gtsam/gtsam/hybrid/tests/testGaussianMixture.cpp

228 lines
8.8 KiB
C++

/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file testGaussianMixture.cpp
* @brief Unit tests for HybridGaussianConditional class
* @author Varun Agrawal
* @author Fan Jiang
* @author Frank Dellaert
* @date December 2021
*/
#include <gtsam/discrete/DiscreteValues.h>
#include <gtsam/hybrid/HybridGaussianConditional.h>
#include <gtsam/hybrid/HybridGaussianFactor.h>
#include <gtsam/hybrid/HybridValues.h>
#include <gtsam/inference/Symbol.h>
#include <gtsam/linear/GaussianConditional.h>
#include <vector>
// Include for test suite
#include <CppUnitLite/TestHarness.h>
using namespace gtsam;
using noiseModel::Isotropic;
using symbol_shorthand::M;
using symbol_shorthand::X;
using symbol_shorthand::Z;
// Common constants
static const Key modeKey = M(0);
static const DiscreteKey mode(modeKey, 2);
static const VectorValues vv{{Z(0), Vector1(4.9)}, {X(0), Vector1(5.0)}};
static const DiscreteValues assignment0{{M(0), 0}}, assignment1{{M(0), 1}};
static const HybridValues hv0{vv, assignment0};
static const HybridValues hv1{vv, assignment1};
/* ************************************************************************* */
namespace equal_constants {
// Create a simple HybridGaussianConditional
const double commonSigma = 2.0;
const std::vector<GaussianConditional::shared_ptr> conditionals{
GaussianConditional::sharedMeanAndStddev(Z(0), I_1x1, X(0), Vector1(0.0),
commonSigma),
GaussianConditional::sharedMeanAndStddev(Z(0), I_1x1, X(0), Vector1(0.0),
commonSigma)};
const HybridGaussianConditional mixture({Z(0)}, {X(0)}, {mode}, conditionals);
} // namespace equal_constants
/* ************************************************************************* */
/// Check that invariants hold
TEST(HybridGaussianConditional, Invariants) {
using namespace equal_constants;
// Check that the mixture normalization constant is the max of all constants
// which are all equal, in this case, hence:
const double K = mixture.logNormalizationConstant();
EXPECT_DOUBLES_EQUAL(K, conditionals[0]->logNormalizationConstant(), 1e-8);
EXPECT_DOUBLES_EQUAL(K, conditionals[1]->logNormalizationConstant(), 1e-8);
EXPECT(HybridGaussianConditional::CheckInvariants(mixture, hv0));
EXPECT(HybridGaussianConditional::CheckInvariants(mixture, hv1));
}
/* ************************************************************************* */
/// Check LogProbability.
TEST(HybridGaussianConditional, LogProbability) {
using namespace equal_constants;
auto actual = mixture.logProbability(vv);
// Check result.
std::vector<DiscreteKey> discrete_keys = {mode};
std::vector<double> leaves = {conditionals[0]->logProbability(vv),
conditionals[1]->logProbability(vv)};
AlgebraicDecisionTree<Key> expected(discrete_keys, leaves);
EXPECT(assert_equal(expected, actual, 1e-6));
// Check for non-tree version.
for (size_t mode : {0, 1}) {
const HybridValues hv{vv, {{M(0), mode}}};
EXPECT_DOUBLES_EQUAL(conditionals[mode]->logProbability(vv),
mixture.logProbability(hv), 1e-8);
}
}
/* ************************************************************************* */
/// Check error.
TEST(HybridGaussianConditional, Error) {
using namespace equal_constants;
auto actual = mixture.errorTree(vv);
// Check result.
std::vector<DiscreteKey> discrete_keys = {mode};
std::vector<double> leaves = {conditionals[0]->error(vv),
conditionals[1]->error(vv)};
AlgebraicDecisionTree<Key> expected(discrete_keys, leaves);
EXPECT(assert_equal(expected, actual, 1e-6));
// Check for non-tree version.
for (size_t mode : {0, 1}) {
const HybridValues hv{vv, {{M(0), mode}}};
EXPECT_DOUBLES_EQUAL(conditionals[mode]->error(vv), mixture.error(hv),
1e-8);
}
}
/* ************************************************************************* */
/// Check that the likelihood is proportional to the conditional density given
/// the measurements.
TEST(HybridGaussianConditional, Likelihood) {
using namespace equal_constants;
// Compute likelihood
auto likelihood = mixture.likelihood(vv);
// Check that the mixture error and the likelihood error are the same.
