HybridGaussianFactorGraph.h>
#include <gtsam/hybrid/HybridNonlinearFactorGraph.h>
#include <gtsam/hybrid/HybridNonlinearFactor.h>
@ -80,7 +80,7 @@ void HybridNonlinearFactorGraph::printErrors(
gmf->errorTree(values.continuous()).print("", keyFormatter);
std::cout << std::endl;
}
} else if (auto gm = std::dynamic_pointer_cast<GaussianMixture>(factor)) {
} else if (auto gm = std::dynamic_pointer_cast<HybridGaussianConditional>(factor)) {
if (factor == nullptr) {
std::cout << "nullptr"
<< "\n";
@ -163,7 +163,7 @@ HybridGaussianFactorGraph::shared_ptr HybridNonlinearFactorGraph::linearize(
linearFG->push_back(f);
} else if (auto gmf = dynamic_pointer_cast<HybridGaussianFactor>(f)) {
linearFG->push_back(gmf);
} else if (auto gm = dynamic_pointer_cast<GaussianMixture>(f)) {
} else if (auto gm = dynamic_pointer_cast<HybridGaussianConditional>(f)) {
linearFG->push_back(gm);
} else if (dynamic_pointer_cast<GaussianFactor>(f)) {
linearFG->push_back(f);

View File

@ -138,7 +138,7 @@ HybridSmoother::addConditionals(const HybridGaussianFactorGraph &originalGraph,
}
/* ************************************************************************* */
GaussianMixture::shared_ptr HybridSmoother::gaussianMixture(
HybridGaussianConditional::shared_ptr HybridSmoother::gaussianMixture(
size_t index) const {
return hybridBayesNet_.at(index)->asMixture();
}

View File

@ -69,7 +69,7 @@ class GTSAM_EXPORT HybridSmoother {
const HybridBayesNet& hybridBayesNet, const Ordering& ordering) const;
/// Get the Gaussian Mixture from the Bayes Net posterior at `index`.
GaussianMixture::shared_ptr gaussianMixture(size_t index) const;
HybridGaussianConditional::shared_ptr gaussianMixture(size_t index) const;
/// Return the Bayes Net posterior.
const HybridBayesNet& hybridBayesNet() const;

View File

@ -65,7 +65,7 @@ virtual class HybridConditional {
double logProbability(const gtsam::HybridValues& values) const;
double evaluate(const gtsam::HybridValues& values) const;
double operator()(const gtsam::HybridValues& values) const;
gtsam::GaussianMixture* asMixture() const;
gtsam::HybridGaussianConditional* asMixture() const;
gtsam::GaussianConditional* asGaussian() const;
gtsam::DiscreteConditional* asDiscrete() const;
gtsam::Factor* inner();
@ -84,9 +84,9 @@ class HybridGaussianFactor : gtsam::HybridFactor {
gtsam::DefaultKeyFormatter) const;
};
#include <gtsam/hybrid/GaussianMixture.h>
class GaussianMixture : gtsam::HybridFactor {
GaussianMixture(const gtsam::KeyVector& continuousFrontals,
#include <gtsam/hybrid/HybridGaussianConditional.h>
class HybridGaussianConditional : gtsam::HybridFactor {
HybridGaussianConditional(const gtsam::KeyVector& continuousFrontals,
const gtsam::KeyVector& continuousParents,
const gtsam::DiscreteKeys& discreteParents,
const std::vector<gtsam::GaussianConditional::shared_ptr>&
@ -97,7 +97,7 @@ class GaussianMixture : gtsam::HybridFactor {
double logProbability(const gtsam::HybridValues& values) const;
double evaluate(const gtsam::HybridValues& values) const;
void print(string s = "GaussianMixture\n",
void print(string s = "HybridGaussianConditional\n",
const gtsam::KeyFormatter& keyFormatter =
gtsam::DefaultKeyFormatter) const;
};
@ -131,7 +131,7 @@ class HybridBayesTree {
#include <gtsam/hybrid/HybridBayesNet.h>
class HybridBayesNet {
HybridBayesNet();
void push_back(const gtsam::GaussianMixture* s);
void push_back(const gtsam::HybridGaussianConditional* s);
void push_back(const gtsam::GaussianConditional* s);
void push_back(const gtsam::DiscreteConditional* s);

