Merge pull request #1215 from borglab/hybrid/pruning

Hybrid Pruning
release/4.3a0
Varun Agrawal 2022-08-22 23:24:04 -04:00 committed by GitHub
commit 89cdf4f046
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
93 changed files with 3838 additions and 536 deletions

View File

@ -20,26 +20,26 @@ jobs:
# Github Actions requires a single row to be added to the build matrix.
# See https://help.github.com/en/articles/workflow-syntax-for-github-actions.
name: [
ubuntu-18.04-gcc-5,
ubuntu-18.04-gcc-9,
ubuntu-18.04-clang-9,
ubuntu-20.04-gcc-7,
ubuntu-20.04-gcc-9,
ubuntu-20.04-clang-9,
]
build_type: [Debug, Release]
build_unstable: [ON]
include:
- name: ubuntu-18.04-gcc-5
os: ubuntu-18.04
- name: ubuntu-20.04-gcc-7
os: ubuntu-20.04
compiler: gcc
version: "5"
version: "7"
- name: ubuntu-18.04-gcc-9
os: ubuntu-18.04
- name: ubuntu-20.04-gcc-9
os: ubuntu-20.04
compiler: gcc
version: "9"
- name: ubuntu-18.04-clang-9
os: ubuntu-18.04
- name: ubuntu-20.04-clang-9
os: ubuntu-20.04
compiler: clang
version: "9"
@ -60,9 +60,9 @@ jobs:
gpg -a --export $LLVM_KEY | sudo apt-key add -
sudo add-apt-repository "deb http://apt.llvm.org/bionic/ llvm-toolchain-bionic-9 main"
fi
sudo apt-get -y update
sudo apt-get -y install cmake build-essential pkg-config libpython-dev python-numpy libicu-dev
sudo apt-get -y update
sudo apt-get -y install cmake build-essential pkg-config libpython3-dev python3-numpy libicu-dev
if [ "${{ matrix.compiler }}" = "gcc" ]; then
sudo apt-get install -y g++-${{ matrix.version }} g++-${{ matrix.version }}-multilib

View File

@ -19,34 +19,34 @@ jobs:
# Github Actions requires a single row to be added to the build matrix.
# See https://help.github.com/en/articles/workflow-syntax-for-github-actions.
name: [
ubuntu-18.04-gcc-5,
ubuntu-18.04-gcc-9,
ubuntu-18.04-clang-9,
ubuntu-20.04-gcc-7,
ubuntu-20.04-gcc-9,
ubuntu-20.04-clang-9,
macOS-11-xcode-13.4.1,
ubuntu-18.04-gcc-5-tbb,
ubuntu-20.04-gcc-7-tbb,
]
build_type: [Debug, Release]
python_version: [3]
include:
- name: ubuntu-18.04-gcc-5
os: ubuntu-18.04
- name: ubuntu-20.04-gcc-7
os: ubuntu-20.04
compiler: gcc
version: "5"
version: "7"
- name: ubuntu-18.04-gcc-9
os: ubuntu-18.04
- name: ubuntu-20.04-gcc-9
os: ubuntu-20.04
compiler: gcc
version: "9"
- name: ubuntu-18.04-clang-9
os: ubuntu-18.04
- name: ubuntu-20.04-clang-9
os: ubuntu-20.04
compiler: clang
version: "9"
# NOTE temporarily added this as it is a required check.
- name: ubuntu-18.04-clang-9
os: ubuntu-18.04
- name: ubuntu-20.04-clang-9
os: ubuntu-20.04
compiler: clang
version: "9"
build_type: Debug
@ -57,10 +57,10 @@ jobs:
compiler: xcode
version: "13.4.1"
- name: ubuntu-18.04-gcc-5-tbb
os: ubuntu-18.04
- name: ubuntu-20.04-gcc-7-tbb
os: ubuntu-20.04
compiler: gcc
version: "5"
version: "7"
flag: tbb
steps:
@ -79,9 +79,9 @@ jobs:
gpg -a --export $LLVM_KEY | sudo apt-key add -
sudo add-apt-repository "deb http://apt.llvm.org/bionic/ llvm-toolchain-bionic-9 main"
fi
sudo apt-get -y update
sudo apt-get -y install cmake build-essential pkg-config libpython-dev python-numpy libboost-all-dev
sudo apt-get -y install cmake build-essential pkg-config libpython3-dev python3-numpy libboost-all-dev
if [ "${{ matrix.compiler }}" = "gcc" ]; then
sudo apt-get install -y g++-${{ matrix.version }} g++-${{ matrix.version }}-multilib

View File

@ -32,31 +32,31 @@ jobs:
include:
- name: ubuntu-gcc-deprecated
os: ubuntu-18.04
os: ubuntu-20.04
compiler: gcc
version: "9"
flag: deprecated
- name: ubuntu-gcc-quaternions
os: ubuntu-18.04
os: ubuntu-20.04
compiler: gcc
version: "9"
flag: quaternions
- name: ubuntu-gcc-tbb
os: ubuntu-18.04
os: ubuntu-20.04
compiler: gcc
version: "9"
flag: tbb
- name: ubuntu-cayleymap
os: ubuntu-18.04
os: ubuntu-20.04
compiler: gcc
version: "9"
flag: cayley
- name: ubuntu-system-libs
os: ubuntu-18.04
os: ubuntu-20.04
compiler: gcc
version: "9"
flag: system-libs
@ -74,9 +74,9 @@ jobs:
gpg -a --export 15CF4D18AF4F7421 | sudo apt-key add -
sudo add-apt-repository "deb http://apt.llvm.org/bionic/ llvm-toolchain-bionic-9 main"
fi
sudo apt-get -y update
sudo apt-get -y install cmake build-essential pkg-config libpython-dev python-numpy libicu-dev
sudo apt-get -y update
sudo apt-get -y install cmake build-essential pkg-config libpython3-dev python3-numpy libicu-dev
if [ "${{ matrix.compiler }}" = "gcc" ]; then
sudo apt-get install -y g++-${{ matrix.version }} g++-${{ matrix.version }}-multilib

View File

@ -64,6 +64,29 @@ GTSAM 4.1 added a new pybind wrapper, and **removed** the deprecated functionali
We provide support for [MATLAB](matlab/README.md) and [Python](python/README.md) wrappers for GTSAM. Please refer to the linked documents for more details.
## Citation
If you are using GTSAM for academic work, please use the following citation:
```
@software{gtsam,
author = {Frank Dellaert and Richard Roberts and Varun Agrawal and Alex Cunningham and Chris Beall and Duy-Nguyen Ta and Fan Jiang and lucacarlone and nikai and Jose Luis Blanco-Claraco and Stephen Williams and ydjian and John Lambert and Andy Melim and Zhaoyang Lv and Akshay Krishnan and Jing Dong and Gerry Chen and Krunal Chande and balderdash-devil and DiffDecisionTrees and Sungtae An and mpaluri and Ellon Paiva Mendes and Mike Bosse and Akash Patel and Ayush Baid and Paul Furgale and matthewbroadwaynavenio and roderick-koehle},
title = {borglab/gtsam},
month = may,
year = 2022,
publisher = {Zenodo},
version = {4.2a7},
doi = {10.5281/zenodo.5794541},
url = {https://doi.org/10.5281/zenodo.5794541}
}
```
You can also get the latest citation available from Zenodo below:
[![DOI](https://zenodo.org/badge/86362856.svg)](https://doi.org/10.5281/zenodo.5794541)
Specific formats are available in the bottom-right corner of the Zenodo page.
## The Preintegrated IMU Factor
GTSAM includes a state of the art IMU handling scheme based on
@ -73,7 +96,7 @@ GTSAM includes a state of the art IMU handling scheme based on
Our implementation improves on this using integration on the manifold, as detailed in
- Luca Carlone, Zsolt Kira, Chris Beall, Vadim Indelman, and Frank Dellaert, _"Eliminating conditionally independent sets in factor graphs: a unifying perspective based on smart factors"_, Int. Conf. on Robotics and Automation (ICRA), 2014. [[link]](https://ieeexplore.ieee.org/abstract/document/6907483)
- Christian Forster, Luca Carlone, Frank Dellaert, and Davide Scaramuzza, "IMU Preintegration on Manifold for Efficient Visual-Inertial Maximum-a-Posteriori Estimation", Robotics: Science and Systems (RSS), 2015. [[link]](http://www.roboticsproceedings.org/rss11/p06.pdf)
- Christian Forster, Luca Carlone, Frank Dellaert, and Davide Scaramuzza, _"IMU Preintegration on Manifold for Efficient Visual-Inertial Maximum-a-Posteriori Estimation"_, Robotics: Science and Systems (RSS), 2015. [[link]](http://www.roboticsproceedings.org/rss11/p06.pdf)
If you are using the factor in academic work, please cite the publications above.

View File

@ -190,7 +190,7 @@ if(${CMAKE_CXX_COMPILER_ID} STREQUAL "Clang")
endif()
if (NOT MSVC)
option(GTSAM_BUILD_WITH_MARCH_NATIVE "Enable/Disable building with all instructions supported by native architecture (binary may not be portable!)" ON)
option(GTSAM_BUILD_WITH_MARCH_NATIVE "Enable/Disable building with all instructions supported by native architecture (binary may not be portable!)" OFF)
if(GTSAM_BUILD_WITH_MARCH_NATIVE AND (APPLE AND NOT CMAKE_SYSTEM_PROCESSOR STREQUAL "arm64"))
# Add as public flag so all dependant projects also use it, as required
# by Eigen to avid crashes due to SIMD vectorization:

View File

@ -1,7 +1,10 @@
###############################################################################
# Option for using system Eigen or GTSAM-bundled Eigen
option(GTSAM_USE_SYSTEM_EIGEN "Find and use system-installed Eigen. If 'off', use the one bundled with GTSAM" OFF)
# Default: Use system's Eigen if found automatically:
find_package(Eigen3 QUIET)
set(USE_SYSTEM_EIGEN_INITIAL_VALUE ${Eigen3_FOUND})
option(GTSAM_USE_SYSTEM_EIGEN "Find and use system-installed Eigen. If 'off', use the one bundled with GTSAM" ${USE_SYSTEM_EIGEN_INITIAL_VALUE})
unset(USE_SYSTEM_EIGEN_INITIAL_VALUE)
if(NOT GTSAM_USE_SYSTEM_EIGEN)
# This option only makes sense if using the embedded copy of Eigen, it is
@ -11,7 +14,7 @@ endif()
# Switch for using system Eigen or GTSAM-bundled Eigen
if(GTSAM_USE_SYSTEM_EIGEN)
find_package(Eigen3 REQUIRED)
find_package(Eigen3 REQUIRED) # need to find again as REQUIRED
# Use generic Eigen include paths e.g. <Eigen/Core>
set(GTSAM_EIGEN_INCLUDE_FOR_INSTALL "${EIGEN3_INCLUDE_DIR}")

File diff suppressed because it is too large Load Diff

Binary file not shown.

Binary file not shown.

View File

@ -1,26 +1,72 @@
%% This BibTeX bibliography file was created using BibDesk.
%% https://bibdesk.sourceforge.io/
%% Created for Varun Agrawal at 2021-09-27 17:39:09 -0400
%% Saved with string encoding Unicode (UTF-8)
@article{Lupton12tro,
author = {Lupton, Todd and Sukkarieh, Salah},
date-added = {2021-09-27 17:38:56 -0400},
date-modified = {2021-09-27 17:39:09 -0400},
doi = {10.1109/TRO.2011.2170332},
journal = {IEEE Transactions on Robotics},
number = {1},
pages = {61-76},
title = {Visual-Inertial-Aided Navigation for High-Dynamic Motion in Built Environments Without Initial Conditions},
volume = {28},
year = {2012},
Bdsk-Url-1 = {https://doi.org/10.1109/TRO.2011.2170332}}
@inproceedings{Forster15rss,
author = {Christian Forster and Luca Carlone and Frank Dellaert and Davide Scaramuzza},
booktitle = {Robotics: Science and Systems},
date-added = {2021-09-26 20:44:41 -0400},
date-modified = {2021-09-26 20:45:03 -0400},
title = {IMU Preintegration on Manifold for Efficient Visual-Inertial Maximum-a-Posteriori Estimation},
year = {2015}}
@article{Iserles00an,
title = {Lie-group methods},
author = {Iserles, Arieh and Munthe-Kaas, Hans Z and
N{\o}rsett, Syvert P and Zanna, Antonella},
journal = {Acta Numerica 2000},
volume = {9},
pages = {215--365},
year = {2000},
publisher = {Cambridge Univ Press}
}
author = {Iserles, Arieh and Munthe-Kaas, Hans Z and N{\o}rsett, Syvert P and Zanna, Antonella},
journal = {Acta Numerica 2000},
pages = {215--365},
publisher = {Cambridge Univ Press},
title = {Lie-group methods},
volume = {9},
year = {2000}}
@book{Murray94book,
title = {A mathematical introduction to robotic manipulation},
author = {Murray, Richard M and Li, Zexiang and Sastry, S
Shankar and Sastry, S Shankara},
year = {1994},
publisher = {CRC press}
}
author = {Murray, Richard M and Li, Zexiang and Sastry, S Shankar and Sastry, S Shankara},
publisher = {CRC press},
title = {A mathematical introduction to robotic manipulation},
year = {1994}}
@book{Spivak65book,
title = {Calculus on manifolds},
author = {Spivak, Michael},
volume = {1},
year = {1965},
publisher = {WA Benjamin New York}
}
author = {Spivak, Michael},
publisher = {WA Benjamin New York},
title = {Calculus on manifolds},
volume = {1},
year = {1965}}
@phdthesis{Nikolic16thesis,
title={Characterisation, calibration, and design of visual-inertial sensor systems for robot navigation},
author={Nikolic, Janosch},
year={2016},
school={ETH Zurich}
}
@book{Simon06book,
title={Optimal state estimation: Kalman, H infinity, and nonlinear approaches},
author={Simon, Dan},
year={2006},
publisher={John Wiley \& Sons}
}
@inproceedings{Trawny05report_IndirectKF,
title={Indirect Kalman Filter for 3 D Attitude Estimation},
author={Nikolas Trawny and Stergios I. Roumeliotis},
year={2005}
}

View File

@ -60,13 +60,14 @@ namespace po = boost::program_options;
po::variables_map parseOptions(int argc, char* argv[]) {
po::options_description desc;
desc.add_options()("help,h", "produce help message")(
"data_csv_path", po::value<string>()->default_value("imuAndGPSdata.csv"),
"path to the CSV file with the IMU data")(
"output_filename",
po::value<string>()->default_value("imuFactorExampleResults.csv"),
"path to the result file to use")("use_isam", po::bool_switch(),
"use ISAM as the optimizer");
desc.add_options()("help,h", "produce help message") // help message
("data_csv_path", po::value<string>()->default_value("imuAndGPSdata.csv"),
"path to the CSV file with the IMU data") // path to the data file
("output_filename",
po::value<string>()->default_value("imuFactorExampleResults.csv"),
"path to the result file to use") // filename to save results to
("use_isam", po::bool_switch(),
"use ISAM as the optimizer"); // flag for ISAM optimizer
po::variables_map vm;
po::store(po::parse_command_line(argc, argv, desc), vm);
@ -106,7 +107,7 @@ boost::shared_ptr<PreintegratedCombinedMeasurements::Params> imuParams() {
I_3x3 * 1e-8; // error committed in integrating position from velocities
Matrix33 bias_acc_cov = I_3x3 * pow(accel_bias_rw_sigma, 2);
Matrix33 bias_omega_cov = I_3x3 * pow(gyro_bias_rw_sigma, 2);
Matrix66 bias_acc_omega_int =
Matrix66 bias_acc_omega_init =
I_6x6 * 1e-5; // error in the bias used for preintegration
auto p = PreintegratedCombinedMeasurements::Params::MakeSharedD(0.0);
@ -122,7 +123,7 @@ boost::shared_ptr<PreintegratedCombinedMeasurements::Params> imuParams() {
// PreintegrationCombinedMeasurements params:
p->biasAccCovariance = bias_acc_cov; // acc bias in continuous
p->biasOmegaCovariance = bias_omega_cov; // gyro bias in continuous
p->biasAccOmegaInt = bias_acc_omega_int;
p->biasAccOmegaInt = bias_acc_omega_init;
return p;
}

View File

@ -94,7 +94,7 @@ boost::shared_ptr<PreintegratedCombinedMeasurements::Params> imuParams() {
I_3x3 * 1e-8; // error committed in integrating position from velocities
Matrix33 bias_acc_cov = I_3x3 * pow(accel_bias_rw_sigma, 2);
Matrix33 bias_omega_cov = I_3x3 * pow(gyro_bias_rw_sigma, 2);
Matrix66 bias_acc_omega_int =
Matrix66 bias_acc_omega_init =
I_6x6 * 1e-5; // error in the bias used for preintegration
auto p = PreintegratedCombinedMeasurements::Params::MakeSharedD(0.0);
@ -110,7 +110,7 @@ boost::shared_ptr<PreintegratedCombinedMeasurements::Params> imuParams() {
// PreintegrationCombinedMeasurements params:
p->biasAccCovariance = bias_acc_cov; // acc bias in continuous
p->biasOmegaCovariance = bias_omega_cov; // gyro bias in continuous
p->biasAccOmegaInt = bias_acc_omega_int;
p->biasAccOmegaInt = bias_acc_omega_init;
return p;
}

View File

@ -33,7 +33,6 @@ The following examples illustrate some concepts from Georgia Tech's research pap
## 2D Pose SLAM
* **LocalizationExample.cpp**: modeling robot motion
* **LocalizationExample2.cpp**: example with GPS like measurements
* **Pose2SLAMExample**: A 2D Pose SLAM example using the predefined typedefs in gtsam/slam/pose2SLAM.h
* **Pose2SLAMExample_advanced**: same, but uses an Optimizer object
* **Pose2SLAMwSPCG**: solve a simple 3 by 3 grid of Pose2 SLAM problem by using easy SPCG interface

View File

@ -95,7 +95,7 @@ template<class Class>
struct MultiplicativeGroupTraits {
typedef group_tag structure_category;
typedef multiplicative_group_tag group_flavor;
static Class Identity() { return Class::identity(); }
static Class Identity() { return Class::Identity(); }
static Class Compose(const Class &g, const Class & h) { return g * h;}
static Class Between(const Class &g, const Class & h) { return g.inverse() * h;}
static Class Inverse(const Class &g) { return g.inverse();}
@ -111,7 +111,7 @@ template<class Class>
struct AdditiveGroupTraits {
typedef group_tag structure_category;
typedef additive_group_tag group_flavor;
static Class Identity() { return Class::identity(); }
static Class Identity() { return Class::Identity(); }
static Class Compose(const Class &g, const Class & h) { return g + h;}
static Class Between(const Class &g, const Class & h) { return h - g;}
static Class Inverse(const Class &g) { return -g;}
@ -147,7 +147,7 @@ public:
DirectProduct(const G& g, const H& h):std::pair<G,H>(g,h) {}
// identity
static DirectProduct identity() { return DirectProduct(); }
static DirectProduct Identity() { return DirectProduct(); }
DirectProduct operator*(const DirectProduct& other) const {
return DirectProduct(traits<G>::Compose(this->first, other.first),
@ -181,7 +181,7 @@ public:
DirectSum(const G& g, const H& h):std::pair<G,H>(g,h) {}
// identity
static DirectSum identity() { return DirectSum(); }
static DirectSum Identity() { return DirectSum(); }
DirectSum operator+(const DirectSum& other) const {
return DirectSum(g()+other.g(), h()+other.h());