EXPECT_DOUBLES_EQUAL(mixture.error(hv0), likelihood->error(hv0), 1e-8);
EXPECT_DOUBLES_EQUAL(mixture.error(hv1), likelihood->error(hv1), 1e-8);
// Check that likelihood error is as expected, i.e., just the errors of the
// individual likelihoods, in the `equal_constants` case.
std::vector<DiscreteKey> discrete_keys = {mode};
std::vector<double> leaves = {conditionals[0]->likelihood(vv)->error(vv),
conditionals[1]->likelihood(vv)->error(vv)};
AlgebraicDecisionTree<Key> expected(discrete_keys, leaves);
EXPECT(assert_equal(expected, likelihood->errorTree(vv), 1e-6));
// Check that the ratio of probPrime to evaluate is the same for all modes.
std::vector<double> ratio(2);
for (size_t mode : {0, 1}) {
const HybridValues hv{vv, {{M(0), mode}}};
ratio[mode] = std::exp(-likelihood->error(hv)) / mixture.evaluate(hv);
}
EXPECT_DOUBLES_EQUAL(ratio[0], ratio[1], 1e-8);
}
/* ************************************************************************* */
namespace mode_dependent_constants {
// Create a HybridGaussianConditional with mode-dependent noise models.
// 0 is low-noise, 1 is high-noise.
const std::vector<GaussianConditional::shared_ptr> conditionals{
GaussianConditional::sharedMeanAndStddev(Z(0), I_1x1, X(0), Vector1(0.0),
0.5),
GaussianConditional::sharedMeanAndStddev(Z(0), I_1x1, X(0), Vector1(0.0),
3.0)};
const HybridGaussianConditional mixture({Z(0)}, {X(0)}, {mode}, conditionals);
} // namespace mode_dependent_constants
/* ************************************************************************* */
// Create a test for continuousParents.
TEST(HybridGaussianConditional, ContinuousParents) {
using namespace mode_dependent_constants;
const KeyVector continuousParentKeys = mixture.continuousParents();
// Check that the continuous parent keys are correct:
EXPECT(continuousParentKeys.size() == 1);
EXPECT(continuousParentKeys[0] == X(0));
}
/* ************************************************************************* */
/// Check that the likelihood is proportional to the conditional density given
/// the measurements.
TEST(HybridGaussianConditional, Likelihood2) {
using namespace mode_dependent_constants;
// Compute likelihood
auto likelihood = mixture.likelihood(vv);
// Check that the mixture error and the likelihood error are as expected,
// this invariant is the same as the equal noise case:
EXPECT_DOUBLES_EQUAL(mixture.error(hv0), likelihood->error(hv0), 1e-8);
EXPECT_DOUBLES_EQUAL(mixture.error(hv1), likelihood->error(hv1), 1e-8);
// Check the detailed JacobianFactor calculation for mode==1.
{
// We have a JacobianFactor
const auto gf1 = (*likelihood)(assignment1);
const auto jf1 = std::dynamic_pointer_cast<JacobianFactor>(gf1);
CHECK(jf1);
// It has 2 rows, not 1!
CHECK(jf1->rows() == 2);
// Check that the constant C1 is properly encoded in the JacobianFactor.
const double C1 = mixture.logNormalizationConstant() -
conditionals[1]->logNormalizationConstant();
const double c1 = std::sqrt(2.0 * C1);
Vector expected_unwhitened(2);
expected_unwhitened << 4.9 - 5.0, -c1;
Vector actual_unwhitened = jf1->unweighted_error(vv);
EXPECT(assert_equal(expected_unwhitened, actual_unwhitened));
// Make sure the noise model does not touch it.
Vector expected_whitened(2);
expected_whitened << (4.9 - 5.0) / 3.0, -c1;
Vector actual_whitened = jf1->error_vector(vv);
EXPECT(assert_equal(expected_whitened, actual_whitened));
// Check that the error is equal to the mixture error:
EXPECT_DOUBLES_EQUAL(mixture.error(hv1), jf1->error(hv1), 1e-8);
}
// Check that the ratio of probPrime to evaluate is the same for all modes.
std::vector<double> ratio(2);
for (size_t mode : {0, 1}) {
const HybridValues hv{vv, {{M(0), mode}}};
ratio[mode] = std::exp(-likelihood->error(hv)) / mixture.evaluate(hv);
}
EXPECT_DOUBLES_EQUAL(ratio[0], ratio[1], 1e-8);
}
/* ************************************************************************* */
int main() {
TestResult tr;
return TestRegistry::runAllTests(tr);
}
/* ************************************************************************* */