View File

@ -43,7 +43,7 @@ inline HybridBayesNet createHybridBayesNet(size_t num_measurements = 1,
// Create Gaussian mixture z_i = x0 + noise for each measurement.
for (size_t i = 0; i < num_measurements; i++) {
const auto mode_i = manyModes ? DiscreteKey{M(i), 2} : mode;
bayesNet.emplace_shared<GaussianMixture>(
bayesNet.emplace_shared<HybridGaussianConditional>(
KeyVector{Z(i)}, KeyVector{X(0)}, DiscreteKeys{mode_i},
std::vector{GaussianConditional::sharedMeanAndStddev(Z(i), I_1x1, X(0),
Z_1x1, 0.5),

View File

@ -11,7 +11,7 @@
/**
* @file testGaussianMixture.cpp
* @brief Unit tests for GaussianMixture class
* @brief Unit tests for HybridGaussianConditional class
* @author Varun Agrawal
* @author Fan Jiang
* @author Frank Dellaert
@ -19,7 +19,7 @@
*/
#include <gtsam/discrete/DiscreteValues.h>
#include <gtsam/hybrid/GaussianMixture.h>
#include <gtsam/hybrid/HybridGaussianConditional.h>
#include <gtsam/hybrid/HybridGaussianFactor.h>
#include <gtsam/hybrid/HybridValues.h>
#include <gtsam/inference/Symbol.h>
@ -46,19 +46,19 @@ static const HybridValues hv1{vv, assignment1};
/* ************************************************************************* */
namespace equal_constants {
// Create a simple GaussianMixture
// Create a simple HybridGaussianConditional
const double commonSigma = 2.0;
const std::vector<GaussianConditional::shared_ptr> conditionals{
GaussianConditional::sharedMeanAndStddev(Z(0), I_1x1, X(0), Vector1(0.0),
commonSigma),
GaussianConditional::sharedMeanAndStddev(Z(0), I_1x1, X(0), Vector1(0.0),
commonSigma)};
const GaussianMixture mixture({Z(0)}, {X(0)}, {mode}, conditionals);
const HybridGaussianConditional mixture({Z(0)}, {X(0)}, {mode}, conditionals);
} // namespace equal_constants
/* ************************************************************************* */
/// Check that invariants hold
TEST(GaussianMixture, Invariants) {
TEST(HybridGaussianConditional, Invariants) {
using namespace equal_constants;
// Check that the mixture normalization constant is the max of all constants
@ -67,13 +67,13 @@ TEST(GaussianMixture, Invariants) {
EXPECT_DOUBLES_EQUAL(K, conditionals[0]->logNormalizationConstant(), 1e-8);
EXPECT_DOUBLES_EQUAL(K, conditionals[1]->logNormalizationConstant(), 1e-8);
EXPECT(GaussianMixture::CheckInvariants(mixture, hv0));
EXPECT(GaussianMixture::CheckInvariants(mixture, hv1));
EXPECT(HybridGaussianConditional::CheckInvariants(mixture, hv0));
EXPECT(HybridGaussianConditional::CheckInvariants(mixture, hv1));
}
/* ************************************************************************* */
/// Check LogProbability.
TEST(GaussianMixture, LogProbability) {
TEST(HybridGaussianConditional, LogProbability) {
using namespace equal_constants;
auto actual = mixture.logProbability(vv);
@ -95,7 +95,7 @@ TEST(GaussianMixture, LogProbability) {
/* ************************************************************************* */
/// Check error.
TEST(GaussianMixture, Error) {
TEST(HybridGaussianConditional, Error) {
using namespace equal_constants;
auto actual = mixture.errorTree(vv);
@ -118,7 +118,7 @@ TEST(GaussianMixture, Error) {
/* ************************************************************************* */
/// Check that the likelihood is proportional to the conditional density given
/// the measurements.
TEST(GaussianMixture, Likelihood) {
TEST(HybridGaussianConditional, Likelihood) {
using namespace equal_constants;
// Compute likelihood
@ -147,19 +147,19 @@ TEST(GaussianMixture, Likelihood) {
/* ************************************************************************* */
namespace mode_dependent_constants {
// Create a GaussianMixture with mode-dependent noise models.
// Create a HybridGaussianConditional with mode-dependent noise models.
// 0 is low-noise, 1 is high-noise.
const std::vector<GaussianConditional::shared_ptr> conditionals{
GaussianConditional::sharedMeanAndStddev(Z(0), I_1x1, X(0), Vector1(0.0),
0.5),
GaussianConditional::sharedMeanAndStddev(Z(0), I_1x1, X(0), Vector1(0.0),
3.0)};
const GaussianMixture mixture({Z(0)}, {X(0)}, {mode}, conditionals);
const HybridGaussianConditional mixture({Z(0)}, {X(0)}, {mode}, conditionals);
} // namespace mode_dependent_constants
/* ************************************************************************* */
// Create a test for continuousParents.
TEST(GaussianMixture, ContinuousParents) {
TEST(HybridGaussianConditional, ContinuousParents) {
using namespace mode_dependent_constants;
const KeyVector continuousParentKeys = mixture.continuousParents();
// Check that the continuous parent keys are correct:
@ -170,7 +170,7 @@ TEST(GaussianMixture, ContinuousParents) {
/* ************************************************************************* */
/// Check that the likelihood is proportional to the conditional density given
/// the measurements.
TEST(GaussianMixture, Likelihood2) {
TEST(HybridGaussianConditional, Likelihood2) {
using namespace mode_dependent_constants;
// Compute likelihood