View File

@ -177,7 +177,7 @@ struct LieGroupTraits: GetDimensionImpl<Class, Class::dimension> {
/// @name Group
/// @{
typedef multiplicative_group_tag group_flavor;
static Class Identity() { return Class::identity();}
static Class Identity() { return Class::Identity();}
/// @}
/// @name Manifold

View File

@ -48,7 +48,7 @@ public:
/// @name Group
/// @{
typedef multiplicative_group_tag group_flavor;
static ProductLieGroup identity() {return ProductLieGroup();}
static ProductLieGroup Identity() {return ProductLieGroup();}
ProductLieGroup operator*(const ProductLieGroup& other) const {
return ProductLieGroup(traits<G>::Compose(this->first,other.first),

View File

@ -60,6 +60,7 @@ GTSAM_MAKE_VECTOR_DEFS(9)
GTSAM_MAKE_VECTOR_DEFS(10)
GTSAM_MAKE_VECTOR_DEFS(11)
GTSAM_MAKE_VECTOR_DEFS(12)
GTSAM_MAKE_VECTOR_DEFS(15)
typedef Eigen::VectorBlock<Vector> SubVector;
typedef Eigen::VectorBlock<const Vector> ConstSubVector;

View File

@ -169,7 +169,7 @@ struct HasVectorSpacePrereqs {
Vector v;
BOOST_CONCEPT_USAGE(HasVectorSpacePrereqs) {
p = Class::identity(); // identity
p = Class::Identity(); // identity
q = p + p; // addition
q = p - p; // subtraction
v = p.vector(); // conversion to vector
@ -192,7 +192,7 @@ struct VectorSpaceTraits: VectorSpaceImpl<Class, Class::dimension> {
/// @name Group
/// @{
typedef additive_group_tag group_flavor;
static Class Identity() { return Class::identity();}
static Class Identity() { return Class::Identity();}
/// @}
/// @name Manifold

View File

@ -29,7 +29,7 @@ class Symmetric: private Eigen::PermutationMatrix<N> {
Eigen::PermutationMatrix<N>(P) {
}
public:
static Symmetric identity() { return Symmetric(); }
static Symmetric Identity() { return Symmetric(); }
Symmetric() {
Eigen::PermutationMatrix<N>::setIdentity();
}

View File

@ -189,9 +189,9 @@ class ParameterMatrix {
* NOTE: The size at compile time is unknown so this identity is zero
* length and thus not valid.
*/
inline static ParameterMatrix identity() {
inline static ParameterMatrix Identity() {
// throw std::runtime_error(
// "ParameterMatrix::identity(): Don't use this function");
// "ParameterMatrix::Identity(): Don't use this function");
return ParameterMatrix(0);
}

View File

@ -133,7 +133,7 @@ TEST(ParameterMatrix, VectorSpace) {
// vector
EXPECT(assert_equal(Vector::Ones(M * N), params.vector()));
// identity
EXPECT(assert_equal(ParameterMatrix<M>::identity(),
EXPECT(assert_equal(ParameterMatrix<M>::Identity(),
ParameterMatrix<M>(Matrix::Zero(M, 0))));
}

View File

@ -219,6 +219,16 @@ class DiscreteBayesTree {
};
#include <gtsam/discrete/DiscreteLookupDAG.h>
class DiscreteLookupTable : gtsam::DiscreteConditional{
DiscreteLookupTable(size_t nFrontals, const gtsam::DiscreteKeys& keys,
const gtsam::DecisionTreeFactor::ADT& potentials);
void print(
const std::string& s = "Discrete Lookup Table: ",
const gtsam::KeyFormatter& keyFormatter = gtsam::DefaultKeyFormatter) const;
size_t argmax(const gtsam::DiscreteValues& parentsValues) const;
};
class DiscreteLookupDAG {
DiscreteLookupDAG();
void push_back(const gtsam::DiscreteLookupTable* table);

View File

@ -38,7 +38,7 @@ public:
/// Default constructor yields identity
Cyclic():i_(0) {
}
static Cyclic identity() { return Cyclic();}
static Cyclic Identity() { return Cyclic();}
/// Cast to size_t
operator size_t() const {

View File

@ -213,7 +213,7 @@ public:
}
/// for Canonical
static PinholeCamera identity() {
static PinholeCamera Identity() {
return PinholeCamera(); // assumes that the default constructor is valid
}

View File

@ -412,7 +412,7 @@ public:
}
/// for Canonical
static PinholePose identity() {
static PinholePose Identity() {
return PinholePose(); // assumes that the default constructor is valid
}

View File

@ -119,7 +119,7 @@ public:
/// @{
/// identity for group operation
inline static Pose2 identity() { return Pose2(); }
inline static Pose2 Identity() { return Pose2(); }
/// inverse
GTSAM_EXPORT Pose2 inverse() const;

View File

@ -103,7 +103,7 @@ public:
/// @{
/// identity for group operation
static Pose3 identity() {
static Pose3 Identity() {
return Pose3();
}

View File

@ -107,8 +107,8 @@ namespace gtsam {
/// @name Group
/// @{
/** identity */
inline static Rot2 identity() { return Rot2(); }
/** Identity */
inline static Rot2 Identity() { return Rot2(); }
/** The inverse rotation - negative angle */
Rot2 inverse() const { return Rot2(c_, -s_);}

View File

@ -297,7 +297,7 @@ class GTSAM_EXPORT Rot3 : public LieGroup<Rot3, 3> {
/// @{
/// identity rotation for group operation
inline static Rot3 identity() {
inline static Rot3 Identity() {
return Rot3();
}

View File

@ -178,13 +178,13 @@ class SO : public LieGroup<SO<N>, internal::DimensionSO(N)> {
/// SO<N> identity for N >= 2
template <int N_ = N, typename = IsFixed<N_>>
static SO identity() {
static SO Identity() {
return SO();
}
/// SO<N> identity for N == Eigen::Dynamic
template <int N_ = N, typename = IsDynamic<N_>>
static SO identity(size_t n = 0) {
static SO Identity(size_t n = 0) {
return SO(n);
}

View File

@ -134,7 +134,7 @@ void Similarity2::print(const std::string& s) const {
<< std::endl;
}
Similarity2 Similarity2::identity() { return Similarity2(); }
Similarity2 Similarity2::Identity() { return Similarity2(); }
Similarity2 Similarity2::operator*(const Similarity2& S) const {
return Similarity2(R_ * S.R_, ((1.0 / S.s_) * t_) + R_ * S.t_, s_ * S.s_);

View File

@ -83,7 +83,7 @@ class GTSAM_EXPORT Similarity2 : public LieGroup<Similarity2, 4> {
/// @{
/// Return an identity transform
static Similarity2 identity();
static Similarity2 Identity();
/// Composition
Similarity2 operator*(const Similarity2& S) const;

View File

@ -122,7 +122,7 @@ void Similarity3::print(const std::string& s) const {
std::cout << "t: " << translation().transpose() << " s: " << scale() << std::endl;
}
Similarity3 Similarity3::identity() {
Similarity3 Similarity3::Identity() {
return Similarity3();
}
Similarity3 Similarity3::operator*(const Similarity3& S) const {

View File

@ -84,7 +84,7 @@ class GTSAM_EXPORT Similarity3 : public LieGroup<Similarity3, 7> {
/// @{
/// Return an identity transform
static Similarity3 identity();
static Similarity3 Identity();
/// Composition
Similarity3 operator*(const Similarity3& S) const;

View File

@ -88,7 +88,7 @@ class GTSAM_EXPORT SphericalCamera {
/// Default constructor
SphericalCamera()
: pose_(Pose3::identity()), emptyCal_(boost::make_shared<EmptyCal>()) {}
: pose_(Pose3()), emptyCal_(boost::make_shared<EmptyCal>()) {}
/// Constructor with pose
explicit SphericalCamera(const Pose3& pose)
@ -198,9 +198,9 @@ class GTSAM_EXPORT SphericalCamera {
}
/// for Canonical
static SphericalCamera identity() {
static SphericalCamera Identity() {
return SphericalCamera(
Pose3::identity()); // assumes that the default constructor is valid
Pose3::Identity()); // assumes that the default constructor is valid
}
/// for Linear Triangulation

View File

@ -71,7 +71,7 @@ public:
/// @{
/// identity
inline static StereoPoint2 identity() {
inline static StereoPoint2 Identity() {
return StereoPoint2();
}

View File

@ -16,7 +16,7 @@ class Point2 {
bool equals(const gtsam::Point2& point, double tol) const;
// Group
static gtsam::Point2 identity();
static gtsam::Point2 Identity();
// Standard Interface
double x() const;
@ -73,7 +73,7 @@ class StereoPoint2 {
bool equals(const gtsam::StereoPoint2& point, double tol) const;
// Group
static gtsam::StereoPoint2 identity();
static gtsam::StereoPoint2 Identity();
gtsam::StereoPoint2 inverse() const;
gtsam::StereoPoint2 compose(const gtsam::StereoPoint2& p2) const;
gtsam::StereoPoint2 between(const gtsam::StereoPoint2& p2) const;
@ -115,7 +115,7 @@ class Point3 {
bool equals(const gtsam::Point3& p, double tol) const;
// Group
static gtsam::Point3 identity();
static gtsam::Point3 Identity();
// Standard Interface
Vector vector() const;
@ -149,7 +149,7 @@ class Rot2 {
bool equals(const gtsam::Rot2& rot, double tol) const;
// Group
static gtsam::Rot2 identity();
static gtsam::Rot2 Identity();
gtsam::Rot2 inverse();
gtsam::Rot2 compose(const gtsam::Rot2& p2) const;
gtsam::Rot2 between(const gtsam::Rot2& p2) const;
@ -198,7 +198,7 @@ class SO3 {
bool equals(const gtsam::SO3& other, double tol) const;
// Group
static gtsam::SO3 identity();
static gtsam::SO3 Identity();
gtsam::SO3 inverse() const;
gtsam::SO3 between(const gtsam::SO3& R) const;
gtsam::SO3 compose(const gtsam::SO3& R) const;
@ -228,7 +228,7 @@ class SO4 {
bool equals(const gtsam::SO4& other, double tol) const;
// Group
static gtsam::SO4 identity();
static gtsam::SO4 Identity();
gtsam::SO4 inverse() const;
gtsam::SO4 between(const gtsam::SO4& Q) const;
gtsam::SO4 compose(const gtsam::SO4& Q) const;
@ -258,7 +258,7 @@ class SOn {
bool equals(const gtsam::SOn& other, double tol) const;
// Group
static gtsam::SOn identity();
static gtsam::SOn Identity();
gtsam::SOn inverse() const;
gtsam::SOn between(const gtsam::SOn& Q) const;
gtsam::SOn compose(const gtsam::SOn& Q) const;
@ -322,7 +322,7 @@ class Rot3 {
bool equals(const gtsam::Rot3& rot, double tol) const;
// Group
static gtsam::Rot3 identity();
static gtsam::Rot3 Identity();
gtsam::Rot3 inverse() const;
gtsam::Rot3 compose(const gtsam::Rot3& p2) const;
gtsam::Rot3 between(const gtsam::Rot3& p2) const;
@ -380,7 +380,7 @@ class Pose2 {
bool equals(const gtsam::Pose2& pose, double tol) const;
// Group
static gtsam::Pose2 identity();
static gtsam::Pose2 Identity();
gtsam::Pose2 inverse() const;
gtsam::Pose2 compose(const gtsam::Pose2& p2) const;
gtsam::Pose2 between(const gtsam::Pose2& p2) const;
@ -444,7 +444,7 @@ class Pose3 {
bool equals(const gtsam::Pose3& pose, double tol) const;
// Group
static gtsam::Pose3 identity();
static gtsam::Pose3 Identity();
gtsam::Pose3 inverse() const;
gtsam::Pose3 inverse(Eigen::Ref<Eigen::MatrixXd> H) const;
gtsam::Pose3 compose(const gtsam::Pose3& pose) const;

View File

@ -902,7 +902,7 @@ TEST(Pose2 , TransformCovariance3) {
/* ************************************************************************* */
TEST(Pose2, Print) {
Pose2 pose(Rot2::identity(), Point2(1, 2));
Pose2 pose(Rot2::Identity(), Point2(1, 2));
// Generate the expected output
string s = "Planar Pose";

View File

@ -1133,7 +1133,7 @@ Pose3 testing_interpolate(const Pose3& t1, const Pose3& t2, double gamma) { retu
TEST(Pose3, interpolateJacobians) {
{
Pose3 X = Pose3::identity();
Pose3 X = Pose3::Identity();
Pose3 Y(Rot3::Rz(M_PI_2), Point3(1, 0, 0));
double t = 0.5;
Pose3 expectedPoseInterp(Rot3::Rz(M_PI_4), Point3(0.5, -0.207107, 0)); // note: different from test above: this is full Pose3 interpolation
@ -1147,10 +1147,10 @@ TEST(Pose3, interpolateJacobians) {
EXPECT(assert_equal(expectedJacobianY,actualJacobianY,1e-6));
}
{
Pose3 X = Pose3::identity();
Pose3 Y(Rot3::identity(), Point3(1, 0, 0));
Pose3 X = Pose3::Identity();
Pose3 Y(Rot3::Identity(), Point3(1, 0, 0));
double t = 0.3;
Pose3 expectedPoseInterp(Rot3::identity(), Point3(0.3, 0, 0));
Pose3 expectedPoseInterp(Rot3::Identity(), Point3(0.3, 0, 0));
Matrix actualJacobianX, actualJacobianY;
EXPECT(assert_equal(expectedPoseInterp, interpolate(X, Y, t, actualJacobianX, actualJacobianY), 1e-5));
@ -1161,7 +1161,7 @@ TEST(Pose3, interpolateJacobians) {
EXPECT(assert_equal(expectedJacobianY,actualJacobianY,1e-6));
}
{
Pose3 X = Pose3::identity();
Pose3 X = Pose3::Identity();
Pose3 Y(Rot3::Rz(M_PI_2), Point3(0, 0, 0));
double t = 0.5;
Pose3 expectedPoseInterp(Rot3::Rz(M_PI_4), Point3(0, 0, 0));
@ -1204,7 +1204,7 @@ TEST(Pose3, Create) {
/* ************************************************************************* */
TEST(Pose3, Print) {
Pose3 pose(Rot3::identity(), Point3(1, 2, 3));
Pose3 pose(Rot3::Identity(), Point3(1, 2, 3));
// Generate the expected output
std::string expected = "R: [\n\t1, 0, 0;\n\t0, 1, 0;\n\t0, 0, 1\n]\nt: 1 2 3\n";

View File

@ -203,11 +203,11 @@ TEST(Similarity3, ExpLogMap) {
Vector7 zeros;
zeros << 0, 0, 0, 0, 0, 0, 0;
Vector7 logIdentity = Similarity3::Logmap(Similarity3::identity());
Vector7 logIdentity = Similarity3::Logmap(Similarity3::Identity());
EXPECT(assert_equal(zeros, logIdentity));
Similarity3 expZero = Similarity3::Expmap(zeros);
Similarity3 ident = Similarity3::identity();
Similarity3 ident = Similarity3::Identity();
EXPECT(assert_equal(expZero, ident));
// Compare to matrix exponential, using expm in Lie.h
@ -391,7 +391,7 @@ TEST(Similarity3, Optimization) {
NonlinearFactorGraph graph;
graph.addPrior(key, prior, model);
// Create initial estimate with identity transform
// Create initial estimate with Identity transform
Values initial;
initial.insert<Similarity3>(key, Similarity3());

View File

@ -119,11 +119,36 @@ void GaussianMixture::print(const std::string &s,
"", [&](Key k) { return formatter(k); },
[&](const GaussianConditional::shared_ptr &gf) -> std::string {
RedirectCout rd;
if (!gf->empty())
if (gf && !gf->empty())
gf->print("", formatter);
else
return {"nullptr"};
return rd.str();
});
}
/* *******************************************************************************/
void GaussianMixture::prune(const DecisionTreeFactor &decisionTree) {
// Functional which loops over all assignments and create a set of
// GaussianConditionals
auto pruner = [&decisionTree](
const Assignment<Key> &choices,
const GaussianConditional::shared_ptr &conditional)
-> GaussianConditional::shared_ptr {
// typecast so we can use this to get probability value
DiscreteValues values(choices);
if (decisionTree(values) == 0.0) {
// empty aka null pointer
boost::shared_ptr<GaussianConditional> null;
return null;
} else {
return conditional;
}
};
auto pruned_conditionals = conditionals_.apply(pruner);
conditionals_.root_ = pruned_conditionals.root_;
}
} // namespace gtsam

View File

@ -21,6 +21,7 @@
#include <gtsam/discrete/DecisionTree-inl.h>
#include <gtsam/discrete/DecisionTree.h>
#include <gtsam/discrete/DecisionTreeFactor.h>
#include <gtsam/discrete/DiscreteKey.h>
#include <gtsam/hybrid/HybridFactor.h>
#include <gtsam/inference/Conditional.h>
@ -30,11 +31,14 @@ namespace gtsam {
/**
* @brief A conditional of gaussian mixtures indexed by discrete variables, as
* part of a Bayes Network.
* part of a Bayes Network. This is the result of the elimination of a
* continuous variable in a hybrid scheme, such that the remaining variables are
* discrete+continuous.
*
* Represents the conditional density P(X | M, Z) where X is a continuous random
* variable, M is the selection of discrete variables corresponding to a subset
* of the Gaussian variables and Z is parent of this node
* Represents the conditional density P(X | M, Z) where X is the set of
* continuous random variables, M is the selection of discrete variables
* corresponding to a subset of the Gaussian variables and Z is parent of this
* node .
*
* The probability P(x|y,z,...) is proportional to
* \f$ \sum_i k_i \exp - \frac{1}{2} |R_i x - (d_i - S_i y - T_i z - ...)|^2 \f$
@ -118,7 +122,7 @@ class GTSAM_EXPORT GaussianMixture
/// Test equality with base HybridFactor
bool equals(const HybridFactor &lf, double tol = 1e-9) const override;
/* print utility */
/// Print utility
void print(
const std::string &s = "GaussianMixture\n",
const KeyFormatter &formatter = DefaultKeyFormatter) const override;
@ -128,6 +132,15 @@ class GTSAM_EXPORT GaussianMixture
/// Getter for the underlying Conditionals DecisionTree
const Conditionals &conditionals();
/**
* @brief Prune the decision tree of Gaussian factors as per the discrete
* `decisionTree`.
*
* @param decisionTree A pruned decision tree of discrete keys where the
* leaves are probabilities.
*/
void prune(const DecisionTreeFactor &decisionTree);
/**
* @brief Merge the Gaussian Factor Graphs in `this` and `sum` while
* maintaining the decision tree structure.

