gtsam/gtsam/hybrid/HybridConditional.h

238 lines
7.9 KiB
C++

/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file HybridConditional.h
* @date Mar 11, 2022
* @author Fan Jiang
*/
#pragma once
#include <gtsam/discrete/DiscreteConditional.h>
#include <gtsam/hybrid/HybridGaussianConditional.h>
#include <gtsam/hybrid/HybridFactor.h>
#include <gtsam/hybrid/HybridGaussianFactorGraph.h>
#include <gtsam/inference/Conditional.h>
#include <gtsam/inference/Key.h>
#include <gtsam/linear/GaussianConditional.h>
#include <memory>
#include <stdexcept>
#include <string>
#include <typeinfo>
#include <vector>
namespace gtsam {
/**
* Hybrid Conditional Density
*
* As a type-erased variant of:
* - DiscreteConditional
* - GaussianConditional
* - HybridGaussianConditional
*
* The reason why this is important is that `Conditional<T>` is a CRTP class.
* CRTP is static polymorphism such that all CRTP classes, while bearing the
* same name, are different classes not sharing a vtable. This prevents them
* from being contained in any container, and thus it is impossible to
* dynamically cast between them. A better option, as illustrated here, is
* treating them as an implementation detail - such that the hybrid mechanism
* does not know what is inside the HybridConditional. This prevents us from
* having diamond inheritances, and neutralized the need to change other
* components of GTSAM to make hybrid elimination work.
*
* A great reference to the type-erasure pattern is Eduardo Madrid's CppCon
* talk (https://www.youtube.com/watch?v=s082Qmd_nHs).
*
* @ingroup hybrid
*/
class GTSAM_EXPORT HybridConditional
: public HybridFactor,
public Conditional<HybridFactor, HybridConditional> {
public:
// typedefs needed to play nice with gtsam
typedef HybridConditional This; ///< Typedef to this class
typedef std::shared_ptr<This> shared_ptr; ///< shared_ptr to this class
typedef HybridFactor BaseFactor; ///< Typedef to our factor base class
typedef Conditional<BaseFactor, This>
BaseConditional; ///< Typedef to our conditional base class
protected:
/// Type-erased pointer to the inner type
std::shared_ptr<Factor> inner_;
public:
/// @name Standard Constructors
/// @{
/// Default constructor needed for serialization.
HybridConditional() = default;
/**
* @brief Construct a new Hybrid Conditional object
*
* @param continuousKeys Vector of keys for continuous variables.
* @param discreteKeys Keys and cardinalities for discrete variables.
* @param nFrontals The number of frontal variables in the conditional.
*/
HybridConditional(const KeyVector& continuousKeys,
const DiscreteKeys& discreteKeys, size_t nFrontals)
: BaseFactor(continuousKeys, discreteKeys), BaseConditional(nFrontals) {}
/**
* @brief Construct a new Hybrid Conditional object
*
* @param continuousFrontals Vector of keys for continuous variables.
* @param discreteFrontals Keys and cardinalities for discrete variables.
* @param continuousParents Vector of keys for parent continuous variables.
* @param discreteParents Keys and cardinalities for parent discrete
* variables.
*/
HybridConditional(const KeyVector& continuousFrontals,
const DiscreteKeys& discreteFrontals,
const KeyVector& continuousParents,
const DiscreteKeys& discreteParents);
/**
* @brief Construct a new Hybrid Conditional object
*
* @param continuousConditional Conditional used to create the
* HybridConditional.
*/
HybridConditional(
const std::shared_ptr<GaussianConditional>& continuousConditional);
/**
* @brief Construct a new Hybrid Conditional object
*
* @param discreteConditional Conditional used to create the
* HybridConditional.
*/
HybridConditional(
const std::shared_ptr<DiscreteConditional>& discreteConditional);
/**
* @brief Construct a new Hybrid Conditional object
*
* @param gaussianMixture Gaussian Mixture Conditional used to create the
* HybridConditional.
*/
HybridConditional(const std::shared_ptr<HybridGaussianConditional>& gaussianMixture);
/// @}
/// @name Testable
/// @{
/// GTSAM-style print
void print(
const std::string& s = "Hybrid Conditional: ",
const KeyFormatter& formatter = DefaultKeyFormatter) const override;
/// GTSAM-style equals
bool equals(const HybridFactor& other, double tol = 1e-9) const override;
/// @}
/// @name Standard Interface
/// @{
/**
* @brief Return HybridConditional as a HybridGaussianConditional
* @return nullptr if not a mixture
* @return HybridGaussianConditional::shared_ptr otherwise
*/
HybridGaussianConditional::shared_ptr asMixture() const {
return std::dynamic_pointer_cast<HybridGaussianConditional>(inner_);
}
/**
* @brief Return HybridConditional as a GaussianConditional
* @return nullptr if not a GaussianConditional
* @return GaussianConditional::shared_ptr otherwise
*/
GaussianConditional::shared_ptr asGaussian() const {
return std::dynamic_pointer_cast<GaussianConditional>(inner_);
}
/**
* @brief Return conditional as a DiscreteConditional
* @return nullptr if not a DiscreteConditional
* @return DiscreteConditional::shared_ptr
*/
DiscreteConditional::shared_ptr asDiscrete() const {
return std::dynamic_pointer_cast<DiscreteConditional>(inner_);
}
/// Get the type-erased pointer to the inner type
std::shared_ptr<Factor> inner() const { return inner_; }
/// Return the error of the underlying conditional.
double error(const HybridValues& values) const override;
/// Return the log-probability (or density) of the underlying conditional.
double logProbability(const HybridValues& values) const override;
/**
* Return the log normalization constant.
* Note this is 0.0 for discrete and hybrid conditionals, but depends
* on the continuous parameters for Gaussian conditionals.
*/
double logNormalizationConstant() const override;
/// Return the probability (or density) of the underlying conditional.
double evaluate(const HybridValues& values) const override;
/// Check if VectorValues `measurements` contains all frontal keys.
bool frontalsIn(const VectorValues& measurements) const {
for (Key key : frontals()) {
if (!measurements.exists(key)) {
return false;
}
}
return true;
}
/// @}
private:
#ifdef GTSAM_ENABLE_BOOST_SERIALIZATION
/** Serialization function */
friend class boost::serialization::access;
template <class Archive>
void serialize(Archive& ar, const unsigned int /*version*/) {
ar& BOOST_SERIALIZATION_BASE_OBJECT_NVP(BaseFactor);
ar& BOOST_SERIALIZATION_BASE_OBJECT_NVP(BaseConditional);
ar& BOOST_SERIALIZATION_NVP(inner_);
// register the various casts based on the type of inner_
// https://www.boost.org/doc/libs/1_80_0/libs/serialization/doc/serialization.html#runtimecasting
if (isDiscrete()) {
boost::serialization::void_cast_register<DiscreteConditional, Factor>(
static_cast<DiscreteConditional*>(NULL), static_cast<Factor*>(NULL));
} else if (isContinuous()) {
boost::serialization::void_cast_register<GaussianConditional, Factor>(
static_cast<GaussianConditional*>(NULL), static_cast<Factor*>(NULL));
} else {
boost::serialization::void_cast_register<HybridGaussianConditional, Factor>(
static_cast<HybridGaussianConditional*>(NULL), static_cast<Factor*>(NULL));
}
}
#endif
}; // HybridConditional
// traits
template <>
struct traits<HybridConditional> : public Testable<HybridConditional> {};
} // namespace gtsam