View File

@ -20,7 +20,7 @@
#include <gtsam/base/TestableAssertions.h>
#include <gtsam/discrete/DiscreteValues.h>
#include <gtsam/hybrid/GaussianMixture.h>
#include <gtsam/hybrid/HybridGaussianConditional.h>
#include <gtsam/hybrid/HybridGaussianFactor.h>
#include <gtsam/hybrid/HybridBayesNet.h>
#include <gtsam/hybrid/HybridGaussianFactorGraph.h>
@ -144,7 +144,7 @@ Hybrid [x1 x2; 1]{
}
/* ************************************************************************* */
TEST(HybridGaussianFactor, GaussianMixture) {
TEST(HybridGaussianFactor, HybridGaussianConditional) {
KeyVector keys;
keys.push_back(X(0));
keys.push_back(X(1));
@ -154,8 +154,8 @@ TEST(HybridGaussianFactor, GaussianMixture) {
dKeys.emplace_back(M(1), 2);
auto gaussians = std::make_shared<GaussianConditional>();
GaussianMixture::Conditionals conditionals(gaussians);
GaussianMixture gm({}, keys, dKeys, conditionals);
HybridGaussianConditional::Conditionals conditionals(gaussians);
HybridGaussianConditional gm({}, keys, dKeys, conditionals);
EXPECT_LONGS_EQUAL(2, gm.discreteKeys().size());
}
@ -229,7 +229,7 @@ static HybridBayesNet GetGaussianMixtureModel(double mu0, double mu1,
c1 = make_shared<GaussianConditional>(z, Vector1(mu1), I_1x1, model1);
HybridBayesNet hbn;
hbn.emplace_shared<GaussianMixture>(KeyVector{z}, KeyVector{},
hbn.emplace_shared<HybridGaussianConditional>(KeyVector{z}, KeyVector{},
DiscreteKeys{m}, std::vector{c0, c1});
auto mixing = make_shared<DiscreteConditional>(m, "0.5/0.5");
@ -413,7 +413,7 @@ static HybridBayesNet CreateBayesNet(double mu0, double mu1, double sigma0,
c1 = make_shared<GaussianConditional>(x1, Vector1(mu1), I_1x1, x0,
-I_1x1, model1);
auto motion = std::make_shared<GaussianMixture>(
auto motion = std::make_shared<HybridGaussianConditional>(
KeyVector{x1}, KeyVector{x0}, DiscreteKeys{m1}, std::vector{c0, c1});
hbn.push_back(motion);