View File

@ -51,7 +51,7 @@ GaussianMixtureFactor GaussianMixtureFactor::FromFactors(
void GaussianMixtureFactor::print(const std::string &s,
const KeyFormatter &formatter) const {
HybridFactor::print(s, formatter);
std::cout << "]{\n";
std::cout << "{\n";
factors_.print(
"", [&](Key k) { return formatter(k); },
[&](const GaussianFactor::shared_ptr &gf) -> std::string {

View File

@ -22,7 +22,7 @@
#include <gtsam/discrete/DecisionTree.h>
#include <gtsam/discrete/DiscreteKey.h>
#include <gtsam/hybrid/HybridFactor.h>
#include <gtsam/hybrid/HybridGaussianFactor.h>
#include <gtsam/linear/GaussianFactor.h>
namespace gtsam {

View File

@ -21,6 +21,95 @@
namespace gtsam {
/* ************************************************************************* */
/// Return the DiscreteKey vector as a set.
static std::set<DiscreteKey> DiscreteKeysAsSet(const DiscreteKeys &dkeys) {
std::set<DiscreteKey> s;
s.insert(dkeys.begin(), dkeys.end());
return s;
}
/* ************************************************************************* */
HybridBayesNet HybridBayesNet::prune(
const DecisionTreeFactor::shared_ptr &discreteFactor) const {
/* To Prune, we visitWith every leaf in the GaussianMixture.
* For each leaf, using the assignment we can check the discrete decision tree
* for 0.0 probability, then just set the leaf to a nullptr.
*
* We can later check the GaussianMixture for just nullptrs.
*/
HybridBayesNet prunedBayesNetFragment;
// Functional which loops over all assignments and create a set of
// GaussianConditionals
auto pruner = [&](const Assignment<Key> &choices,
const GaussianConditional::shared_ptr &conditional)
-> GaussianConditional::shared_ptr {
// typecast so we can use this to get probability value
DiscreteValues values(choices);
if ((*discreteFactor)(values) == 0.0) {
// empty aka null pointer
boost::shared_ptr<GaussianConditional> null;
return null;
} else {
return conditional;
}
};
// Go through all the conditionals in the
// Bayes Net and prune them as per discreteFactor.
for (size_t i = 0; i < this->size(); i++) {
HybridConditional::shared_ptr conditional = this->at(i);
GaussianMixture::shared_ptr gaussianMixture =
boost::dynamic_pointer_cast<GaussianMixture>(conditional->inner());
if (gaussianMixture) {
// We may have mixtures with less discrete keys than discreteFactor so we
// skip those since the label assignment does not exist.
auto gmKeySet = DiscreteKeysAsSet(gaussianMixture->discreteKeys());
auto dfKeySet = DiscreteKeysAsSet(discreteFactor->discreteKeys());
if (gmKeySet != dfKeySet) {
// Add the gaussianMixture which doesn't have to be pruned.
prunedBayesNetFragment.push_back(
boost::make_shared<HybridConditional>(gaussianMixture));
continue;
}
// Run the pruning to get a new, pruned tree
GaussianMixture::Conditionals prunedTree =
gaussianMixture->conditionals().apply(pruner);
DiscreteKeys discreteKeys = gaussianMixture->discreteKeys();
// reverse keys to get a natural ordering
std::reverse(discreteKeys.begin(), discreteKeys.end());
// Convert from boost::iterator_range to KeyVector
// so we can pass it to constructor.
KeyVector frontals(gaussianMixture->frontals().begin(),
gaussianMixture->frontals().end()),
parents(gaussianMixture->parents().begin(),
gaussianMixture->parents().end());
// Create the new gaussian mixture and add it to the bayes net.
auto prunedGaussianMixture = boost::make_shared<GaussianMixture>(
frontals, parents, discreteKeys, prunedTree);
// Type-erase and add to the pruned Bayes Net fragment.
prunedBayesNetFragment.push_back(
boost::make_shared<HybridConditional>(prunedGaussianMixture));
} else {
// Add the non-GaussianMixture conditional
prunedBayesNetFragment.push_back(conditional);
}
}
return prunedBayesNetFragment;
}
/* ************************************************************************* */
GaussianMixture::shared_ptr HybridBayesNet::atGaussian(size_t i) const {
return boost::dynamic_pointer_cast<GaussianMixture>(factors_.at(i)->inner());

View File

@ -17,6 +17,7 @@
#pragma once
#include <gtsam/discrete/DecisionTreeFactor.h>
#include <gtsam/hybrid/HybridConditional.h>
#include <gtsam/hybrid/HybridValues.h>
#include <gtsam/inference/BayesNet.h>
@ -39,6 +40,10 @@ class GTSAM_EXPORT HybridBayesNet : public BayesNet<HybridConditional> {
/** Construct empty bayes net */
HybridBayesNet() = default;
/// Prune the Hybrid Bayes Net given the discrete decision tree.
HybridBayesNet prune(
const DecisionTreeFactor::shared_ptr &discreteFactor) const;
/// Add HybridConditional to Bayes Net
using Base::add;

View File

@ -76,7 +76,10 @@ class GTSAM_EXPORT HybridBayesTree : public BayesTree<HybridBayesTreeClique> {
/**
* @brief Class for Hybrid Bayes tree orphan subtrees.
*
* This does special stuff for the hybrid case
* This object stores parent keys in our base type factor so that
* eliminating those parent keys will pull this subtree into the
* elimination.
* This does special stuff for the hybrid case.
*
* @tparam CLIQUE
*/

View File

@ -78,7 +78,8 @@ bool HybridFactor::equals(const HybridFactor &lf, double tol) const {
const This *e = dynamic_cast<const This *>(&lf);
return e != nullptr && Base::equals(*e, tol) &&
isDiscrete_ == e->isDiscrete_ && isContinuous_ == e->isContinuous_ &&
isHybrid_ == e->isHybrid_ && nrContinuous_ == e->nrContinuous_;
isHybrid_ == e->isHybrid_ && continuousKeys_ == e->continuousKeys_ &&
discreteKeys_ == e->discreteKeys_;
}
/* ************************************************************************ */
@ -88,17 +89,23 @@ void HybridFactor::print(const std::string &s,
if (isContinuous_) std::cout << "Continuous ";
if (isDiscrete_) std::cout << "Discrete ";
if (isHybrid_) std::cout << "Hybrid ";
for (size_t c=0; c<continuousKeys_.size(); c++) {
std::cout << "[";
for (size_t c = 0; c < continuousKeys_.size(); c++) {
std::cout << formatter(continuousKeys_.at(c));
if (c < continuousKeys_.size() - 1) {
std::cout << " ";
} else {
std::cout << "; ";
std::cout << (discreteKeys_.size() > 0 ? "; " : "");
}
}
for(auto && discreteKey: discreteKeys_) {
std::cout << formatter(discreteKey.first) << " ";
for (size_t d = 0; d < discreteKeys_.size(); d++) {
std::cout << formatter(discreteKeys_.at(d).first);
if (d < discreteKeys_.size() - 1) {
std::cout << " ";
}
}
std::cout << "]";
}
} // namespace gtsam

View File

@ -50,8 +50,8 @@ class GTSAM_EXPORT HybridFactor : public Factor {
size_t nrContinuous_ = 0;
protected:
// Set of DiscreteKeys for this factor.
DiscreteKeys discreteKeys_;
/// Record continuous keys for book-keeping
KeyVector continuousKeys_;
@ -120,10 +120,13 @@ class GTSAM_EXPORT HybridFactor : public Factor {
bool isHybrid() const { return isHybrid_; }
/// Return the number of continuous variables in this factor.
size_t nrContinuous() const { return nrContinuous_; }
size_t nrContinuous() const { return continuousKeys_.size(); }
/// Return vector of discrete keys.
DiscreteKeys discreteKeys() const { return discreteKeys_; }
/// Return the discrete keys for this factor.
const DiscreteKeys &discreteKeys() const { return discreteKeys_; }
/// Return only the continuous keys for this factor.
const KeyVector &continuousKeys() const { return continuousKeys_; }
/// @}
};

View File

@ -37,6 +37,8 @@ class GTSAM_EXPORT HybridGaussianFactor : public HybridFactor {
using This = HybridGaussianFactor;
using shared_ptr = boost::shared_ptr<This>;
HybridGaussianFactor() = default;
// Explicit conversion from a shared ptr of GF
explicit HybridGaussianFactor(GaussianFactor::shared_ptr other);
@ -52,7 +54,7 @@ class GTSAM_EXPORT HybridGaussianFactor : public HybridFactor {
/// GTSAM print utility.
void print(
const std::string &s = "HybridFactor\n",
const std::string &s = "HybridGaussianFactor\n",
const KeyFormatter &formatter = DefaultKeyFormatter) const override;
/// @}

View File

@ -98,6 +98,12 @@ GaussianMixtureFactor::Sum sumFrontals(
} else if (f->isContinuous()) {
deferredFactors.push_back(
boost::dynamic_pointer_cast<HybridGaussianFactor>(f)->inner());
} else if (f->isDiscrete()) {
// Don't do anything for discrete-only factors
// since we want to eliminate continuous values only.
continue;
} else {
// We need to handle the case where the object is actually an
// BayesTreeOrphanWrapper!
@ -106,8 +112,8 @@ GaussianMixtureFactor::Sum sumFrontals(
if (!orphan) {
auto &fr = *f;
throw std::invalid_argument(
std::string("factor is discrete in continuous elimination") +
typeid(fr).name());
std::string("factor is discrete in continuous elimination ") +
demangle(typeid(fr).name()));
}
}
}
@ -158,7 +164,7 @@ discreteElimination(const HybridGaussianFactorGraph &factors,
}
}
auto result = EliminateDiscrete(dfg, frontalKeys);
auto result = EliminateForMPE(dfg, frontalKeys);
return {boost::make_shared<HybridConditional>(result.first),
boost::make_shared<HybridDiscreteFactor>(result.second)};
@ -178,6 +184,19 @@ hybridElimination(const HybridGaussianFactorGraph &factors,
// sum out frontals, this is the factor on the separator
GaussianMixtureFactor::Sum sum = sumFrontals(factors);
// If a tree leaf contains nullptr,
// convert that leaf to an empty GaussianFactorGraph.
// Needed since the DecisionTree will otherwise create
// a GFG with a single (null) factor.
auto emptyGaussian = [](const GaussianFactorGraph &gfg) {
bool hasNull =
std::any_of(gfg.begin(), gfg.end(),
[](const GaussianFactor::shared_ptr &ptr) { return !ptr; });
return hasNull ? GaussianFactorGraph() : gfg;
};
sum = GaussianMixtureFactor::Sum(sum, emptyGaussian);
using EliminationPair = GaussianFactorGraph::EliminationResult;
KeyVector keysOfEliminated; // Not the ordering
@ -189,7 +208,10 @@ hybridElimination(const HybridGaussianFactorGraph &factors,
if (graph.empty()) {
return {nullptr, nullptr};
}
auto result = EliminatePreferCholesky(graph, frontalKeys);
std::pair<boost::shared_ptr<GaussianConditional>,
boost::shared_ptr<GaussianFactor>>
result = EliminatePreferCholesky(graph, frontalKeys);
if (keysOfEliminated.empty()) {
keysOfEliminated =
result.first->keys(); // Initialize the keysOfEliminated to be the
@ -229,14 +251,27 @@ hybridElimination(const HybridGaussianFactorGraph &factors,
boost::make_shared<HybridDiscreteFactor>(discreteFactor)};
} else {
// Create a resulting DCGaussianMixture on the separator.
// Create a resulting GaussianMixtureFactor on the separator.
auto factor = boost::make_shared<GaussianMixtureFactor>(
KeyVector(continuousSeparator.begin(), continuousSeparator.end()),
discreteSeparator, separatorFactors);
return {boost::make_shared<HybridConditional>(conditional), factor};
}
}
/* ************************************************************************ */
/* ************************************************************************
* Function to eliminate variables **under the following assumptions**:
* 1. When the ordering is fully continuous, and the graph only contains
* continuous and hybrid factors
* 2. When the ordering is fully discrete, and the graph only contains discrete
* factors
*
* Any usage outside of this is considered incorrect.
*
* \warning This function is not meant to be used with arbitrary hybrid factor
* graphs. For example, if there exists continuous parents, and one tries to
* eliminate a discrete variable (as specified in the ordering), the result will
* be INCORRECT and there will be NO error raised.
*/
std::pair<HybridConditional::shared_ptr, HybridFactor::shared_ptr> //
EliminateHybrid(const HybridGaussianFactorGraph &factors,
const Ordering &frontalKeys) {

View File

@ -24,6 +24,7 @@
#include <gtsam/inference/EliminateableFactorGraph.h>
#include <gtsam/inference/FactorGraph.h>
#include <gtsam/inference/Ordering.h>
#include <gtsam/linear/GaussianFactor.h>
namespace gtsam {

View File

@ -41,6 +41,7 @@ HybridGaussianISAM::HybridGaussianISAM(const HybridBayesTree& bayesTree)
void HybridGaussianISAM::updateInternal(
const HybridGaussianFactorGraph& newFactors,
HybridBayesTree::Cliques* orphans,
const boost::optional<Ordering>& ordering,
const HybridBayesTree::Eliminate& function) {
// Remove the contaminated part of the Bayes tree
BayesNetType bn;
@ -74,16 +75,21 @@ void HybridGaussianISAM::updateInternal(
std::copy(allDiscrete.begin(), allDiscrete.end(),
std::back_inserter(newKeysDiscreteLast));
// KeyVector new
// Get an ordering where the new keys are eliminated last
const VariableIndex index(factors);
const Ordering ordering = Ordering::ColamdConstrainedLast(
index, KeyVector(newKeysDiscreteLast.begin(), newKeysDiscreteLast.end()),
true);
Ordering elimination_ordering;
if (ordering) {
elimination_ordering = *ordering;
} else {
elimination_ordering = Ordering::ColamdConstrainedLast(
index,
KeyVector(newKeysDiscreteLast.begin(), newKeysDiscreteLast.end()),
true);
}
// eliminate all factors (top, added, orphans) into a new Bayes tree
auto bayesTree = factors.eliminateMultifrontal(ordering, function, index);
HybridBayesTree::shared_ptr bayesTree =
factors.eliminateMultifrontal(elimination_ordering, function, index);
// Re-add into Bayes tree data structures
this->roots_.insert(this->roots_.end(), bayesTree->roots().begin(),
@ -93,9 +99,61 @@ void HybridGaussianISAM::updateInternal(
/* ************************************************************************* */
void HybridGaussianISAM::update(const HybridGaussianFactorGraph& newFactors,
const boost::optional<Ordering>& ordering,
const HybridBayesTree::Eliminate& function) {
Cliques orphans;
this->updateInternal(newFactors, &orphans, function);
this->updateInternal(newFactors, &orphans, ordering, function);
}
/* ************************************************************************* */
/**
* @brief Check if `b` is a subset of `a`.
* Non-const since they need to be sorted.
*
* @param a KeyVector
* @param b KeyVector
* @return True if the keys of b is a subset of a, else false.
*/
bool IsSubset(KeyVector a, KeyVector b) {
std::sort(a.begin(), a.end());
std::sort(b.begin(), b.end());
return std::includes(a.begin(), a.end(), b.begin(), b.end());
}
/* ************************************************************************* */
void HybridGaussianISAM::prune(const Key& root, const size_t maxNrLeaves) {
auto decisionTree = boost::dynamic_pointer_cast<DecisionTreeFactor>(
this->clique(root)->conditional()->inner());
DecisionTreeFactor prunedDiscreteFactor = decisionTree->prune(maxNrLeaves);
decisionTree->root_ = prunedDiscreteFactor.root_;
std::vector<gtsam::Key> prunedKeys;
for (auto&& clique : nodes()) {
// The cliques can be repeated for each frontal so we record it in
// prunedKeys and check if we have already pruned a particular clique.
if (std::find(prunedKeys.begin(), prunedKeys.end(), clique.first) !=
prunedKeys.end()) {
continue;
}
// Add all the keys of the current clique to be pruned to prunedKeys
for (auto&& key : clique.second->conditional()->frontals()) {
prunedKeys.push_back(key);
}
// Convert parents() to a KeyVector for comparison
KeyVector parents;
for (auto&& parent : clique.second->conditional()->parents()) {
parents.push_back(parent);
}
if (IsSubset(parents, decisionTree->keys())) {
auto gaussianMixture = boost::dynamic_pointer_cast<GaussianMixture>(
clique.second->conditional()->inner());
gaussianMixture->prune(prunedDiscreteFactor);
}
}
}
} // namespace gtsam

View File

@ -48,6 +48,7 @@ class GTSAM_EXPORT HybridGaussianISAM : public ISAM<HybridBayesTree> {
void updateInternal(
const HybridGaussianFactorGraph& newFactors,
HybridBayesTree::Cliques* orphans,
const boost::optional<Ordering>& ordering = boost::none,
const HybridBayesTree::Eliminate& function =
HybridBayesTree::EliminationTraitsType::DefaultEliminate);
@ -59,8 +60,17 @@ class GTSAM_EXPORT HybridGaussianISAM : public ISAM<HybridBayesTree> {
* @param function Elimination function.
*/
void update(const HybridGaussianFactorGraph& newFactors,
const boost::optional<Ordering>& ordering = boost::none,
const HybridBayesTree::Eliminate& function =
HybridBayesTree::EliminationTraitsType::DefaultEliminate);
/**
* @brief
*
* @param root The root key in the discrete conditional decision tree.
* @param maxNumberLeaves
*/
void prune(const Key& root, const size_t maxNumberLeaves);
};
/// traits

View File

@ -0,0 +1,41 @@
/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file HybridNonlinearFactor.cpp
* @date May 28, 2022
* @author Varun Agrawal
*/
#include <gtsam/hybrid/HybridNonlinearFactor.h>
#include <boost/make_shared.hpp>
namespace gtsam {
/* ************************************************************************* */
HybridNonlinearFactor::HybridNonlinearFactor(
const NonlinearFactor::shared_ptr &other)
: Base(other->keys()), inner_(other) {}
/* ************************************************************************* */
bool HybridNonlinearFactor::equals(const HybridFactor &lf, double tol) const {
return Base::equals(lf, tol);
}
/* ************************************************************************* */
void HybridNonlinearFactor::print(const std::string &s,
const KeyFormatter &formatter) const {
HybridFactor::print(s, formatter);
inner_->print("\n", formatter);
};
} // namespace gtsam

View File

@ -0,0 +1,62 @@
/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file HybridNonlinearFactor.h
* @date May 28, 2022
* @author Varun Agrawal
*/
#pragma once
#include <gtsam/hybrid/HybridFactor.h>
#include <gtsam/hybrid/HybridGaussianFactor.h>
#include <gtsam/nonlinear/NonlinearFactor.h>
namespace gtsam {
/**
* A HybridNonlinearFactor is a layer over NonlinearFactor so that we do not
* have a diamond inheritance.
*/
class HybridNonlinearFactor : public HybridFactor {
private:
NonlinearFactor::shared_ptr inner_;
public:
using Base = HybridFactor;
using This = HybridNonlinearFactor;
using shared_ptr = boost::shared_ptr<This>;
// Explicit conversion from a shared ptr of NonlinearFactor
explicit HybridNonlinearFactor(const NonlinearFactor::shared_ptr &other);
/// @name Testable
/// @{
/// Check equality.
virtual bool equals(const HybridFactor &lf, double tol) const override;
/// GTSAM print utility.
void print(
const std::string &s = "HybridNonlinearFactor\n",
const KeyFormatter &formatter = DefaultKeyFormatter) const override;
/// @}
NonlinearFactor::shared_ptr inner() const { return inner_; }
/// Linearize to a HybridGaussianFactor at the linearization point `c`.
boost::shared_ptr<HybridGaussianFactor> linearize(const Values &c) const {
return boost::make_shared<HybridGaussianFactor>(inner_->linearize(c));
}
};
} // namespace gtsam

View File

@ -0,0 +1,94 @@
/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file HybridNonlinearFactorGraph.cpp
* @brief Nonlinear hybrid factor graph that uses type erasure
* @author Varun Agrawal
* @date May 28, 2022
*/
#include <gtsam/hybrid/HybridNonlinearFactorGraph.h>
namespace gtsam {
/* ************************************************************************* */
void HybridNonlinearFactorGraph::add(
boost::shared_ptr<NonlinearFactor> factor) {
FactorGraph::add(boost::make_shared<HybridNonlinearFactor>(factor));
}
/* ************************************************************************* */
void HybridNonlinearFactorGraph::print(const std::string& s,
const KeyFormatter& keyFormatter) const {
// Base::print(str, keyFormatter);
std::cout << (s.empty() ? "" : s + " ") << std::endl;
std::cout << "size: " << size() << std::endl;
for (size_t i = 0; i < factors_.size(); i++) {
std::stringstream ss;
ss << "factor " << i << ": ";
if (factors_[i]) {
factors_[i]->print(ss.str(), keyFormatter);
std::cout << std::endl;
}
}
}
/* ************************************************************************* */
HybridGaussianFactorGraph HybridNonlinearFactorGraph::linearize(
const Values& continuousValues) const {
// create an empty linear FG
HybridGaussianFactorGraph linearFG;
linearFG.reserve(size());
// linearize all hybrid factors
for (auto&& factor : factors_) {
// First check if it is a valid factor
if (factor) {
// Check if the factor is a hybrid factor.
// It can be either a nonlinear MixtureFactor or a linear
// GaussianMixtureFactor.
if (factor->isHybrid()) {
// Check if it is a nonlinear mixture factor
if (auto nlmf = boost::dynamic_pointer_cast<MixtureFactor>(factor)) {
linearFG.push_back(nlmf->linearize(continuousValues));
} else {
linearFG.push_back(factor);
}
// Now check if the factor is a continuous only factor.
} else if (factor->isContinuous()) {
// In this case, we check if factor->inner() is nonlinear since
// HybridFactors wrap over continuous factors.
auto nlhf = boost::dynamic_pointer_cast<HybridNonlinearFactor>(factor);
if (auto nlf =
boost::dynamic_pointer_cast<NonlinearFactor>(nlhf->inner())) {
auto hgf = boost::make_shared<HybridGaussianFactor>(
nlf->linearize(continuousValues));
linearFG.push_back(hgf);
} else {
linearFG.push_back(factor);
}
// Finally if nothing else, we are discrete-only which doesn't need
// lineariztion.
} else {
linearFG.push_back(factor);
}
} else {
linearFG.push_back(GaussianFactor::shared_ptr());
}
}
return linearFG;
}
} // namespace gtsam

View File

@ -0,0 +1,134 @@
/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file HybridNonlinearFactorGraph.h
* @brief Nonlinear hybrid factor graph that uses type erasure
* @author Varun Agrawal
* @date May 28, 2022
*/
#pragma once
#include <gtsam/hybrid/HybridFactor.h>
#include <gtsam/hybrid/HybridFactorGraph.h>
#include <gtsam/hybrid/HybridGaussianFactorGraph.h>
#include <gtsam/hybrid/HybridNonlinearFactor.h>
#include <gtsam/hybrid/MixtureFactor.h>
#include <gtsam/inference/Ordering.h>
#include <gtsam/nonlinear/NonlinearFactor.h>
#include <boost/format.hpp>
namespace gtsam {
/**
* Nonlinear Hybrid Factor Graph
* -----------------------
* This is the non-linear version of a hybrid factor graph.
* Everything inside needs to be hybrid factor or hybrid conditional.
*/
class GTSAM_EXPORT HybridNonlinearFactorGraph : public HybridFactorGraph {
protected:
/// Check if FACTOR type is derived from NonlinearFactor.
template <typename FACTOR>
using IsNonlinear = typename std::enable_if<
std::is_base_of<NonlinearFactor, FACTOR>::value>::type;
public:
using Base = HybridFactorGraph;
using This = HybridNonlinearFactorGraph; ///< this class
using shared_ptr = boost::shared_ptr<This>; ///< shared_ptr to This
using Values = gtsam::Values; ///< backwards compatibility
using Indices = KeyVector; ///> map from keys to values
/// @name Constructors
/// @{
HybridNonlinearFactorGraph() = default;
/**
* Implicit copy/downcast constructor to override explicit template container
* constructor. In BayesTree this is used for:
* `cachedSeparatorMarginal_.reset(*separatorMarginal)`
* */
template <class DERIVEDFACTOR>
HybridNonlinearFactorGraph(const FactorGraph<DERIVEDFACTOR>& graph)
: Base(graph) {}
/// @}
// Allow use of selected FactorGraph methods:
using Base::empty;
using Base::reserve;
using Base::size;
using Base::operator[];
using Base::add;
using Base::resize;
/**
* Add a nonlinear factor *pointer* to the internal nonlinear factor graph
* @param nonlinearFactor - boost::shared_ptr to the factor to add
*/
template <typename FACTOR>
IsNonlinear<FACTOR> push_nonlinear(
const boost::shared_ptr<FACTOR>& nonlinearFactor) {
Base::push_back(boost::make_shared<HybridNonlinearFactor>(nonlinearFactor));
}
/// Construct a factor and add (shared pointer to it) to factor graph.
template <class FACTOR, class... Args>
IsNonlinear<FACTOR> emplace_nonlinear(Args&&... args) {
auto factor = boost::allocate_shared<FACTOR>(
Eigen::aligned_allocator<FACTOR>(), std::forward<Args>(args)...);
push_nonlinear(factor);
}
/**
* @brief Add a single factor shared pointer to the hybrid factor graph.
* Dynamically handles the factor type and assigns it to the correct
* underlying container.
*
* @tparam FACTOR The factor type template
* @param sharedFactor The factor to add to this factor graph.
*/
template <typename FACTOR>
void push_back(const boost::shared_ptr<FACTOR>& sharedFactor) {
if (auto p = boost::dynamic_pointer_cast<NonlinearFactor>(sharedFactor)) {
push_nonlinear(p);
} else {
Base::push_back(sharedFactor);
}
}
/// Add a nonlinear factor as a shared ptr.
void add(boost::shared_ptr<NonlinearFactor> factor);
/// Print the factor graph.
void print(
const std::string& s = "HybridNonlinearFactorGraph",
const KeyFormatter& keyFormatter = DefaultKeyFormatter) const override;
/**
* @brief Linearize all the continuous factors in the
* HybridNonlinearFactorGraph.
*
* @param continuousValues: Dictionary of continuous values.
* @return HybridGaussianFactorGraph::shared_ptr
*/
HybridGaussianFactorGraph linearize(const Values& continuousValues) const;
};
template <>
struct traits<HybridNonlinearFactorGraph>
: public Testable<HybridNonlinearFactorGraph> {};
} // namespace gtsam

View File

@ -0,0 +1,244 @@
/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file MixtureFactor.h
* @brief Nonlinear Mixture factor of continuous and discrete.
* @author Kevin Doherty, kdoherty@mit.edu
* @author Varun Agrawal
* @date December 2021
*/
#pragma once
#include <gtsam/discrete/DiscreteValues.h>
#include <gtsam/hybrid/GaussianMixtureFactor.h>
#include <gtsam/hybrid/HybridNonlinearFactor.h>
#include <gtsam/nonlinear/NonlinearFactor.h>
#include <gtsam/nonlinear/Symbol.h>
#include <algorithm>
#include <boost/format.hpp>
#include <cmath>
#include <limits>
#include <vector>
namespace gtsam {
/**
* @brief Implementation of a discrete conditional mixture factor.
*
* Implements a joint discrete-continuous factor where the discrete variable
* serves to "select" a mixture component corresponding to a NonlinearFactor
* type of measurement.
*
* This class stores all factors as HybridFactors which can then be typecast to
* one of (NonlinearFactor, GaussianFactor) which can then be checked to perform
* the correct operation.
*/
class MixtureFactor : public HybridFactor {
public:
using Base = HybridFactor;
using This = MixtureFactor;
using shared_ptr = boost::shared_ptr<MixtureFactor>;
using sharedFactor = boost::shared_ptr<NonlinearFactor>;
/**
* @brief typedef for DecisionTree which has Keys as node labels and
* NonlinearFactor as leaf nodes.
*/
using Factors = DecisionTree<Key, sharedFactor>;
private:
/// Decision tree of Gaussian factors indexed by discrete keys.
Factors factors_;
bool normalized_;
public:
MixtureFactor() = default;
/**
* @brief Construct from Decision tree.
*
* @param keys Vector of keys for continuous factors.
* @param discreteKeys Vector of discrete keys.
* @param factors Decision tree with of shared factors.
* @param normalized Flag indicating if the factor error is already
* normalized.
*/
MixtureFactor(const KeyVector& keys, const DiscreteKeys& discreteKeys,
const Factors& factors, bool normalized = false)
: Base(keys, discreteKeys), factors_(factors), normalized_(normalized) {}
/**
* @brief Convenience constructor that generates the underlying factor
* decision tree for us.
*
* Here it is important that the vector of factors has the correct number of
* elements based on the number of discrete keys and the cardinality of the
* keys, so that the decision tree is constructed appropriately.
*
* @tparam FACTOR The type of the factor shared pointers being passed in. Will
* be typecast to NonlinearFactor shared pointers.
* @param keys Vector of keys for continuous factors.
* @param discreteKeys Vector of discrete keys.
* @param factors Vector of shared pointers to factors.
* @param normalized Flag indicating if the factor error is already
* normalized.
*/
template <typename FACTOR>
MixtureFactor(const KeyVector& keys, const DiscreteKeys& discreteKeys,
const std::vector<boost::shared_ptr<FACTOR>>& factors,
bool normalized = false)
: Base(keys, discreteKeys), normalized_(normalized) {
std::vector<NonlinearFactor::shared_ptr> nonlinear_factors;
for (auto&& f : factors) {
nonlinear_factors.push_back(
boost::dynamic_pointer_cast<NonlinearFactor>(f));
}
factors_ = Factors(discreteKeys, nonlinear_factors);
}
~MixtureFactor() = default;
/**
* @brief Compute error of factor given both continuous and discrete values.
*
* @param continuousVals The continuous Values.
* @param discreteVals The discrete Values.
* @return double The error of this factor.
*/
double error(const Values& continuousVals,
const DiscreteValues& discreteVals) const {
// Retrieve the factor corresponding to the assignment in discreteVals.
auto factor = factors_(discreteVals);
// Compute the error for the selected factor
const double factorError = factor->error(continuousVals);
if (normalized_) return factorError;
return factorError +
this->nonlinearFactorLogNormalizingConstant(factor, continuousVals);
}
size_t dim() const {
// TODO(Varun)
throw std::runtime_error("MixtureFactor::dim not implemented.");
}
/// Testable
/// @{
/// print to stdout
void print(
const std::string& s = "MixtureFactor",
const KeyFormatter& keyFormatter = DefaultKeyFormatter) const override {
std::cout << (s.empty() ? "" : s + " ");
Base::print("", keyFormatter);
std::cout << "\nMixtureFactor\n";
auto valueFormatter = [](const sharedFactor& v) {
if (v) {
return (boost::format("Nonlinear factor on %d keys") % v->size()).str();
} else {
return std::string("nullptr");
}
};
factors_.print("", keyFormatter, valueFormatter);
}
/// Check equality
bool equals(const HybridFactor& other, double tol = 1e-9) const override {
// We attempt a dynamic cast from HybridFactor to MixtureFactor. If it
// fails, return false.
if (!dynamic_cast<const MixtureFactor*>(&other)) return false;
// If the cast is successful, we'll properly construct a MixtureFactor
// object from `other`
const MixtureFactor& f(static_cast<const MixtureFactor&>(other));
// Ensure that this MixtureFactor and `f` have the same `factors_`.
auto compare = [tol](const sharedFactor& a, const sharedFactor& b) {
return traits<NonlinearFactor>::Equals(*a, *b, tol);
};
if (!factors_.equals(f.factors_, compare)) return false;
// If everything above passes, and the keys_, discreteKeys_ and normalized_
// member variables are identical, return true.
return (std::equal(keys_.begin(), keys_.end(), f.keys().begin()) &&
(discreteKeys_ == f.discreteKeys_) &&
(normalized_ == f.normalized_));
}
/// @}
/// Linearize specific nonlinear factors based on the assignment in
/// discreteValues.
GaussianFactor::shared_ptr linearize(
const Values& continuousVals, const DiscreteValues& discreteVals) const {
auto factor = factors_(discreteVals);
return factor->linearize(continuousVals);
}
/// Linearize all the continuous factors to get a GaussianMixtureFactor.
boost::shared_ptr<GaussianMixtureFactor> linearize(
const Values& continuousVals) const {
// functional to linearize each factor in the decision tree
auto linearizeDT = [continuousVals](const sharedFactor& factor) {
return factor->linearize(continuousVals);
};
DecisionTree<Key, GaussianFactor::shared_ptr> linearized_factors(
factors_, linearizeDT);
return boost::make_shared<GaussianMixtureFactor>(
continuousKeys_, discreteKeys_, linearized_factors);
}
/**
* If the component factors are not already normalized, we want to compute
* their normalizing constants so that the resulting joint distribution is
* appropriately computed. Remember, this is the _negative_ normalizing
* constant for the measurement likelihood (since we are minimizing the
* _negative_ log-likelihood).
*/
double nonlinearFactorLogNormalizingConstant(const sharedFactor& factor,
const Values& values) const {
// Information matrix (inverse covariance matrix) for the factor.
Matrix infoMat;
// If this is a NoiseModelFactor, we'll use its noiseModel to
// otherwise noiseModelFactor will be nullptr
if (auto noiseModelFactor =
boost::dynamic_pointer_cast<NoiseModelFactor>(factor)) {
// If dynamic cast to NoiseModelFactor succeeded, see if the noise model
// is Gaussian
auto noiseModel = noiseModelFactor->noiseModel();
auto gaussianNoiseModel =
boost::dynamic_pointer_cast<noiseModel::Gaussian>(noiseModel);
if (gaussianNoiseModel) {
// If the noise model is Gaussian, retrieve the information matrix
infoMat = gaussianNoiseModel->information();
} else {
// If the factor is not a Gaussian factor, we'll linearize it to get
// something with a normalized noise model
// TODO(kevin): does this make sense to do? I think maybe not in
// general? Should we just yell at the user?
auto gaussianFactor = factor->linearize(values);
infoMat = gaussianFactor->information();
}
}
// Compute the (negative) log of the normalizing constant
return -(factor->dim() * log(2.0 * M_PI) / 2.0) -
(log(infoMat.determinant()) / 2.0);
}
};
} // namespace gtsam

View File

@ -21,10 +21,16 @@
#include <gtsam/discrete/DiscreteDistribution.h>
#include <gtsam/hybrid/GaussianMixtureFactor.h>
#include <gtsam/hybrid/HybridGaussianFactorGraph.h>
#include <gtsam/hybrid/HybridNonlinearFactorGraph.h>
#include <gtsam/hybrid/MixtureFactor.h>
#include <gtsam/inference/Symbol.h>
#include <gtsam/linear/JacobianFactor.h>
#include <gtsam/linear/NoiseModel.h>
#include <gtsam/nonlinear/PriorFactor.h>
#include <gtsam/slam/BetweenFactor.h>
#include <vector>
#pragma once
namespace gtsam {
@ -33,111 +39,6 @@ using symbol_shorthand::C;
using symbol_shorthand::M;
using symbol_shorthand::X;
/* ****************************************************************************/
// Test fixture with switching network.
// TODO(Varun) Currently this is only linear. We need to add nonlinear support
// and then update to
// https://github.com/borglab/gtsam/pull/973/files#diff-58c02b3b197ebf731694946e87762d252e9eaa2f5c6c4ba22d618085b321ca23
struct Switching {
size_t K;
DiscreteKeys modes;
HybridGaussianFactorGraph linearizedFactorGraph;
Values linearizationPoint;
using MotionModel = BetweenFactor<double>;
// using MotionMixture = MixtureFactor<MotionModel>;
/// Create with given number of time steps.
Switching(size_t K, double between_sigma = 1.0, double prior_sigma = 0.1)
: K(K) {
// Create DiscreteKeys for binary K modes, modes[0] will not be used.
modes = addDiscreteModes(K);
// Create hybrid factor graph.
// Add a prior on X(1).
auto prior = boost::make_shared<JacobianFactor>(
X(1), Matrix11::Ones() / prior_sigma, Vector1::Zero());
linearizedFactorGraph.push_back(prior);
// Add "motion models".
linearizedFactorGraph = addMotionModels(K);
// Add measurement factors
for (size_t k = 1; k <= K; k++) {
linearizedFactorGraph.emplace_gaussian<JacobianFactor>(
X(k), Matrix11::Ones() / 0.1, Vector1::Zero());
}
// Add "mode chain"
linearizedFactorGraph = addModeChain(linearizedFactorGraph);
// Create the linearization point.
for (size_t k = 1; k <= K; k++) {
linearizationPoint.insert<double>(X(k), static_cast<double>(k));
}
}
/// Create DiscreteKeys for K binary modes.
DiscreteKeys addDiscreteModes(size_t K) {
DiscreteKeys m;
for (size_t k = 0; k <= K; k++) {
m.emplace_back(M(k), 2);
}
return m;
}
/// Helper function to add motion models for each [k, k+1] interval.
HybridGaussianFactorGraph addMotionModels(size_t K) {
HybridGaussianFactorGraph hgfg;
for (size_t k = 1; k < K; k++) {
auto keys = {X(k), X(k + 1)};
auto components = motionModels(k);
hgfg.emplace_hybrid<GaussianMixtureFactor>(keys, DiscreteKeys{modes[k]},
components);
}
return hgfg;
}
// Create motion models for a given time step
static std::vector<GaussianFactor::shared_ptr> motionModels(
size_t k, double sigma = 1.0) {
auto noise_model = noiseModel::Isotropic::Sigma(1, sigma);
auto still = boost::make_shared<JacobianFactor>(
X(k), -Matrix11::Ones() / sigma, X(k + 1),
Matrix11::Ones() / sigma, Vector1::Zero()),
moving = boost::make_shared<JacobianFactor>(
X(k), -Matrix11::Ones() / sigma, X(k + 1),
Matrix11::Ones() / sigma, -Vector1::Ones() / sigma);
return {boost::dynamic_pointer_cast<GaussianFactor>(still),
boost::dynamic_pointer_cast<GaussianFactor>(moving)};
}
// // Add "mode chain" to NonlinearHybridFactorGraph
// void addModeChain(HybridNonlinearFactorGraph& fg) {
// auto prior = boost::make_shared<DiscreteDistribution>(modes[1], "1/1");
// fg.push_discrete(prior);
// for (size_t k = 1; k < K - 1; k++) {
// auto parents = {modes[k]};
// auto conditional = boost::make_shared<DiscreteConditional>(
// modes[k + 1], parents, "1/2 3/2");
// fg.push_discrete(conditional);
// }
// }
// Add "mode chain" to GaussianHybridFactorGraph
HybridGaussianFactorGraph addModeChain(HybridGaussianFactorGraph& fg) {
auto prior = boost::make_shared<DiscreteDistribution>(modes[1], "1/1");
fg.push_discrete(prior);
for (size_t k = 1; k < K - 1; k++) {
auto parents = {modes[k]};
auto conditional = boost::make_shared<DiscreteConditional>(
modes[k + 1], parents, "1/2 3/2");
fg.push_discrete(conditional);
}
return fg;
}
};
/**
* @brief Create a switching system chain. A switching system is a continuous
* system which depends on a discrete mode at each time step of the chain.
@ -149,7 +50,7 @@ struct Switching {
*/
inline HybridGaussianFactorGraph::shared_ptr makeSwitchingChain(
size_t n, std::function<Key(int)> keyFunc = X,
std::function<Key(int)> dKeyFunc = C) {
std::function<Key(int)> dKeyFunc = M) {
HybridGaussianFactorGraph hfg;
hfg.add(JacobianFactor(keyFunc(1), I_3x3, Z_3x1));
@ -182,7 +83,7 @@ inline HybridGaussianFactorGraph::shared_ptr makeSwitchingChain(
* @return std::pair<KeyVector, std::vector<int>>
*/
inline std::pair<KeyVector, std::vector<int>> makeBinaryOrdering(
std::vector<Key>& input) {
std::vector<Key> &input) {
KeyVector new_order;
std::vector<int> levels(input.size());
@ -211,4 +112,103 @@ inline std::pair<KeyVector, std::vector<int>> makeBinaryOrdering(
return {new_order, levels};
}
/* ***************************************************************************
*/
using MotionModel = BetweenFactor<double>;
// using MotionMixture = MixtureFactor<MotionModel>;
// Test fixture with switching network.
struct Switching {
size_t K;
DiscreteKeys modes;
HybridNonlinearFactorGraph nonlinearFactorGraph;
HybridGaussianFactorGraph linearizedFactorGraph;
Values linearizationPoint;
/// Create with given number of time steps.
Switching(size_t K, double between_sigma = 1.0, double prior_sigma = 0.1)
: K(K) {
using symbol_shorthand::M;
using symbol_shorthand::X;
// Create DiscreteKeys for binary K modes, modes[0] will not be used.
for (size_t k = 0; k <= K; k++) {
modes.emplace_back(M(k), 2);
}
// Create hybrid factor graph.
// Add a prior on X(1).
auto prior = boost::make_shared<PriorFactor<double>>(
X(1), 0, noiseModel::Isotropic::Sigma(1, prior_sigma));
nonlinearFactorGraph.push_nonlinear(prior);
// Add "motion models".
for (size_t k = 1; k < K; k++) {
KeyVector keys = {X(k), X(k + 1)};
auto motion_models = motionModels(k);
std::vector<NonlinearFactor::shared_ptr> components;
for (auto &&f : motion_models) {
components.push_back(boost::dynamic_pointer_cast<NonlinearFactor>(f));
}
nonlinearFactorGraph.emplace_hybrid<MixtureFactor>(
keys, DiscreteKeys{modes[k]}, components);
}
// Add measurement factors
auto measurement_noise = noiseModel::Isotropic::Sigma(1, 0.1);
for (size_t k = 2; k <= K; k++) {
nonlinearFactorGraph.emplace_nonlinear<PriorFactor<double>>(
X(k), 1.0 * (k - 1), measurement_noise);
}
// Add "mode chain"
addModeChain(&nonlinearFactorGraph);
// Create the linearization point.
for (size_t k = 1; k <= K; k++) {
linearizationPoint.insert<double>(X(k), static_cast<double>(k));
}
linearizedFactorGraph = nonlinearFactorGraph.linearize(linearizationPoint);
}
// Create motion models for a given time step
static std::vector<MotionModel::shared_ptr> motionModels(size_t k,
double sigma = 1.0) {
using symbol_shorthand::M;
using symbol_shorthand::X;
auto noise_model = noiseModel::Isotropic::Sigma(1, sigma);
auto still =
boost::make_shared<MotionModel>(X(k), X(k + 1), 0.0, noise_model),
moving =
boost::make_shared<MotionModel>(X(k), X(k + 1), 1.0, noise_model);
return {still, moving};
}
// Add "mode chain" to HybridNonlinearFactorGraph
void addModeChain(HybridNonlinearFactorGraph *fg) {
auto prior = boost::make_shared<DiscreteDistribution>(modes[1], "1/1");
fg->push_discrete(prior);
for (size_t k = 1; k < K - 1; k++) {
auto parents = {modes[k]};
auto conditional = boost::make_shared<DiscreteConditional>(
modes[k + 1], parents, "1/2 3/2");
fg->push_discrete(conditional);
}
}
// Add "mode chain" to HybridGaussianFactorGraph
void addModeChain(HybridGaussianFactorGraph *fg) {
auto prior = boost::make_shared<DiscreteDistribution>(modes[1], "1/1");
fg->push_discrete(prior);
for (size_t k = 1; k < K - 1; k++) {
auto parents = {modes[k]};
auto conditional = boost::make_shared<DiscreteConditional>(
modes[k + 1], parents, "1/2 3/2");
fg->push_discrete(conditional);
}
}
};
} // namespace gtsam