View File

@ -107,7 +107,7 @@ TEST(HybridBayesNet, evaluateHybrid) {
// Create hybrid Bayes net.
HybridBayesNet bayesNet;
bayesNet.push_back(continuousConditional);
bayesNet.emplace_shared<GaussianMixture>(
bayesNet.emplace_shared<HybridGaussianConditional>(
KeyVector{X(1)}, KeyVector{}, DiscreteKeys{Asia},
std::vector{conditional0, conditional1});
bayesNet.emplace_shared<DiscreteConditional>(Asia, "99/1");
@ -168,7 +168,7 @@ TEST(HybridBayesNet, Error) {
conditional1 = std::make_shared<GaussianConditional>(
X(1), Vector1::Constant(2), I_1x1, model1);
auto gm = std::make_shared<GaussianMixture>(
auto gm = std::make_shared<HybridGaussianConditional>(
KeyVector{X(1)}, KeyVector{}, DiscreteKeys{Asia},
std::vector{conditional0, conditional1});
// Create hybrid Bayes net.

View File

@ -43,9 +43,9 @@ TEST(HybridConditional, Invariants) {
auto hc0 = bn.at(0);
CHECK(hc0->isHybrid());
// Check invariants as a GaussianMixture.
// Check invariants as a HybridGaussianConditional.
const auto mixture = hc0->asMixture();
EXPECT(GaussianMixture::CheckInvariants(*mixture, values));
EXPECT(HybridGaussianConditional::CheckInvariants(*mixture, values));
// Check invariants as a HybridConditional.
EXPECT(HybridConditional::CheckInvariants(*hc0, values));

View File

@ -616,7 +616,7 @@ TEST(HybridEstimation, ModeSelection) {
GaussianConditional::sharedMeanAndStddev(Z(0), -I_1x1, X(0), Z_1x1, 0.1));
bn.push_back(
GaussianConditional::sharedMeanAndStddev(Z(0), -I_1x1, X(1), Z_1x1, 0.1));
bn.emplace_shared<GaussianMixture>(
bn.emplace_shared<HybridGaussianConditional>(
KeyVector{Z(0)}, KeyVector{X(0), X(1)}, DiscreteKeys{mode},
std::vector{GaussianConditional::sharedMeanAndStddev(
Z(0), I_1x1, X(0), -I_1x1, X(1), Z_1x1, noise_loose),
@ -647,7 +647,7 @@ TEST(HybridEstimation, ModeSelection2) {
GaussianConditional::sharedMeanAndStddev(Z(0), -I_3x3, X(0), Z_3x1, 0.1));
bn.push_back(
GaussianConditional::sharedMeanAndStddev(Z(0), -I_3x3, X(1), Z_3x1, 0.1));
bn.emplace_shared<GaussianMixture>(
bn.emplace_shared<HybridGaussianConditional>(
KeyVector{Z(0)}, KeyVector{X(0), X(1)}, DiscreteKeys{mode},
std::vector{GaussianConditional::sharedMeanAndStddev(
Z(0), I_3x3, X(0), -I_3x3, X(1), Z_3x1, noise_loose),