View File

@ -54,8 +54,8 @@ using namespace boost::assign;
using namespace std;
using namespace gtsam;
using gtsam::symbol_shorthand::C;
using gtsam::symbol_shorthand::D;
using gtsam::symbol_shorthand::M;
using gtsam::symbol_shorthand::X;
using gtsam::symbol_shorthand::Y;
@ -69,9 +69,9 @@ TEST(HybridGaussianFactorGraph, Creation) {
// Define a gaussian mixture conditional P(x0|x1, c0) and add it to the factor
// graph
GaussianMixture gm({X(0)}, {X(1)}, DiscreteKeys(DiscreteKey{C(0), 2}),
GaussianMixture gm({X(0)}, {X(1)}, DiscreteKeys(DiscreteKey{M(0), 2}),
GaussianMixture::Conditionals(
C(0),
M(0),
boost::make_shared<GaussianConditional>(
X(0), Z_3x1, I_3x3, X(1), I_3x3),
boost::make_shared<GaussianConditional>(
@ -98,11 +98,11 @@ TEST(HybridGaussianFactorGraph, EliminateMultifrontal) {
// Test multifrontal elimination
HybridGaussianFactorGraph hfg;
DiscreteKey c(C(1), 2);
DiscreteKey m(M(1), 2);
// Add priors on x0 and c1
hfg.add(JacobianFactor(X(0), I_3x3, Z_3x1));
hfg.add(HybridDiscreteFactor(DecisionTreeFactor(c, {2, 8})));
hfg.add(HybridDiscreteFactor(DecisionTreeFactor(m, {2, 8})));
Ordering ordering;
ordering.push_back(X(0));
@ -116,7 +116,7 @@ TEST(HybridGaussianFactorGraph, EliminateMultifrontal) {
TEST(HybridGaussianFactorGraph, eliminateFullSequentialEqualChance) {
HybridGaussianFactorGraph hfg;
DiscreteKey c1(C(1), 2);
DiscreteKey m1(M(1), 2);
// Add prior on x0
hfg.add(JacobianFactor(X(0), I_3x3, Z_3x1));
@ -125,45 +125,45 @@ TEST(HybridGaussianFactorGraph, eliminateFullSequentialEqualChance) {
// Add a gaussian mixture factor ϕ(x1, c1)
DecisionTree<Key, GaussianFactor::shared_ptr> dt(
C(1), boost::make_shared<JacobianFactor>(X(1), I_3x3, Z_3x1),
M(1), boost::make_shared<JacobianFactor>(X(1), I_3x3, Z_3x1),
boost::make_shared<JacobianFactor>(X(1), I_3x3, Vector3::Ones()));
hfg.add(GaussianMixtureFactor({X(1)}, {c1}, dt));
hfg.add(GaussianMixtureFactor({X(1)}, {m1}, dt));
auto result =
hfg.eliminateSequential(Ordering::ColamdConstrainedLast(hfg, {C(1)}));
hfg.eliminateSequential(Ordering::ColamdConstrainedLast(hfg, {M(1)}));
auto dc = result->at(2)->asDiscreteConditional();
DiscreteValues mode;
mode[C(1)] = 0;
EXPECT_DOUBLES_EQUAL(0.6225, (*dc)(mode), 1e-3);
DiscreteValues dv;
dv[M(1)] = 0;
EXPECT_DOUBLES_EQUAL(1, dc->operator()(dv), 1e-3);
}
/* ************************************************************************* */
TEST(HybridGaussianFactorGraph, eliminateFullSequentialSimple) {
HybridGaussianFactorGraph hfg;
DiscreteKey c1(C(1), 2);
DiscreteKey m1(M(1), 2);
// Add prior on x0
hfg.add(JacobianFactor(X(0), I_3x3, Z_3x1));
// Add factor between x0 and x1
hfg.add(JacobianFactor(X(0), I_3x3, X(1), -I_3x3, Z_3x1));
DecisionTree<Key, GaussianFactor::shared_ptr> dt(
C(1), boost::make_shared<JacobianFactor>(X(1), I_3x3, Z_3x1),
boost::make_shared<JacobianFactor>(X(1), I_3x3, Vector3::Ones()));
hfg.add(GaussianMixtureFactor({X(1)}, {c1}, dt));
std::vector<GaussianFactor::shared_ptr> factors = {
boost::make_shared<JacobianFactor>(X(1), I_3x3, Z_3x1),
boost::make_shared<JacobianFactor>(X(1), I_3x3, Vector3::Ones())};
hfg.add(GaussianMixtureFactor({X(1)}, {m1}, factors));
// Discrete probability table for c1
hfg.add(HybridDiscreteFactor(DecisionTreeFactor(c1, {2, 8})));
hfg.add(DecisionTreeFactor(m1, {2, 8}));
// Joint discrete probability table for c1, c2
hfg.add(HybridDiscreteFactor(
DecisionTreeFactor({{C(1), 2}, {C(2), 2}}, "1 2 3 4")));
hfg.add(DecisionTreeFactor({{M(1), 2}, {M(2), 2}}, "1 2 3 4"));
auto result = hfg.eliminateSequential(
Ordering::ColamdConstrainedLast(hfg, {C(1), C(2)}));
HybridBayesNet::shared_ptr result = hfg.eliminateSequential(
Ordering::ColamdConstrainedLast(hfg, {M(1), M(2)}));
// There are 4 variables (2 continuous + 2 discrete) in the bayes net.
EXPECT_LONGS_EQUAL(4, result->size());
}
@ -171,31 +171,33 @@ TEST(HybridGaussianFactorGraph, eliminateFullSequentialSimple) {
TEST(HybridGaussianFactorGraph, eliminateFullMultifrontalSimple) {
HybridGaussianFactorGraph hfg;
DiscreteKey c1(C(1), 2);
DiscreteKey m1(M(1), 2);
hfg.add(JacobianFactor(X(0), I_3x3, Z_3x1));
hfg.add(JacobianFactor(X(0), I_3x3, X(1), -I_3x3, Z_3x1));
hfg.add(GaussianMixtureFactor::FromFactors(
{X(1)}, {{C(1), 2}},
{X(1)}, {{M(1), 2}},
{boost::make_shared<JacobianFactor>(X(1), I_3x3, Z_3x1),
boost::make_shared<JacobianFactor>(X(1), I_3x3, Vector3::Ones())}));
hfg.add(DecisionTreeFactor(c1, {2, 8}));
hfg.add(DecisionTreeFactor({{C(1), 2}, {C(2), 2}}, "1 2 3 4"));
hfg.add(DecisionTreeFactor(m1, {2, 8}));
hfg.add(DecisionTreeFactor({{M(1), 2}, {M(2), 2}}, "1 2 3 4"));
auto result = hfg.eliminateMultifrontal(
Ordering::ColamdConstrainedLast(hfg, {C(1), C(2)}));
HybridBayesTree::shared_ptr result = hfg.eliminateMultifrontal(
Ordering::ColamdConstrainedLast(hfg, {M(1), M(2)}));
// The bayes tree should have 3 cliques
EXPECT_LONGS_EQUAL(3, result->size());
// GTSAM_PRINT(*result);
// GTSAM_PRINT(*result->marginalFactor(C(2)));
// GTSAM_PRINT(*result->marginalFactor(M(2)));
}
/* ************************************************************************* */
TEST(HybridGaussianFactorGraph, eliminateFullMultifrontalCLG) {
HybridGaussianFactorGraph hfg;
DiscreteKey c(C(1), 2);
DiscreteKey m(M(1), 2);
// Prior on x0
hfg.add(JacobianFactor(X(0), I_3x3, Z_3x1));
@ -204,16 +206,16 @@ TEST(HybridGaussianFactorGraph, eliminateFullMultifrontalCLG) {
// Decision tree with different modes on x1
DecisionTree<Key, GaussianFactor::shared_ptr> dt(
C(1), boost::make_shared<JacobianFactor>(X(1), I_3x3, Z_3x1),
M(1), boost::make_shared<JacobianFactor>(X(1), I_3x3, Z_3x1),
boost::make_shared<JacobianFactor>(X(1), I_3x3, Vector3::Ones()));
// Hybrid factor P(x1|c1)
hfg.add(GaussianMixtureFactor({X(1)}, {c}, dt));
hfg.add(GaussianMixtureFactor({X(1)}, {m}, dt));
// Prior factor on c1
hfg.add(HybridDiscreteFactor(DecisionTreeFactor(c, {2, 8})));
hfg.add(HybridDiscreteFactor(DecisionTreeFactor(m, {2, 8})));
// Get a constrained ordering keeping c1 last
auto ordering_full = Ordering::ColamdConstrainedLast(hfg, {C(1)});
auto ordering_full = Ordering::ColamdConstrainedLast(hfg, {M(1)});
// Returns a Hybrid Bayes Tree with distribution P(x0|x1)P(x1|c1)P(c1)
HybridBayesTree::shared_ptr hbt = hfg.eliminateMultifrontal(ordering_full);
@ -234,48 +236,48 @@ TEST(HybridGaussianFactorGraph, eliminateFullMultifrontalTwoClique) {
{
hfg.add(GaussianMixtureFactor::FromFactors(
{X(0)}, {{C(0), 2}},
{X(0)}, {{M(0), 2}},
{boost::make_shared<JacobianFactor>(X(0), I_3x3, Z_3x1),
boost::make_shared<JacobianFactor>(X(0), I_3x3, Vector3::Ones())}));
DecisionTree<Key, GaussianFactor::shared_ptr> dt1(
C(1), boost::make_shared<JacobianFactor>(X(2), I_3x3, Z_3x1),
M(1), boost::make_shared<JacobianFactor>(X(2), I_3x3, Z_3x1),
boost::make_shared<JacobianFactor>(X(2), I_3x3, Vector3::Ones()));
hfg.add(GaussianMixtureFactor({X(2)}, {{C(1), 2}}, dt1));
hfg.add(GaussianMixtureFactor({X(2)}, {{M(1), 2}}, dt1));
}
hfg.add(HybridDiscreteFactor(
DecisionTreeFactor({{C(1), 2}, {C(2), 2}}, "1 2 3 4")));
DecisionTreeFactor({{M(1), 2}, {M(2), 2}}, "1 2 3 4")));
hfg.add(JacobianFactor(X(3), I_3x3, X(4), -I_3x3, Z_3x1));
hfg.add(JacobianFactor(X(4), I_3x3, X(5), -I_3x3, Z_3x1));
{
DecisionTree<Key, GaussianFactor::shared_ptr> dt(
C(3), boost::make_shared<JacobianFactor>(X(3), I_3x3, Z_3x1),
M(3), boost::make_shared<JacobianFactor>(X(3), I_3x3, Z_3x1),
boost::make_shared<JacobianFactor>(X(3), I_3x3, Vector3::Ones()));
hfg.add(GaussianMixtureFactor({X(3)}, {{C(3), 2}}, dt));
hfg.add(GaussianMixtureFactor({X(3)}, {{M(3), 2}}, dt));
DecisionTree<Key, GaussianFactor::shared_ptr> dt1(
C(2), boost::make_shared<JacobianFactor>(X(5), I_3x3, Z_3x1),
M(2), boost::make_shared<JacobianFactor>(X(5), I_3x3, Z_3x1),
boost::make_shared<JacobianFactor>(X(5), I_3x3, Vector3::Ones()));
hfg.add(GaussianMixtureFactor({X(5)}, {{C(2), 2}}, dt1));
hfg.add(GaussianMixtureFactor({X(5)}, {{M(2), 2}}, dt1));
}
auto ordering_full =
Ordering::ColamdConstrainedLast(hfg, {C(0), C(1), C(2), C(3)});
Ordering::ColamdConstrainedLast(hfg, {M(0), M(1), M(2), M(3)});
HybridBayesTree::shared_ptr hbt;
HybridGaussianFactorGraph::shared_ptr remaining;
std::tie(hbt, remaining) = hfg.eliminatePartialMultifrontal(ordering_full);
// GTSAM_PRINT(*hbt);
// GTSAM_PRINT(*remaining);
// 9 cliques in the bayes tree and 0 remaining variables to eliminate.
EXPECT_LONGS_EQUAL(9, hbt->size());
EXPECT_LONGS_EQUAL(0, remaining->size());
// hbt->marginalFactor(X(1))->print("HBT: ");
/*
(Fan) Explanation: the Junction tree will need to reeliminate to get to the
marginal on X(1), which is not possible because it involves eliminating
@ -309,13 +311,13 @@ TEST(HybridGaussianFactorGraph, Switching) {
// X(3), X(7)
// X(2), X(8)
// X(1), X(4), X(6), X(9)
// C(5) will be the center, C(1-4), C(6-8)
// C(3), C(7)
// C(1), C(4), C(2), C(6), C(8)
// M(5) will be the center, M(1-4), M(6-8)
// M(3), M(7)
// M(1), M(4), M(2), M(6), M(8)
// auto ordering_full =
// Ordering(KeyVector{X(1), X(4), X(2), X(6), X(9), X(8), X(3), X(7),
// X(5),
// C(1), C(4), C(2), C(6), C(8), C(3), C(7), C(5)});
// M(1), M(4), M(2), M(6), M(8), M(3), M(7), M(5)});
KeyVector ordering;
{
@ -338,7 +340,7 @@ TEST(HybridGaussianFactorGraph, Switching) {
std::iota(naturalC.begin(), naturalC.end(), 1);
std::vector<Key> ordC;
std::transform(naturalC.begin(), naturalC.end(), std::back_inserter(ordC),
[](int x) { return C(x); });
[](int x) { return M(x); });
KeyVector ndC;
std::vector<int> lvls;
@ -355,9 +357,9 @@ TEST(HybridGaussianFactorGraph, Switching) {
HybridGaussianFactorGraph::shared_ptr remaining;
std::tie(hbt, remaining) = hfg->eliminatePartialMultifrontal(ordering_full);
// GTSAM_PRINT(*hbt);
// GTSAM_PRINT(*remaining);
// hbt->marginalFactor(C(11))->print("HBT: ");
// 12 cliques in the bayes tree and 0 remaining variables to eliminate.
EXPECT_LONGS_EQUAL(12, hbt->size());
EXPECT_LONGS_EQUAL(0, remaining->size());
}
/* ************************************************************************* */
@ -370,13 +372,13 @@ TEST(HybridGaussianFactorGraph, SwitchingISAM) {
// X(3), X(7)
// X(2), X(8)
// X(1), X(4), X(6), X(9)
// C(5) will be the center, C(1-4), C(6-8)
// C(3), C(7)
// C(1), C(4), C(2), C(6), C(8)
// M(5) will be the center, M(1-4), M(6-8)
// M(3), M(7)
// M(1), M(4), M(2), M(6), M(8)
// auto ordering_full =
// Ordering(KeyVector{X(1), X(4), X(2), X(6), X(9), X(8), X(3), X(7),
// X(5),
// C(1), C(4), C(2), C(6), C(8), C(3), C(7), C(5)});
// M(1), M(4), M(2), M(6), M(8), M(3), M(7), M(5)});
KeyVector ordering;
{
@ -399,7 +401,7 @@ TEST(HybridGaussianFactorGraph, SwitchingISAM) {
std::iota(naturalC.begin(), naturalC.end(), 1);
std::vector<Key> ordC;
std::transform(naturalC.begin(), naturalC.end(), std::back_inserter(ordC),
[](int x) { return C(x); });
[](int x) { return M(x); });
KeyVector ndC;
std::vector<int> lvls;
@ -409,9 +411,6 @@ TEST(HybridGaussianFactorGraph, SwitchingISAM) {
}
auto ordering_full = Ordering(ordering);
// GTSAM_PRINT(*hfg);
// GTSAM_PRINT(ordering_full);
HybridBayesTree::shared_ptr hbt;
HybridGaussianFactorGraph::shared_ptr remaining;
std::tie(hbt, remaining) = hfg->eliminatePartialMultifrontal(ordering_full);
@ -419,19 +418,18 @@ TEST(HybridGaussianFactorGraph, SwitchingISAM) {
auto new_fg = makeSwitchingChain(12);
auto isam = HybridGaussianISAM(*hbt);
{
HybridGaussianFactorGraph factorGraph;
factorGraph.push_back(new_fg->at(new_fg->size() - 2));
factorGraph.push_back(new_fg->at(new_fg->size() - 1));
isam.update(factorGraph);
// std::cout << isam.dot();
// isam.marginalFactor(C(11))->print();
}
// Run an ISAM update.
HybridGaussianFactorGraph factorGraph;
factorGraph.push_back(new_fg->at(new_fg->size() - 2));
factorGraph.push_back(new_fg->at(new_fg->size() - 1));
isam.update(factorGraph);
// ISAM should have 12 factors after the last update
EXPECT_LONGS_EQUAL(12, isam.size());
}
/* ************************************************************************* */
// TODO(Varun) Actually test something!
TEST_DISABLED(HybridGaussianFactorGraph, SwitchingTwoVar) {
TEST(HybridGaussianFactorGraph, SwitchingTwoVar) {
const int N = 7;
auto hfg = makeSwitchingChain(N, X);
hfg->push_back(*makeSwitchingChain(N, Y, D));
@ -451,7 +449,7 @@ TEST_DISABLED(HybridGaussianFactorGraph, SwitchingTwoVar) {
}
for (size_t i = 1; i <= N - 1; i++) {
ordX.emplace_back(C(i));
ordX.emplace_back(M(i));
}
for (size_t i = 1; i <= N - 1; i++) {
ordX.emplace_back(D(i));
@ -463,8 +461,8 @@ TEST_DISABLED(HybridGaussianFactorGraph, SwitchingTwoVar) {
dw.positionHints['c'] = 0;
dw.positionHints['d'] = 3;
dw.positionHints['y'] = 2;
std::cout << hfg->dot(DefaultKeyFormatter, dw);
std::cout << "\n";
// std::cout << hfg->dot(DefaultKeyFormatter, dw);
// std::cout << "\n";
}
{
@ -473,10 +471,10 @@ TEST_DISABLED(HybridGaussianFactorGraph, SwitchingTwoVar) {
// dw.positionHints['c'] = 0;
// dw.positionHints['d'] = 3;
dw.positionHints['x'] = 1;
std::cout << "\n";
// std::cout << "\n";
// std::cout << hfg->eliminateSequential(Ordering(ordX))
// ->dot(DefaultKeyFormatter, dw);
hfg->eliminateMultifrontal(Ordering(ordX))->dot(std::cout);
// hfg->eliminateMultifrontal(Ordering(ordX))->dot(std::cout);
}
Ordering ordering_partial;
@ -484,22 +482,22 @@ TEST_DISABLED(HybridGaussianFactorGraph, SwitchingTwoVar) {
ordering_partial.emplace_back(X(i));
ordering_partial.emplace_back(Y(i));
}
{
HybridBayesNet::shared_ptr hbn;
HybridGaussianFactorGraph::shared_ptr remaining;
std::tie(hbn, remaining) =
hfg->eliminatePartialSequential(ordering_partial);
HybridBayesNet::shared_ptr hbn;
HybridGaussianFactorGraph::shared_ptr remaining;
std::tie(hbn, remaining) =
hfg->eliminatePartialSequential(ordering_partial);
// remaining->print();
{
DotWriter dw;
dw.positionHints['x'] = 1;
dw.positionHints['c'] = 0;
dw.positionHints['d'] = 3;
dw.positionHints['y'] = 2;
std::cout << remaining->dot(DefaultKeyFormatter, dw);
std::cout << "\n";
}
EXPECT_LONGS_EQUAL(14, hbn->size());
EXPECT_LONGS_EQUAL(11, remaining->size());
{
DotWriter dw;
dw.positionHints['x'] = 1;
dw.positionHints['c'] = 0;
dw.positionHints['d'] = 3;
dw.positionHints['y'] = 2;
// std::cout << remaining->dot(DefaultKeyFormatter, dw);
// std::cout << "\n";
}
}

View File

@ -74,7 +74,7 @@ TEST(GaussianMixtureFactor, Sum) {
// Check that number of keys is 3
EXPECT_LONGS_EQUAL(3, mixtureFactorA.keys().size());
// Check that number of discrete keys is 1 // TODO(Frank): should not exist?
// Check that number of discrete keys is 1
EXPECT_LONGS_EQUAL(1, mixtureFactorA.discreteKeys().size());
// Create sum of two mixture factors: it will be a decision tree now on both
@ -104,7 +104,7 @@ TEST(GaussianMixtureFactor, Printing) {
GaussianMixtureFactor mixtureFactor({X(1), X(2)}, {m1}, factors);
std::string expected =
R"(Hybrid x1 x2; 1 ]{
R"(Hybrid [x1 x2; 1]{
Choice(1)
0 Leaf :
A[x1] = [

View File

@ -0,0 +1,45 @@
/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file testHybridFactorGraph.cpp
* @brief Unit tests for HybridFactorGraph
* @author Varun Agrawal
* @date May 2021
*/
#include <CppUnitLite/Test.h>
#include <CppUnitLite/TestHarness.h>
#include <gtsam/base/TestableAssertions.h>
#include <gtsam/base/utilities.h>
#include <gtsam/hybrid/HybridFactorGraph.h>
#include <gtsam/inference/Symbol.h>
#include <gtsam/nonlinear/PriorFactor.h>
using namespace std;
using namespace gtsam;
using noiseModel::Isotropic;
using symbol_shorthand::L;
using symbol_shorthand::M;
using symbol_shorthand::X;
/* ****************************************************************************
* Test that any linearizedFactorGraph gaussian factors are appended to the
* existing gaussian factor graph in the hybrid factor graph.
*/
TEST(HybridFactorGraph, Constructor) {
// Initialize the hybrid factor graph
HybridFactorGraph fg;
}
/* ************************************************************************* */
int main() {
TestResult tr;
return TestRegistry::runAllTests(tr);
}
/* ************************************************************************* */

View File

@ -0,0 +1,563 @@
/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file testHybridIncremental.cpp
* @brief Unit tests for incremental inference
* @author Fan Jiang, Varun Agrawal, Frank Dellaert
* @date Jan 2021
*/
#include <gtsam/discrete/DiscreteBayesNet.h>
#include <gtsam/discrete/DiscreteDistribution.h>
#include <gtsam/discrete/DiscreteFactorGraph.h>
#include <gtsam/geometry/Pose2.h>
#include <gtsam/hybrid/HybridConditional.h>
#include <gtsam/hybrid/HybridGaussianISAM.h>
#include <gtsam/linear/GaussianBayesNet.h>
#include <gtsam/linear/GaussianFactorGraph.h>
#include <gtsam/nonlinear/PriorFactor.h>
#include <gtsam/sam/BearingRangeFactor.h>
#include <numeric>
#include "Switching.h"
// Include for test suite
#include <CppUnitLite/TestHarness.h>
using namespace std;
using namespace gtsam;
using noiseModel::Isotropic;
using symbol_shorthand::L;
using symbol_shorthand::M;
using symbol_shorthand::W;
using symbol_shorthand::X;
using symbol_shorthand::Y;
using symbol_shorthand::Z;
/* ****************************************************************************/
// Test if we can perform elimination incrementally.
TEST(HybridGaussianElimination, IncrementalElimination) {
Switching switching(3);
HybridGaussianISAM isam;
HybridGaussianFactorGraph graph1;
// Create initial factor graph
// * * *
// | | |
// X1 -*- X2 -*- X3
// \*-M1-*/
graph1.push_back(switching.linearizedFactorGraph.at(0)); // P(X1)
graph1.push_back(switching.linearizedFactorGraph.at(1)); // P(X1, X2 | M1)
graph1.push_back(switching.linearizedFactorGraph.at(2)); // P(X2, X3 | M2)
graph1.push_back(switching.linearizedFactorGraph.at(5)); // P(M1)
// Run update step
isam.update(graph1);
// Check that after update we have 3 hybrid Bayes net nodes:
// P(X1 | X2, M1) and P(X2, X3 | M1, M2), P(M1, M2)
EXPECT_LONGS_EQUAL(3, isam.size());
EXPECT(isam[X(1)]->conditional()->frontals() == KeyVector{X(1)});
EXPECT(isam[X(1)]->conditional()->parents() == KeyVector({X(2), M(1)}));
EXPECT(isam[X(2)]->conditional()->frontals() == KeyVector({X(2), X(3)}));
EXPECT(isam[X(2)]->conditional()->parents() == KeyVector({M(1), M(2)}));
/********************************************************/
// New factor graph for incremental update.
HybridGaussianFactorGraph graph2;
graph1.push_back(switching.linearizedFactorGraph.at(3)); // P(X2)
graph2.push_back(switching.linearizedFactorGraph.at(4)); // P(X3)
graph2.push_back(switching.linearizedFactorGraph.at(6)); // P(M1, M2)
isam.update(graph2);
// Check that after the second update we have
// 1 additional hybrid Bayes net node:
// P(X2, X3 | M1, M2)
EXPECT_LONGS_EQUAL(3, isam.size());
EXPECT(isam[X(3)]->conditional()->frontals() == KeyVector({X(2), X(3)}));
EXPECT(isam[X(3)]->conditional()->parents() == KeyVector({M(1), M(2)}));
}
/* ****************************************************************************/
// Test if we can incrementally do the inference
TEST(HybridGaussianElimination, IncrementalInference) {
Switching switching(3);
HybridGaussianISAM isam;
HybridGaussianFactorGraph graph1;
// Create initial factor graph
// * * *
// | | |
// X1 -*- X2 -*- X3
// | |
// *-M1 - * - M2
graph1.push_back(switching.linearizedFactorGraph.at(0)); // P(X1)
graph1.push_back(switching.linearizedFactorGraph.at(1)); // P(X1, X2 | M1)
graph1.push_back(switching.linearizedFactorGraph.at(3)); // P(X2)
graph1.push_back(switching.linearizedFactorGraph.at(5)); // P(M1)
// Run update step
isam.update(graph1);
auto discreteConditional_m1 =
isam[M(1)]->conditional()->asDiscreteConditional();
EXPECT(discreteConditional_m1->keys() == KeyVector({M(1)}));
/********************************************************/
// New factor graph for incremental update.
HybridGaussianFactorGraph graph2;
graph2.push_back(switching.linearizedFactorGraph.at(2)); // P(X2, X3 | M2)
graph2.push_back(switching.linearizedFactorGraph.at(4)); // P(X3)
graph2.push_back(switching.linearizedFactorGraph.at(6)); // P(M1, M2)
isam.update(graph2);
/********************************************************/
// Run batch elimination so we can compare results.
Ordering ordering;
ordering += X(1);
ordering += X(2);
ordering += X(3);
// Now we calculate the actual factors using full elimination
HybridBayesTree::shared_ptr expectedHybridBayesTree;
HybridGaussianFactorGraph::shared_ptr expectedRemainingGraph;
std::tie(expectedHybridBayesTree, expectedRemainingGraph) =
switching.linearizedFactorGraph.eliminatePartialMultifrontal(ordering);
// The densities on X(1) should be the same
auto x1_conditional =
dynamic_pointer_cast<GaussianMixture>(isam[X(1)]->conditional()->inner());
auto actual_x1_conditional = dynamic_pointer_cast<GaussianMixture>(
(*expectedHybridBayesTree)[X(1)]->conditional()->inner());
EXPECT(assert_equal(*x1_conditional, *actual_x1_conditional));
// The densities on X(2) should be the same
auto x2_conditional =
dynamic_pointer_cast<GaussianMixture>(isam[X(2)]->conditional()->inner());
auto actual_x2_conditional = dynamic_pointer_cast<GaussianMixture>(
(*expectedHybridBayesTree)[X(2)]->conditional()->inner());
EXPECT(assert_equal(*x2_conditional, *actual_x2_conditional));
// The densities on X(3) should be the same
auto x3_conditional =
dynamic_pointer_cast<GaussianMixture>(isam[X(3)]->conditional()->inner());
auto actual_x3_conditional = dynamic_pointer_cast<GaussianMixture>(
(*expectedHybridBayesTree)[X(2)]->conditional()->inner());
EXPECT(assert_equal(*x3_conditional, *actual_x3_conditional));
// We only perform manual continuous elimination for 0,0.
// The other discrete probabilities on M(2) are calculated the same way
Ordering discrete_ordering;
discrete_ordering += M(1);
discrete_ordering += M(2);
HybridBayesTree::shared_ptr discreteBayesTree =
expectedRemainingGraph->eliminateMultifrontal(discrete_ordering);
DiscreteValues m00;
m00[M(1)] = 0, m00[M(2)] = 0;
DiscreteConditional decisionTree =
*(*discreteBayesTree)[M(2)]->conditional()->asDiscreteConditional();
double m00_prob = decisionTree(m00);
auto discreteConditional = isam[M(2)]->conditional()->asDiscreteConditional();
// Test if the probability values are as expected with regression tests.
DiscreteValues assignment;
EXPECT(assert_equal(m00_prob, 0.0619233, 1e-5));
assignment[M(1)] = 0;
assignment[M(2)] = 0;
EXPECT(assert_equal(m00_prob, (*discreteConditional)(assignment), 1e-5));
assignment[M(1)] = 1;
assignment[M(2)] = 0;
EXPECT(assert_equal(0.183743, (*discreteConditional)(assignment), 1e-5));
assignment[M(1)] = 0;
assignment[M(2)] = 1;
EXPECT(assert_equal(0.204159, (*discreteConditional)(assignment), 1e-5));
assignment[M(1)] = 1;
assignment[M(2)] = 1;
EXPECT(assert_equal(0.2, (*discreteConditional)(assignment), 1e-5));
// Check if the clique conditional generated from incremental elimination
// matches that of batch elimination.
auto expectedChordal = expectedRemainingGraph->eliminateMultifrontal();
auto expectedConditional = dynamic_pointer_cast<DecisionTreeFactor>(
(*expectedChordal)[M(2)]->conditional()->inner());
auto actualConditional = dynamic_pointer_cast<DecisionTreeFactor>(
isam[M(2)]->conditional()->inner());
EXPECT(assert_equal(*actualConditional, *expectedConditional, 1e-6));
}
/* ****************************************************************************/
// Test if we can approximately do the inference
TEST(HybridGaussianElimination, Approx_inference) {
Switching switching(4);
HybridGaussianISAM incrementalHybrid;
HybridGaussianFactorGraph graph1;
// Add the 3 hybrid factors, x1-x2, x2-x3, x3-x4
for (size_t i = 1; i < 4; i++) {
graph1.push_back(switching.linearizedFactorGraph.at(i));
}
// Add the Gaussian factors, 1 prior on X(1),
// 3 measurements on X(2), X(3), X(4)
graph1.push_back(switching.linearizedFactorGraph.at(0));
for (size_t i = 4; i <= 7; i++) {
graph1.push_back(switching.linearizedFactorGraph.at(i));
}
// Create ordering.
Ordering ordering;
for (size_t j = 1; j <= 4; j++) {
ordering += X(j);
}
// Now we calculate the actual factors using full elimination
HybridBayesTree::shared_ptr unprunedHybridBayesTree;
HybridGaussianFactorGraph::shared_ptr unprunedRemainingGraph;
std::tie(unprunedHybridBayesTree, unprunedRemainingGraph) =
switching.linearizedFactorGraph.eliminatePartialMultifrontal(ordering);
size_t maxNrLeaves = 5;
incrementalHybrid.update(graph1);
incrementalHybrid.prune(M(3), maxNrLeaves);
/*
unpruned factor is:
Choice(m3)
0 Choice(m2)
0 0 Choice(m1)
0 0 0 Leaf 0.11267528
0 0 1 Leaf 0.18576102
0 1 Choice(m1)
0 1 0 Leaf 0.18754662
0 1 1 Leaf 0.30623871
1 Choice(m2)
1 0 Choice(m1)
1 0 0 Leaf 0.18576102
1 0 1 Leaf 0.30622428
1 1 Choice(m1)
1 1 0 Leaf 0.30623871
1 1 1 Leaf 0.5
pruned factors is:
Choice(m3)
0 Choice(m2)
0 0 Leaf 0
0 1 Choice(m1)
0 1 0 Leaf 0.18754662
0 1 1 Leaf 0.30623871
1 Choice(m2)
1 0 Choice(m1)
1 0 0 Leaf 0
1 0 1 Leaf 0.30622428
1 1 Choice(m1)
1 1 0 Leaf 0.30623871
1 1 1 Leaf 0.5
*/
auto discreteConditional_m1 = *dynamic_pointer_cast<DiscreteConditional>(
incrementalHybrid[M(1)]->conditional()->inner());
EXPECT(discreteConditional_m1.keys() == KeyVector({M(1), M(2), M(3)}));
// Get the number of elements which are greater than 0.
auto count = [](const double &value, int count) {
return value > 0 ? count + 1 : count;
};
// Check that the number of leaves after pruning is 5.
EXPECT_LONGS_EQUAL(5, discreteConditional_m1.fold(count, 0));
// Check that the hybrid nodes of the bayes net match those of the pre-pruning
// bayes net, at the same positions.
auto &unprunedLastDensity = *dynamic_pointer_cast<GaussianMixture>(
unprunedHybridBayesTree->clique(X(4))->conditional()->inner());
auto &lastDensity = *dynamic_pointer_cast<GaussianMixture>(
incrementalHybrid[X(4)]->conditional()->inner());
std::vector<std::pair<DiscreteValues, double>> assignments =
discreteConditional_m1.enumerate();
// Loop over all assignments and check the pruned components
for (auto &&av : assignments) {
const DiscreteValues &assignment = av.first;
const double value = av.second;
if (value == 0.0) {
EXPECT(lastDensity(assignment) == nullptr);
} else {
CHECK(lastDensity(assignment));
EXPECT(assert_equal(*unprunedLastDensity(assignment),
*lastDensity(assignment)));
}
}
}
/* ****************************************************************************/
// Test approximate inference with an additional pruning step.
TEST(HybridGaussianElimination, Incremental_approximate) {
Switching switching(5);
HybridGaussianISAM incrementalHybrid;
HybridGaussianFactorGraph graph1;
/***** Run Round 1 *****/
// Add the 3 hybrid factors, x1-x2, x2-x3, x3-x4
for (size_t i = 1; i < 4; i++) {
graph1.push_back(switching.linearizedFactorGraph.at(i));
}
// Add the Gaussian factors, 1 prior on X(1),
// 3 measurements on X(2), X(3), X(4)
graph1.push_back(switching.linearizedFactorGraph.at(0));
for (size_t i = 5; i <= 7; i++) {
graph1.push_back(switching.linearizedFactorGraph.at(i));
}
// Run update with pruning
size_t maxComponents = 5;
incrementalHybrid.update(graph1);
incrementalHybrid.prune(M(3), maxComponents);
// Check if we have a bayes tree with 4 hybrid nodes,
// each with 2, 4, 8, and 5 (pruned) leaves respetively.
EXPECT_LONGS_EQUAL(4, incrementalHybrid.size());
EXPECT_LONGS_EQUAL(
2, incrementalHybrid[X(1)]->conditional()->asMixture()->nrComponents());
EXPECT_LONGS_EQUAL(
4, incrementalHybrid[X(2)]->conditional()->asMixture()->nrComponents());
EXPECT_LONGS_EQUAL(
5, incrementalHybrid[X(3)]->conditional()->asMixture()->nrComponents());
EXPECT_LONGS_EQUAL(
5, incrementalHybrid[X(4)]->conditional()->asMixture()->nrComponents());
/***** Run Round 2 *****/
HybridGaussianFactorGraph graph2;
graph2.push_back(switching.linearizedFactorGraph.at(4));
graph2.push_back(switching.linearizedFactorGraph.at(8));
// Run update with pruning a second time.
incrementalHybrid.update(graph2);
incrementalHybrid.prune(M(4), maxComponents);
// Check if we have a bayes tree with pruned hybrid nodes,
// with 5 (pruned) leaves.
CHECK_EQUAL(5, incrementalHybrid.size());
EXPECT_LONGS_EQUAL(
5, incrementalHybrid[X(4)]->conditional()->asMixture()->nrComponents());
EXPECT_LONGS_EQUAL(
5, incrementalHybrid[X(5)]->conditional()->asMixture()->nrComponents());
}
/* ************************************************************************/
// A GTSAM-only test for running inference on a single-legged robot.
// The leg links are represented by the chain X-Y-Z-W, where X is the base and
// W is the foot.
// We use BetweenFactor<Pose2> as constraints between each of the poses.
TEST(HybridGaussianISAM, NonTrivial) {
/*************** Run Round 1 ***************/
HybridNonlinearFactorGraph fg;
// Add a prior on pose x1 at the origin.
// A prior factor consists of a mean and
// a noise model (covariance matrix)
Pose2 prior(0.0, 0.0, 0.0); // prior mean is at origin
auto priorNoise = noiseModel::Diagonal::Sigmas(
Vector3(0.3, 0.3, 0.1)); // 30cm std on x,y, 0.1 rad on theta
fg.emplace_nonlinear<PriorFactor<Pose2>>(X(0), prior, priorNoise);
// create a noise model for the landmark measurements
auto poseNoise = noiseModel::Isotropic::Sigma(3, 0.1);
// We model a robot's single leg as X - Y - Z - W
// where X is the base link and W is the foot link.
// Add connecting poses similar to PoseFactors in GTD
fg.emplace_nonlinear<BetweenFactor<Pose2>>(X(0), Y(0), Pose2(0, 1.0, 0),
poseNoise);
fg.emplace_nonlinear<BetweenFactor<Pose2>>(Y(0), Z(0), Pose2(0, 1.0, 0),
poseNoise);
fg.emplace_nonlinear<BetweenFactor<Pose2>>(Z(0), W(0), Pose2(0, 1.0, 0),
poseNoise);
// Create initial estimate
Values initial;
initial.insert(X(0), Pose2(0.0, 0.0, 0.0));
initial.insert(Y(0), Pose2(0.0, 1.0, 0.0));
initial.insert(Z(0), Pose2(0.0, 2.0, 0.0));
initial.insert(W(0), Pose2(0.0, 3.0, 0.0));
HybridGaussianFactorGraph gfg = fg.linearize(initial);
fg = HybridNonlinearFactorGraph();
HybridGaussianISAM inc;
// Update without pruning
// The result is a HybridBayesNet with no discrete variables
// (equivalent to a GaussianBayesNet).
// Factorization is:
// `P(X | measurements) = P(W0|Z0) P(Z0|Y0) P(Y0|X0) P(X0)`
inc.update(gfg);
/*************** Run Round 2 ***************/
using PlanarMotionModel = BetweenFactor<Pose2>;
// Add odometry factor with discrete modes.
Pose2 odometry(1.0, 0.0, 0.0);
KeyVector contKeys = {W(0), W(1)};
auto noise_model = noiseModel::Isotropic::Sigma(3, 1.0);
auto still = boost::make_shared<PlanarMotionModel>(W(0), W(1), Pose2(0, 0, 0),
noise_model),
moving = boost::make_shared<PlanarMotionModel>(W(0), W(1), odometry,
noise_model);
std::vector<PlanarMotionModel::shared_ptr> components = {moving, still};
auto mixtureFactor = boost::make_shared<MixtureFactor>(
contKeys, DiscreteKeys{gtsam::DiscreteKey(M(1), 2)}, components);
fg.push_back(mixtureFactor);
// Add equivalent of ImuFactor
fg.emplace_nonlinear<BetweenFactor<Pose2>>(X(0), X(1), Pose2(1.0, 0.0, 0),
poseNoise);
// PoseFactors-like at k=1
fg.emplace_nonlinear<BetweenFactor<Pose2>>(X(1), Y(1), Pose2(0, 1, 0),
poseNoise);
fg.emplace_nonlinear<BetweenFactor<Pose2>>(Y(1), Z(1), Pose2(0, 1, 0),
poseNoise);
fg.emplace_nonlinear<BetweenFactor<Pose2>>(Z(1), W(1), Pose2(-1, 1, 0),
poseNoise);
initial.insert(X(1), Pose2(1.0, 0.0, 0.0));
initial.insert(Y(1), Pose2(1.0, 1.0, 0.0));
initial.insert(Z(1), Pose2(1.0, 2.0, 0.0));
// The leg link did not move so we set the expected pose accordingly.
initial.insert(W(1), Pose2(0.0, 3.0, 0.0));
gfg = fg.linearize(initial);
fg = HybridNonlinearFactorGraph();
// Update without pruning
// The result is a HybridBayesNet with 1 discrete variable M(1).
// P(X | measurements) = P(W0|Z0, W1, M1) P(Z0|Y0, W1, M1) P(Y0|X0, W1, M1)
// P(X0 | X1, W1, M1) P(W1|Z1, X1, M1) P(Z1|Y1, X1, M1)
// P(Y1 | X1, M1)P(X1 | M1)P(M1)
// The MHS tree is a 1 level tree for time indices (1,) with 2 leaves.
inc.update(gfg);
/*************** Run Round 3 ***************/
// Add odometry factor with discrete modes.
contKeys = {W(1), W(2)};
still = boost::make_shared<PlanarMotionModel>(W(1), W(2), Pose2(0, 0, 0),
noise_model);
moving =
boost::make_shared<PlanarMotionModel>(W(1), W(2), odometry, noise_model);
components = {moving, still};
mixtureFactor = boost::make_shared<MixtureFactor>(
contKeys, DiscreteKeys{gtsam::DiscreteKey(M(2), 2)}, components);
fg.push_back(mixtureFactor);
// Add equivalent of ImuFactor
fg.emplace_nonlinear<BetweenFactor<Pose2>>(X(1), X(2), Pose2(1.0, 0.0, 0),
poseNoise);
// PoseFactors-like at k=1
fg.emplace_nonlinear<BetweenFactor<Pose2>>(X(2), Y(2), Pose2(0, 1, 0),
poseNoise);
fg.emplace_nonlinear<BetweenFactor<Pose2>>(Y(2), Z(2), Pose2(0, 1, 0),
poseNoise);
fg.emplace_nonlinear<BetweenFactor<Pose2>>(Z(2), W(2), Pose2(-2, 1, 0),
poseNoise);
initial.insert(X(2), Pose2(2.0, 0.0, 0.0));
initial.insert(Y(2), Pose2(2.0, 1.0, 0.0));
initial.insert(Z(2), Pose2(2.0, 2.0, 0.0));
initial.insert(W(2), Pose2(0.0, 3.0, 0.0));
gfg = fg.linearize(initial);
fg = HybridNonlinearFactorGraph();
// Now we prune!
// P(X | measurements) = P(W0|Z0, W1, M1) P(Z0|Y0, W1, M1) P(Y0|X0, W1, M1)
// P(X0 | X1, W1, M1) P(W1|W2, Z1, X1, M1, M2)
// P(Z1| W2, Y1, X1, M1, M2) P(Y1 | W2, X1, M1, M2)
// P(X1 | W2, X2, M1, M2) P(W2|Z2, X2, M1, M2)
// P(Z2|Y2, X2, M1, M2) P(Y2 | X2, M1, M2)
// P(X2 | M1, M2) P(M1, M2)
// The MHS at this point should be a 2 level tree on (1, 2).
// 1 has 2 choices, and 2 has 4 choices.
inc.update(gfg);
inc.prune(M(2), 2);
/*************** Run Round 4 ***************/
// Add odometry factor with discrete modes.
contKeys = {W(2), W(3)};
still = boost::make_shared<PlanarMotionModel>(W(2), W(3), Pose2(0, 0, 0),
noise_model);
moving =
boost::make_shared<PlanarMotionModel>(W(2), W(3), odometry, noise_model);
components = {moving, still};
mixtureFactor = boost::make_shared<MixtureFactor>(
contKeys, DiscreteKeys{gtsam::DiscreteKey(M(3), 2)}, components);
fg.push_back(mixtureFactor);
// Add equivalent of ImuFactor
fg.emplace_nonlinear<BetweenFactor<Pose2>>(X(2), X(3), Pose2(1.0, 0.0, 0),
poseNoise);
// PoseFactors-like at k=3
fg.emplace_nonlinear<BetweenFactor<Pose2>>(X(3), Y(3), Pose2(0, 1, 0),
poseNoise);
fg.emplace_nonlinear<BetweenFactor<Pose2>>(Y(3), Z(3), Pose2(0, 1, 0),
poseNoise);
fg.emplace_nonlinear<BetweenFactor<Pose2>>(Z(3), W(3), Pose2(-3, 1, 0),
poseNoise);
initial.insert(X(3), Pose2(3.0, 0.0, 0.0));
initial.insert(Y(3), Pose2(3.0, 1.0, 0.0));
initial.insert(Z(3), Pose2(3.0, 2.0, 0.0));
initial.insert(W(3), Pose2(0.0, 3.0, 0.0));
gfg = fg.linearize(initial);
fg = HybridNonlinearFactorGraph();
// Keep pruning!
inc.update(gfg);
inc.prune(M(3), 3);
// The final discrete graph should not be empty since we have eliminated
// all continuous variables.
auto discreteTree = inc[M(3)]->conditional()->asDiscreteConditional();
EXPECT_LONGS_EQUAL(3, discreteTree->size());
// Test if the optimal discrete mode assignment is (1, 1, 1).
DiscreteFactorGraph discreteGraph;
discreteGraph.push_back(discreteTree);
DiscreteValues optimal_assignment = discreteGraph.optimize();
DiscreteValues expected_assignment;
expected_assignment[M(1)] = 1;
expected_assignment[M(2)] = 1;
expected_assignment[M(3)] = 1;
EXPECT(assert_equal(expected_assignment, optimal_assignment));
// Test if pruning worked correctly by checking that we only have 3 leaves in
// the last node.
auto lastConditional = inc[X(3)]->conditional()->asMixture();
EXPECT_LONGS_EQUAL(3, lastConditional->nrComponents());
}
/* ************************************************************************* */
int main() {
TestResult tr;
return TestRegistry::runAllTests(tr);
}