View File

@ -21,7 +21,7 @@
#include <gtsam/discrete/DecisionTreeFactor.h>
#include <gtsam/discrete/DiscreteKey.h>
#include <gtsam/discrete/DiscreteValues.h>
#include <gtsam/hybrid/GaussianMixture.h>
#include <gtsam/hybrid/HybridGaussianConditional.h>
#include <gtsam/hybrid/HybridGaussianFactor.h>
#include <gtsam/hybrid/HybridBayesNet.h>
#include <gtsam/hybrid/HybridBayesTree.h>
@ -71,8 +71,8 @@ TEST(HybridGaussianFactorGraph, Creation) {
// Define a gaussian mixture conditional P(x0|x1, c0) and add it to the factor
// graph
GaussianMixture gm({X(0)}, {X(1)}, DiscreteKeys(DiscreteKey{M(0), 2}),
GaussianMixture::Conditionals(
HybridGaussianConditional gm({X(0)}, {X(1)}, DiscreteKeys(DiscreteKey{M(0), 2}),
HybridGaussianConditional::Conditionals(
M(0),
std::make_shared<GaussianConditional>(
X(0), Z_3x1, I_3x3, X(1), I_3x3),
@ -681,7 +681,7 @@ TEST(HybridGaussianFactorGraph, ErrorTreeWithConditional) {
x0, -I_1x1, model0),
c1 = make_shared<GaussianConditional>(f01, Vector1(mu), I_1x1, x1, I_1x1,
x0, -I_1x1, model1);
hbn.emplace_shared<GaussianMixture>(KeyVector{f01}, KeyVector{x0, x1},
hbn.emplace_shared<HybridGaussianConditional>(KeyVector{f01}, KeyVector{x0, x1},
DiscreteKeys{m1}, std::vector{c0, c1});
// Discrete uniform prior.
@ -805,7 +805,7 @@ TEST(HybridGaussianFactorGraph, EliminateTiny1) {
X(0), Vector1(14.1421), I_1x1 * 2.82843),
conditional1 = std::make_shared<GaussianConditional>(
X(0), Vector1(10.1379), I_1x1 * 2.02759);
expectedBayesNet.emplace_shared<GaussianMixture>(
expectedBayesNet.emplace_shared<HybridGaussianConditional>(
KeyVector{X(0)}, KeyVector{}, DiscreteKeys{mode},
std::vector{conditional0, conditional1});
@ -830,7 +830,7 @@ TEST(HybridGaussianFactorGraph, EliminateTiny1Swapped) {
HybridBayesNet bn;
// Create Gaussian mixture z_0 = x0 + noise for each measurement.
auto gm = std::make_shared<GaussianMixture>(
auto gm = std::make_shared<HybridGaussianConditional>(
KeyVector{Z(0)}, KeyVector{X(0)}, DiscreteKeys{mode},
std::vector{
GaussianConditional::sharedMeanAndStddev(Z(0), I_1x1, X(0), Z_1x1, 3),
@ -862,7 +862,7 @@ TEST(HybridGaussianFactorGraph, EliminateTiny1Swapped) {
X(0), Vector1(10.1379), I_1x1 * 2.02759),
conditional1 = std::make_shared<GaussianConditional>(
X(0), Vector1(14.1421), I_1x1 * 2.82843);
expectedBayesNet.emplace_shared<GaussianMixture>(
expectedBayesNet.emplace_shared<HybridGaussianConditional>(
KeyVector{X(0)}, KeyVector{}, DiscreteKeys{mode},
std::vector{conditional0, conditional1});
@ -899,7 +899,7 @@ TEST(HybridGaussianFactorGraph, EliminateTiny2) {
X(0), Vector1(17.3205), I_1x1 * 3.4641),
conditional1 = std::make_shared<GaussianConditional>(
X(0), Vector1(10.274), I_1x1 * 2.0548);
expectedBayesNet.emplace_shared<GaussianMixture>(
expectedBayesNet.emplace_shared<HybridGaussianConditional>(
KeyVector{X(0)}, KeyVector{}, DiscreteKeys{mode},
std::vector{conditional0, conditional1});
@ -946,7 +946,7 @@ TEST(HybridGaussianFactorGraph, EliminateSwitchingNetwork) {
for (size_t t : {0, 1, 2}) {
// Create Gaussian mixture on Z(t) conditioned on X(t) and mode N(t):
const auto noise_mode_t = DiscreteKey{N(t), 2};
bn.emplace_shared<GaussianMixture>(
bn.emplace_shared<HybridGaussianConditional>(
KeyVector{Z(t)}, KeyVector{X(t)}, DiscreteKeys{noise_mode_t},
std::vector{GaussianConditional::sharedMeanAndStddev(Z(t), I_1x1, X(t),
Z_1x1, 0.5),
@ -961,7 +961,7 @@ TEST(HybridGaussianFactorGraph, EliminateSwitchingNetwork) {
for (size_t t : {2, 1}) {
// Create Gaussian mixture on X(t) conditioned on X(t-1) and mode M(t-1):
const auto motion_model_t = DiscreteKey{M(t), 2};
auto gm = std::make_shared<GaussianMixture>(
auto gm = std::make_shared<HybridGaussianConditional>(
KeyVector{X(t)}, KeyVector{X(t - 1)}, DiscreteKeys{motion_model_t},
std::vector{GaussianConditional::sharedMeanAndStddev(
X(t), I_1x1, X(t - 1), Z_1x1, 0.2),