View File

@ -0,0 +1,761 @@
/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file testHybridNonlinearFactorGraph.cpp
* @brief Unit tests for HybridNonlinearFactorGraph
* @author Varun Agrawal
* @author Fan Jiang
* @author Frank Dellaert
* @date December 2021
*/
#include <gtsam/base/TestableAssertions.h>
#include <gtsam/base/utilities.h>
#include <gtsam/discrete/DiscreteBayesNet.h>
#include <gtsam/discrete/DiscreteDistribution.h>
#include <gtsam/discrete/DiscreteFactorGraph.h>
#include <gtsam/geometry/Pose2.h>
#include <gtsam/hybrid/HybridEliminationTree.h>
#include <gtsam/hybrid/HybridFactor.h>
#include <gtsam/hybrid/HybridNonlinearFactorGraph.h>
#include <gtsam/hybrid/MixtureFactor.h>
#include <gtsam/linear/GaussianBayesNet.h>
#include <gtsam/linear/GaussianFactorGraph.h>
#include <gtsam/nonlinear/NonlinearFactorGraph.h>
#include <gtsam/nonlinear/PriorFactor.h>
#include <gtsam/sam/BearingRangeFactor.h>
#include <gtsam/slam/BetweenFactor.h>
#include <numeric>
#include "Switching.h"
// Include for test suite
#include <CppUnitLite/TestHarness.h>
using namespace std;
using namespace gtsam;
using noiseModel::Isotropic;
using symbol_shorthand::L;
using symbol_shorthand::M;
using symbol_shorthand::X;
/* ****************************************************************************
* Test that any linearizedFactorGraph gaussian factors are appended to the
* existing gaussian factor graph in the hybrid factor graph.
*/
TEST(HybridFactorGraph, GaussianFactorGraph) {
HybridNonlinearFactorGraph fg;
// Add a simple prior factor to the nonlinear factor graph
fg.emplace_nonlinear<PriorFactor<double>>(X(0), 0, Isotropic::Sigma(1, 0.1));
// Linearization point
Values linearizationPoint;
linearizationPoint.insert<double>(X(0), 0);
HybridGaussianFactorGraph ghfg = fg.linearize(linearizationPoint);
// Add a factor to the GaussianFactorGraph
ghfg.add(JacobianFactor(X(0), I_1x1, Vector1(5)));
EXPECT_LONGS_EQUAL(2, ghfg.size());
}
/***************************************************************************
* Test equality for Hybrid Nonlinear Factor Graph.
*/
TEST(HybridNonlinearFactorGraph, Equals) {
HybridNonlinearFactorGraph graph1;
HybridNonlinearFactorGraph graph2;
// Test empty factor graphs
EXPECT(assert_equal(graph1, graph2));
auto f0 = boost::make_shared<PriorFactor<Pose2>>(
1, Pose2(), noiseModel::Isotropic::Sigma(3, 0.001));
graph1.push_back(f0);
graph2.push_back(f0);
auto f1 = boost::make_shared<BetweenFactor<Pose2>>(
1, 2, Pose2(), noiseModel::Isotropic::Sigma(3, 0.1));
graph1.push_back(f1);
graph2.push_back(f1);
// Test non-empty graphs
EXPECT(assert_equal(graph1, graph2));
}
/***************************************************************************
* Test that the resize method works correctly for a HybridNonlinearFactorGraph.
*/
TEST(HybridNonlinearFactorGraph, Resize) {
HybridNonlinearFactorGraph fg;
auto nonlinearFactor = boost::make_shared<BetweenFactor<double>>();
fg.push_back(nonlinearFactor);
auto discreteFactor = boost::make_shared<DecisionTreeFactor>();
fg.push_back(discreteFactor);
auto dcFactor = boost::make_shared<MixtureFactor>();
fg.push_back(dcFactor);
EXPECT_LONGS_EQUAL(fg.size(), 3);
fg.resize(0);
EXPECT_LONGS_EQUAL(fg.size(), 0);
}
/***************************************************************************
* Test that the resize method works correctly for a
* HybridGaussianFactorGraph.
*/
TEST(HybridGaussianFactorGraph, Resize) {
HybridNonlinearFactorGraph nhfg;
auto nonlinearFactor = boost::make_shared<BetweenFactor<double>>(
X(0), X(1), 0.0, Isotropic::Sigma(1, 0.1));
nhfg.push_back(nonlinearFactor);
auto discreteFactor = boost::make_shared<DecisionTreeFactor>();
nhfg.push_back(discreteFactor);
KeyVector contKeys = {X(0), X(1)};
auto noise_model = noiseModel::Isotropic::Sigma(1, 1.0);
auto still = boost::make_shared<MotionModel>(X(0), X(1), 0.0, noise_model),
moving = boost::make_shared<MotionModel>(X(0), X(1), 1.0, noise_model);
std::vector<MotionModel::shared_ptr> components = {still, moving};
auto dcFactor = boost::make_shared<MixtureFactor>(
contKeys, DiscreteKeys{gtsam::DiscreteKey(M(1), 2)}, components);
nhfg.push_back(dcFactor);
Values linearizationPoint;
linearizationPoint.insert<double>(X(0), 0);
linearizationPoint.insert<double>(X(1), 1);
// Generate `HybridGaussianFactorGraph` by linearizing
HybridGaussianFactorGraph gfg = nhfg.linearize(linearizationPoint);
EXPECT_LONGS_EQUAL(gfg.size(), 3);
gfg.resize(0);
EXPECT_LONGS_EQUAL(gfg.size(), 0);
}
/*****************************************************************************
* Test push_back on HFG makes the correct distinction.
*/
TEST(HybridFactorGraph, PushBack) {
HybridNonlinearFactorGraph fg;
auto nonlinearFactor = boost::make_shared<BetweenFactor<double>>();
fg.push_back(nonlinearFactor);
EXPECT_LONGS_EQUAL(fg.size(), 1);
fg = HybridNonlinearFactorGraph();
auto discreteFactor = boost::make_shared<DecisionTreeFactor>();
fg.push_back(discreteFactor);
EXPECT_LONGS_EQUAL(fg.size(), 1);
fg = HybridNonlinearFactorGraph();
auto dcFactor = boost::make_shared<MixtureFactor>();
fg.push_back(dcFactor);
EXPECT_LONGS_EQUAL(fg.size(), 1);
// Now do the same with HybridGaussianFactorGraph
HybridGaussianFactorGraph ghfg;
auto gaussianFactor = boost::make_shared<JacobianFactor>();
ghfg.push_back(gaussianFactor);
EXPECT_LONGS_EQUAL(ghfg.size(), 1);
ghfg = HybridGaussianFactorGraph();
ghfg.push_back(discreteFactor);
EXPECT_LONGS_EQUAL(ghfg.size(), 1);
ghfg = HybridGaussianFactorGraph();
ghfg.push_back(dcFactor);
EXPECT_LONGS_EQUAL(ghfg.size(), 1);
}
/****************************************************************************
* Test construction of switching-like hybrid factor graph.
*/
TEST(HybridFactorGraph, Switching) {
Switching self(3);
EXPECT_LONGS_EQUAL(7, self.nonlinearFactorGraph.size());
EXPECT_LONGS_EQUAL(7, self.linearizedFactorGraph.size());
}
/****************************************************************************
* Test linearization on a switching-like hybrid factor graph.
*/
TEST(HybridFactorGraph, Linearization) {
Switching self(3);
// Linearize here:
HybridGaussianFactorGraph actualLinearized =
self.nonlinearFactorGraph.linearize(self.linearizationPoint);
EXPECT_LONGS_EQUAL(7, actualLinearized.size());
}
/****************************************************************************
* Test elimination tree construction
*/
TEST(HybridFactorGraph, EliminationTree) {
Switching self(3);
// Create ordering.
Ordering ordering;
for (size_t k = 1; k <= self.K; k++) ordering += X(k);
// Create elimination tree.
HybridEliminationTree etree(self.linearizedFactorGraph, ordering);
EXPECT_LONGS_EQUAL(1, etree.roots().size())
}
/****************************************************************************
*Test elimination function by eliminating x1 in *-x1-*-x2 graph.
*/
TEST(GaussianElimination, Eliminate_x1) {
Switching self(3);
// Gather factors on x1, has a simple Gaussian and a mixture factor.
HybridGaussianFactorGraph factors;
// Add gaussian prior
factors.push_back(self.linearizedFactorGraph[0]);
// Add first hybrid factor
factors.push_back(self.linearizedFactorGraph[1]);
// TODO(Varun) remove this block since sum is no longer exposed.
// // Check that sum works:
// auto sum = factors.sum();
// Assignment<Key> mode;
// mode[M(1)] = 1;
// auto actual = sum(mode); // Selects one of 2 modes.
// EXPECT_LONGS_EQUAL(2, actual.size()); // Prior and motion model.
// Eliminate x1
Ordering ordering;
ordering += X(1);
auto result = EliminateHybrid(factors, ordering);
CHECK(result.first);
EXPECT_LONGS_EQUAL(1, result.first->nrFrontals());
CHECK(result.second);
// Has two keys, x2 and m1
EXPECT_LONGS_EQUAL(2, result.second->size());
}
/****************************************************************************
* Test elimination function by eliminating x2 in x1-*-x2-*-x3 chain.
* m1/ \m2
*/
TEST(HybridsGaussianElimination, Eliminate_x2) {
Switching self(3);
// Gather factors on x2, will be two mixture factors (with x1 and x3, resp.).
HybridGaussianFactorGraph factors;
factors.push_back(self.linearizedFactorGraph[1]); // involves m1
factors.push_back(self.linearizedFactorGraph[2]); // involves m2
// TODO(Varun) remove this block since sum is no longer exposed.
// // Check that sum works:
// auto sum = factors.sum();
// Assignment<Key> mode;
// mode[M(1)] = 0;
// mode[M(2)] = 1;
// auto actual = sum(mode); // Selects one of 4 mode
// combinations. EXPECT_LONGS_EQUAL(2, actual.size()); // 2 motion models.
// Eliminate x2
Ordering ordering;
ordering += X(2);
std::pair<HybridConditional::shared_ptr, HybridFactor::shared_ptr> result =
EliminateHybrid(factors, ordering);
CHECK(result.first);
EXPECT_LONGS_EQUAL(1, result.first->nrFrontals());
CHECK(result.second);
// Note: separator keys should include m1, m2.
EXPECT_LONGS_EQUAL(4, result.second->size());
}
/****************************************************************************
* Helper method to generate gaussian factor graphs with a specific mode.
*/
GaussianFactorGraph::shared_ptr batchGFG(double between,
Values linearizationPoint) {
NonlinearFactorGraph graph;
graph.addPrior<double>(X(1), 0, Isotropic::Sigma(1, 0.1));
auto between_x1_x2 = boost::make_shared<MotionModel>(
X(1), X(2), between, Isotropic::Sigma(1, 1.0));
graph.push_back(between_x1_x2);
return graph.linearize(linearizationPoint);
}
/****************************************************************************
* Test elimination function by eliminating x1 and x2 in graph.
*/
TEST(HybridGaussianElimination, EliminateHybrid_2_Variable) {
Switching self(2, 1.0, 0.1);
auto factors = self.linearizedFactorGraph;
// Eliminate x1
Ordering ordering;
ordering += X(1);
ordering += X(2);
HybridConditional::shared_ptr hybridConditionalMixture;
HybridFactor::shared_ptr factorOnModes;
std::tie(hybridConditionalMixture, factorOnModes) =
EliminateHybrid(factors, ordering);
auto gaussianConditionalMixture =
dynamic_pointer_cast<GaussianMixture>(hybridConditionalMixture->inner());
CHECK(gaussianConditionalMixture);
// Frontals = [x1, x2]
EXPECT_LONGS_EQUAL(2, gaussianConditionalMixture->nrFrontals());
// 1 parent, which is the mode
EXPECT_LONGS_EQUAL(1, gaussianConditionalMixture->nrParents());
// This is now a HybridDiscreteFactor
auto hybridDiscreteFactor =
dynamic_pointer_cast<HybridDiscreteFactor>(factorOnModes);
// Access the type-erased inner object and convert to DecisionTreeFactor
auto discreteFactor =
dynamic_pointer_cast<DecisionTreeFactor>(hybridDiscreteFactor->inner());
CHECK(discreteFactor);
EXPECT_LONGS_EQUAL(1, discreteFactor->discreteKeys().size());
EXPECT(discreteFactor->root_->isLeaf() == false);
}
// /*
// ****************************************************************************/
// /// Test the toDecisionTreeFactor method
// TEST(HybridFactorGraph, ToDecisionTreeFactor) {
// size_t K = 3;
// // Provide tight sigma values so that the errors are visibly different.
// double between_sigma = 5e-8, prior_sigma = 1e-7;
// Switching self(K, between_sigma, prior_sigma);
// // Clear out discrete factors since sum() cannot hanldle those
// HybridGaussianFactorGraph linearizedFactorGraph(
// self.linearizedFactorGraph.gaussianGraph(), DiscreteFactorGraph(),
// self.linearizedFactorGraph.dcGraph());
// auto decisionTreeFactor = linearizedFactorGraph.toDecisionTreeFactor();
// auto allAssignments =
// DiscreteValues::CartesianProduct(linearizedFactorGraph.discreteKeys());
// // Get the error of the discrete assignment m1=0, m2=1.
// double actual = (*decisionTreeFactor)(allAssignments[1]);
// /********************************************/
// // Create equivalent factor graph for m1=0, m2=1
// GaussianFactorGraph graph = linearizedFactorGraph.gaussianGraph();