View File

@ -134,22 +134,22 @@ TEST(HybridGaussianElimination, IncrementalInference) {
// The densities on X(0) should be the same
auto x0_conditional =
dynamic_pointer_cast<GaussianMixture>(isam[X(0)]->conditional()->inner());
auto expected_x0_conditional = dynamic_pointer_cast<GaussianMixture>(
dynamic_pointer_cast<HybridGaussianConditional>(isam[X(0)]->conditional()->inner());
auto expected_x0_conditional = dynamic_pointer_cast<HybridGaussianConditional>(
(*expectedHybridBayesTree)[X(0)]->conditional()->inner());
EXPECT(assert_equal(*x0_conditional, *expected_x0_conditional));
// The densities on X(1) should be the same
auto x1_conditional =
dynamic_pointer_cast<GaussianMixture>(isam[X(1)]->conditional()->inner());
auto expected_x1_conditional = dynamic_pointer_cast<GaussianMixture>(
dynamic_pointer_cast<HybridGaussianConditional>(isam[X(1)]->conditional()->inner());
auto expected_x1_conditional = dynamic_pointer_cast<HybridGaussianConditional>(
(*expectedHybridBayesTree)[X(1)]->conditional()->inner());
EXPECT(assert_equal(*x1_conditional, *expected_x1_conditional));
// The densities on X(2) should be the same
auto x2_conditional =
dynamic_pointer_cast<GaussianMixture>(isam[X(2)]->conditional()->inner());
auto expected_x2_conditional = dynamic_pointer_cast<GaussianMixture>(
dynamic_pointer_cast<HybridGaussianConditional>(isam[X(2)]->conditional()->inner());
auto expected_x2_conditional = dynamic_pointer_cast<HybridGaussianConditional>(
(*expectedHybridBayesTree)[X(2)]->conditional()->inner());
EXPECT(assert_equal(*x2_conditional, *expected_x2_conditional));
@ -279,9 +279,9 @@ TEST(HybridGaussianElimination, Approx_inference) {
// Check that the hybrid nodes of the bayes net match those of the pre-pruning
// bayes net, at the same positions.
auto &unprunedLastDensity = *dynamic_pointer_cast<GaussianMixture>(
auto &unprunedLastDensity = *dynamic_pointer_cast<HybridGaussianConditional>(
unprunedHybridBayesTree->clique(X(3))->conditional()->inner());
auto &lastDensity = *dynamic_pointer_cast<GaussianMixture>(
auto &lastDensity = *dynamic_pointer_cast<HybridGaussianConditional>(
incrementalHybrid[X(3)]->conditional()->inner());
std::vector<std::pair<DiscreteValues, double>> assignments =

View File

@ -350,7 +350,7 @@ TEST(HybridGaussianElimination, EliminateHybrid_2_Variable) {
EliminateHybrid(factors, ordering);
auto gaussianConditionalMixture =
dynamic_pointer_cast<GaussianMixture>(hybridConditionalMixture->inner());
dynamic_pointer_cast<HybridGaussianConditional>(hybridConditionalMixture->inner());
CHECK(gaussianConditionalMixture);
// Frontals = [x0, x1]

View File

@ -151,23 +151,23 @@ TEST(HybridNonlinearISAM, IncrementalInference) {
.BaseEliminateable::eliminatePartialMultifrontal(ordering);
// The densities on X(1) should be the same
auto x0_conditional = dynamic_pointer_cast<GaussianMixture>(
auto x0_conditional = dynamic_pointer_cast<HybridGaussianConditional>(
bayesTree[X(0)]->conditional()->inner());
auto expected_x0_conditional = dynamic_pointer_cast<GaussianMixture>(
auto expected_x0_conditional = dynamic_pointer_cast<HybridGaussianConditional>(
(*expectedHybridBayesTree)[X(0)]->conditional()->inner());
EXPECT(assert_equal(*x0_conditional, *expected_x0_conditional));
// The densities on X(1) should be the same
auto x1_conditional = dynamic_pointer_cast<GaussianMixture>(
auto x1_conditional = dynamic_pointer_cast<HybridGaussianConditional>(
bayesTree[X(1)]->conditional()->inner());
auto expected_x1_conditional = dynamic_pointer_cast<GaussianMixture>(
auto expected_x1_conditional = dynamic_pointer_cast<HybridGaussianConditional>(
(*expectedHybridBayesTree)[X(1)]->conditional()->inner());
EXPECT(assert_equal(*x1_conditional, *expected_x1_conditional));
// The densities on X(2) should be the same
auto x2_conditional = dynamic_pointer_cast<GaussianMixture>(
auto x2_conditional = dynamic_pointer_cast<HybridGaussianConditional>(
bayesTree[X(2)]->conditional()->inner());
auto expected_x2_conditional = dynamic_pointer_cast<GaussianMixture>(
auto expected_x2_conditional = dynamic_pointer_cast<HybridGaussianConditional>(
(*expectedHybridBayesTree)[X(2)]->conditional()->inner());
EXPECT(assert_equal(*x2_conditional, *expected_x2_conditional));
@ -300,9 +300,9 @@ TEST(HybridNonlinearISAM, Approx_inference) {
// Check that the hybrid nodes of the bayes net match those of the pre-pruning
// bayes net, at the same positions.
auto &unprunedLastDensity = *dynamic_pointer_cast<GaussianMixture>(
auto &unprunedLastDensity = *dynamic_pointer_cast<HybridGaussianConditional>(
unprunedHybridBayesTree->clique(X(3))->conditional()->inner());
auto &lastDensity = *dynamic_pointer_cast<GaussianMixture>(
auto &lastDensity = *dynamic_pointer_cast<HybridGaussianConditional>(
bayesTree[X(3)]->conditional()->inner());
std::vector<std::pair<DiscreteValues, double>> assignments =

View File

@ -18,7 +18,7 @@
#include <gtsam/base/serializationTestHelpers.h>
#include <gtsam/discrete/DiscreteConditional.h>
#include <gtsam/hybrid/GaussianMixture.h>
#include <gtsam/hybrid/HybridGaussianConditional.h>
#include <gtsam/hybrid/HybridGaussianFactor.h>
#include <gtsam/hybrid/HybridBayesNet.h>
#include <gtsam/hybrid/HybridBayesTree.h>
@ -59,12 +59,12 @@ BOOST_CLASS_EXPORT_GUID(HybridGaussianFactor::Factors::Leaf,
BOOST_CLASS_EXPORT_GUID(HybridGaussianFactor::Factors::Choice,
"gtsam_GaussianMixtureFactor_Factors_Choice");
BOOST_CLASS_EXPORT_GUID(GaussianMixture, "gtsam_GaussianMixture");
BOOST_CLASS_EXPORT_GUID(GaussianMixture::Conditionals,
BOOST_CLASS_EXPORT_GUID(HybridGaussianConditional, "gtsam_GaussianMixture");
BOOST_CLASS_EXPORT_GUID(HybridGaussianConditional::Conditionals,
"gtsam_GaussianMixture_Conditionals");
BOOST_CLASS_EXPORT_GUID(GaussianMixture::Conditionals::Leaf,
BOOST_CLASS_EXPORT_GUID(HybridGaussianConditional::Conditionals::Leaf,
"gtsam_GaussianMixture_Conditionals_Leaf");
BOOST_CLASS_EXPORT_GUID(GaussianMixture::Conditionals::Choice,
BOOST_CLASS_EXPORT_GUID(HybridGaussianConditional::Conditionals::Choice,
"gtsam_GaussianMixture_Conditionals_Choice");
// Needed since GaussianConditional::FromMeanAndStddev uses it
BOOST_CLASS_EXPORT_GUID(noiseModel::Isotropic, "gtsam_noiseModel_Isotropic");
@ -106,20 +106,20 @@ TEST(HybridSerialization, HybridConditional) {
}
/* ****************************************************************************/
// Test GaussianMixture serialization.
TEST(HybridSerialization, GaussianMixture) {
// Test HybridGaussianConditional serialization.
TEST(HybridSerialization, HybridGaussianConditional) {
const DiscreteKey mode(M(0), 2);
Matrix1 I = Matrix1::Identity();
const auto conditional0 = std::make_shared<GaussianConditional>(
GaussianConditional::FromMeanAndStddev(Z(0), I, X(0), Vector1(0), 0.5));
const auto conditional1 = std::make_shared<GaussianConditional>(
GaussianConditional::FromMeanAndStddev(Z(0), I, X(0), Vector1(0), 3));
const GaussianMixture gm({Z(0)}, {X(0)}, {mode},
const HybridGaussianConditional gm({Z(0)}, {X(0)}, {mode},
{conditional0, conditional1});
EXPECT(equalsObj<GaussianMixture>(gm));
EXPECT(equalsXML<GaussianMixture>(gm));
EXPECT(equalsBinary<GaussianMixture>(gm));
EXPECT(equalsObj<HybridGaussianConditional>(gm));
EXPECT(equalsXML<HybridGaussianConditional>(gm));
EXPECT(equalsBinary<HybridGaussianConditional>(gm));
}
/* ****************************************************************************/

View File

@ -46,7 +46,7 @@ namespace gtsam {
* Gaussian density over a set of continuous variables.
* - \b Discrete conditionals, implemented in \class DiscreteConditional, which
* represent a discrete conditional distribution over discrete variables.
* - \b Hybrid conditional densities, such as \class GaussianMixture, which is
* - \b Hybrid conditional densities, such as \class HybridGaussianConditional, which is
* a density over continuous variables given discrete/continuous parents.
* - \b Symbolic factors, used to represent a graph structure, implemented in
* \class SymbolicConditional. Only used for symbolic elimination etc.

View File

@ -18,8 +18,9 @@ from gtsam.symbol_shorthand import A, X
from gtsam.utils.test_case import GtsamTestCase
from gtsam import (DiscreteConditional, DiscreteKeys, DiscreteValues,
GaussianConditional, GaussianMixture, HybridBayesNet,
HybridValues, VectorValues, noiseModel)
GaussianConditional, HybridBayesNet,
HybridGaussianConditional, HybridValues, VectorValues,
noiseModel)
class TestHybridBayesNet(GtsamTestCase):
@ -49,7 +50,7 @@ class TestHybridBayesNet(GtsamTestCase):
bayesNet = HybridBayesNet()
bayesNet.push_back(conditional)
bayesNet.push_back(
GaussianMixture([X(1)], [], discrete_keys,
HybridGaussianConditional([X(1)], [], discrete_keys,
[conditional0, conditional1]))
bayesNet.push_back(DiscreteConditional(Asia, "99/1"))

View File

@ -18,9 +18,9 @@ from gtsam.utils.test_case import GtsamTestCase
import gtsam
from gtsam import (DiscreteConditional, DiscreteKeys, GaussianConditional,
GaussianMixture, HybridBayesNet, HybridGaussianFactor,
HybridGaussianFactorGraph, HybridValues, JacobianFactor,
Ordering, noiseModel)
HybridBayesNet, HybridGaussianConditional,
HybridGaussianFactor, HybridGaussianFactorGraph,
HybridValues, JacobianFactor, Ordering, noiseModel)
DEBUG_MARGINALS = False
@ -48,7 +48,7 @@ class TestHybridGaussianFactorGraph(GtsamTestCase):
self.assertEqual(hbn.size(), 2)
mixture = hbn.at(0).inner()
self.assertIsInstance(mixture, GaussianMixture)
self.assertIsInstance(mixture, HybridGaussianConditional)
self.assertEqual(len(mixture.keys()), 2)
discrete_conditional = hbn.at(hbn.size() - 1).inner()
@ -106,7 +106,7 @@ class TestHybridGaussianFactorGraph(GtsamTestCase):
I_1x1,
X(0), [0],
sigma=3)
bayesNet.push_back(GaussianMixture([Z(i)], [X(0)], keys,
bayesNet.push_back(HybridGaussianConditional([Z(i)], [X(0)], keys,
[conditional0, conditional1]))
# Create prior on X(0).