// for (auto &p : linearizedFactorGraph.dcGraph()) {
// if (auto mixture =
// boost::dynamic_pointer_cast<DCGaussianMixtureFactor>(p)) {
// graph.add((*mixture)(allAssignments[1]));
// }
// }
// VectorValues values = graph.optimize();
// double expected = graph.probPrime(values);
// /********************************************/
// EXPECT_DOUBLES_EQUAL(expected, actual, 1e-12);
// // REGRESSION:
// EXPECT_DOUBLES_EQUAL(0.6125, actual, 1e-4);
// }
/****************************************************************************
* Test partial elimination
*/
TEST(HybridFactorGraph, Partial_Elimination) {
Switching self(3);
auto linearizedFactorGraph = self.linearizedFactorGraph;
// Create ordering.
Ordering ordering;
for (size_t k = 1; k <= self.K; k++) ordering += X(k);
// Eliminate partially.
HybridBayesNet::shared_ptr hybridBayesNet;
HybridGaussianFactorGraph::shared_ptr remainingFactorGraph;
std::tie(hybridBayesNet, remainingFactorGraph) =
linearizedFactorGraph.eliminatePartialSequential(ordering);
CHECK(hybridBayesNet);
// GTSAM_PRINT(*hybridBayesNet); // HybridBayesNet
EXPECT_LONGS_EQUAL(3, hybridBayesNet->size());
EXPECT(hybridBayesNet->at(0)->frontals() == KeyVector{X(1)});
EXPECT(hybridBayesNet->at(0)->parents() == KeyVector({X(2), M(1)}));
EXPECT(hybridBayesNet->at(1)->frontals() == KeyVector{X(2)});
EXPECT(hybridBayesNet->at(1)->parents() == KeyVector({X(3), M(1), M(2)}));
EXPECT(hybridBayesNet->at(2)->frontals() == KeyVector{X(3)});
EXPECT(hybridBayesNet->at(2)->parents() == KeyVector({M(1), M(2)}));
CHECK(remainingFactorGraph);
// GTSAM_PRINT(*remainingFactorGraph); // HybridFactorGraph
EXPECT_LONGS_EQUAL(3, remainingFactorGraph->size());
EXPECT(remainingFactorGraph->at(0)->keys() == KeyVector({M(1)}));
EXPECT(remainingFactorGraph->at(1)->keys() == KeyVector({M(2), M(1)}));
EXPECT(remainingFactorGraph->at(2)->keys() == KeyVector({M(1), M(2)}));
}
/****************************************************************************
* Test full elimination
*/
TEST(HybridFactorGraph, Full_Elimination) {
Switching self(3);
auto linearizedFactorGraph = self.linearizedFactorGraph;
// We first do a partial elimination
HybridBayesNet::shared_ptr hybridBayesNet_partial;
HybridGaussianFactorGraph::shared_ptr remainingFactorGraph_partial;
DiscreteBayesNet discreteBayesNet;
{
// Create ordering.
Ordering ordering;
for (size_t k = 1; k <= self.K; k++) ordering += X(k);
// Eliminate partially.
std::tie(hybridBayesNet_partial, remainingFactorGraph_partial) =
linearizedFactorGraph.eliminatePartialSequential(ordering);
DiscreteFactorGraph discrete_fg;
// TODO(Varun) Make this a function of HybridGaussianFactorGraph?
for (HybridFactor::shared_ptr& factor : (*remainingFactorGraph_partial)) {
auto df = dynamic_pointer_cast<HybridDiscreteFactor>(factor);
discrete_fg.push_back(df->inner());
}
ordering.clear();
for (size_t k = 1; k < self.K; k++) ordering += M(k);
discreteBayesNet =
*discrete_fg.eliminateSequential(ordering, EliminateForMPE);
}
// Create ordering.
Ordering ordering;
for (size_t k = 1; k <= self.K; k++) ordering += X(k);
for (size_t k = 1; k < self.K; k++) ordering += M(k);
// Eliminate partially.
HybridBayesNet::shared_ptr hybridBayesNet =
linearizedFactorGraph.eliminateSequential(ordering);
CHECK(hybridBayesNet);
EXPECT_LONGS_EQUAL(5, hybridBayesNet->size());
// p(x1 | x2, m1)
EXPECT(hybridBayesNet->at(0)->frontals() == KeyVector{X(1)});
EXPECT(hybridBayesNet->at(0)->parents() == KeyVector({X(2), M(1)}));
// p(x2 | x3, m1, m2)
EXPECT(hybridBayesNet->at(1)->frontals() == KeyVector{X(2)});
EXPECT(hybridBayesNet->at(1)->parents() == KeyVector({X(3), M(1), M(2)}));
// p(x3 | m1, m2)
EXPECT(hybridBayesNet->at(2)->frontals() == KeyVector{X(3)});
EXPECT(hybridBayesNet->at(2)->parents() == KeyVector({M(1), M(2)}));
// P(m1 | m2)
EXPECT(hybridBayesNet->at(3)->frontals() == KeyVector{M(1)});
EXPECT(hybridBayesNet->at(3)->parents() == KeyVector({M(2)}));
EXPECT(
dynamic_pointer_cast<DiscreteConditional>(hybridBayesNet->at(3)->inner())
->equals(*discreteBayesNet.at(0)));
// P(m2)
EXPECT(hybridBayesNet->at(4)->frontals() == KeyVector{M(2)});
EXPECT_LONGS_EQUAL(0, hybridBayesNet->at(4)->nrParents());
EXPECT(
dynamic_pointer_cast<DiscreteConditional>(hybridBayesNet->at(4)->inner())
->equals(*discreteBayesNet.at(1)));
}
/****************************************************************************
* Test printing
*/
TEST(HybridFactorGraph, Printing) {
Switching self(3);
auto linearizedFactorGraph = self.linearizedFactorGraph;
// Create ordering.
Ordering ordering;
for (size_t k = 1; k <= self.K; k++) ordering += X(k);
// Eliminate partially.
HybridBayesNet::shared_ptr hybridBayesNet;
HybridGaussianFactorGraph::shared_ptr remainingFactorGraph;
std::tie(hybridBayesNet, remainingFactorGraph) =
linearizedFactorGraph.eliminatePartialSequential(ordering);
string expected_hybridFactorGraph = R"(
size: 7
factor 0: Continuous [x1]
A[x1] = [
10
]
b = [ -10 ]
No noise model
factor 1: Hybrid [x1 x2; m1]{
Choice(m1)
0 Leaf :
A[x1] = [
-1
]
A[x2] = [
1
]
b = [ -1 ]
No noise model
1 Leaf :
A[x1] = [
-1
]
A[x2] = [
1
]
b = [ -0 ]
No noise model
}
factor 2: Hybrid [x2 x3; m2]{
Choice(m2)
0 Leaf :
A[x2] = [
-1
]
A[x3] = [
1
]
b = [ -1 ]
No noise model
1 Leaf :
A[x2] = [
-1
]
A[x3] = [
1
]
b = [ -0 ]
No noise model
}
factor 3: Continuous [x2]
A[x2] = [
10
]
b = [ -10 ]
No noise model
factor 4: Continuous [x3]
A[x3] = [
10
]
b = [ -10 ]
No noise model
factor 5: Discrete [m1]
P( m1 ):
Leaf 0.5
factor 6: Discrete [m2 m1]
P( m2 | m1 ):
Choice(m2)
0 Choice(m1)
0 0 Leaf 0.33333333
0 1 Leaf 0.6
1 Choice(m1)
1 0 Leaf 0.66666667
1 1 Leaf 0.4
)";
EXPECT(assert_print_equal(expected_hybridFactorGraph, linearizedFactorGraph));
// Expected output for hybridBayesNet.
string expected_hybridBayesNet = R"(
size: 3
factor 0: Hybrid P( x1 | x2 m1)
Discrete Keys = (m1, 2),
Choice(m1)
0 Leaf p(x1 | x2)
R = [ 10.0499 ]
S[x2] = [ -0.0995037 ]
d = [ -9.85087 ]
No noise model
1 Leaf p(x1 | x2)
R = [ 10.0499 ]
S[x2] = [ -0.0995037 ]
d = [ -9.95037 ]
No noise model
factor 1: Hybrid P( x2 | x3 m1 m2)
Discrete Keys = (m1, 2), (m2, 2),
Choice(m2)
0 Choice(m1)
0 0 Leaf p(x2 | x3)
R = [ 10.099 ]
S[x3] = [ -0.0990196 ]
d = [ -9.99901 ]
No noise model
0 1 Leaf p(x2 | x3)
R = [ 10.099 ]
S[x3] = [ -0.0990196 ]
d = [ -9.90098 ]
No noise model
1 Choice(m1)
1 0 Leaf p(x2 | x3)
R = [ 10.099 ]
S[x3] = [ -0.0990196 ]
d = [ -10.098 ]
No noise model
1 1 Leaf p(x2 | x3)
R = [ 10.099 ]
S[x3] = [ -0.0990196 ]
d = [ -10 ]
No noise model
factor 2: Hybrid P( x3 | m1 m2)
Discrete Keys = (m1, 2), (m2, 2),
Choice(m2)
0 Choice(m1)
0 0 Leaf p(x3)
R = [ 10.0494 ]
d = [ -10.1489 ]
No noise model
0 1 Leaf p(x3)
R = [ 10.0494 ]
d = [ -10.1479 ]
No noise model
1 Choice(m1)
1 0 Leaf p(x3)
R = [ 10.0494 ]
d = [ -10.0504 ]
No noise model
1 1 Leaf p(x3)
R = [ 10.0494 ]
d = [ -10.0494 ]
No noise model
)";
EXPECT(assert_print_equal(expected_hybridBayesNet, *hybridBayesNet));
}
/****************************************************************************
* Simple PlanarSLAM example test with 2 poses and 2 landmarks (each pose
* connects to 1 landmark) to expose issue with default decision tree creation
* in hybrid elimination. The hybrid factor is between the poses X0 and X1.
* The issue arises if we eliminate a landmark variable first since it is not
* connected to a HybridFactor.
*/
TEST(HybridFactorGraph, DefaultDecisionTree) {
HybridNonlinearFactorGraph fg;
// Add a prior on pose x1 at the origin.
// A prior factor consists of a mean and a noise model (covariance matrix)
Pose2 prior(0.0, 0.0, 0.0); // prior mean is at origin
auto priorNoise = noiseModel::Diagonal::Sigmas(
Vector3(0.3, 0.3, 0.1)); // 30cm std on x,y, 0.1 rad on theta
fg.emplace_nonlinear<PriorFactor<Pose2>>(X(0), prior, priorNoise);
using PlanarMotionModel = BetweenFactor<Pose2>;
// Add odometry factor
Pose2 odometry(2.0, 0.0, 0.0);
KeyVector contKeys = {X(0), X(1)};
auto noise_model = noiseModel::Isotropic::Sigma(3, 1.0);
auto still = boost::make_shared<PlanarMotionModel>(X(0), X(1), Pose2(0, 0, 0),
noise_model),
moving = boost::make_shared<PlanarMotionModel>(X(0), X(1), odometry,
noise_model);
std::vector<PlanarMotionModel::shared_ptr> motion_models = {still, moving};
// TODO(Varun) Make a templated constructor for MixtureFactor which does this?
std::vector<NonlinearFactor::shared_ptr> components;
for (auto&& f : motion_models) {
components.push_back(boost::dynamic_pointer_cast<NonlinearFactor>(f));
}
fg.emplace_hybrid<MixtureFactor>(
contKeys, DiscreteKeys{gtsam::DiscreteKey(M(1), 2)}, components);
// Add Range-Bearing measurements to from X0 to L0 and X1 to L1.
// create a noise model for the landmark measurements
auto measurementNoise = noiseModel::Diagonal::Sigmas(
Vector2(0.1, 0.2)); // 0.1 rad std on bearing, 20cm on range
// create the measurement values - indices are (pose id, landmark id)
Rot2 bearing11 = Rot2::fromDegrees(45), bearing22 = Rot2::fromDegrees(90);
double range11 = std::sqrt(4.0 + 4.0), range22 = 2.0;
// Add Bearing-Range factors
fg.emplace_nonlinear<BearingRangeFactor<Pose2, Point2>>(
X(0), L(0), bearing11, range11, measurementNoise);
fg.emplace_nonlinear<BearingRangeFactor<Pose2, Point2>>(
X(1), L(1), bearing22, range22, measurementNoise);
// Create (deliberately inaccurate) initial estimate
Values initialEstimate;
initialEstimate.insert(X(0), Pose2(0.5, 0.0, 0.2));
initialEstimate.insert(X(1), Pose2(2.3, 0.1, -0.2));
initialEstimate.insert(L(0), Point2(1.8, 2.1));
initialEstimate.insert(L(1), Point2(4.1, 1.8));
// We want to eliminate variables not connected to DCFactors first.
Ordering ordering;
ordering += L(0);
ordering += L(1);
ordering += X(0);
ordering += X(1);
HybridGaussianFactorGraph linearized = fg.linearize(initialEstimate);
gtsam::HybridBayesNet::shared_ptr hybridBayesNet;
gtsam::HybridGaussianFactorGraph::shared_ptr remainingFactorGraph;
// This should NOT fail
std::tie(hybridBayesNet, remainingFactorGraph) =
linearized.eliminatePartialSequential(ordering);
EXPECT_LONGS_EQUAL(4, hybridBayesNet->size());
EXPECT_LONGS_EQUAL(1, remainingFactorGraph->size());
}
/* ************************************************************************* */
int main() {
TestResult tr;
return TestRegistry::runAllTests(tr);
}
/* ************************************************************************* */

View File

@ -10,7 +10,7 @@
* -------------------------------------------------------------------------- */
/**
* @file SymbolicISAM.h
* @file GaussianISAM.h
* @date July 29, 2013
* @author Frank Dellaert
* @author Richard Roberts

View File

@ -93,9 +93,14 @@ void PreintegratedCombinedMeasurements::resetIntegration() {
//------------------------------------------------------------------------------
void PreintegratedCombinedMeasurements::integrateMeasurement(
const Vector3& measuredAcc, const Vector3& measuredOmega, double dt) {
if (dt <= 0) {
throw std::runtime_error(
"PreintegratedCombinedMeasurements::integrateMeasurement: dt <=0");
}
// Update preintegrated measurements.
Matrix9 A; // overall Jacobian wrt preintegrated measurements (df/dx)
Matrix93 B, C;
Matrix9 A; // Jacobian wrt preintegrated measurements without bias (df/dx)
Matrix93 B, C; // Jacobian of state wrpt accel bias and omega bias respectively.
PreintegrationType::update(measuredAcc, measuredOmega, dt, &A, &B, &C);
// Update preintegrated measurements covariance: as in [2] we consider a first
@ -105,47 +110,78 @@ void PreintegratedCombinedMeasurements::integrateMeasurement(
// and preintegrated measurements
// Single Jacobians to propagate covariance
// TODO(frank): should we not also account for bias on position?
Matrix3 theta_H_biasOmega = -C.topRows<3>();
Matrix3 vel_H_biasAcc = -B.bottomRows<3>();
Matrix3 theta_H_biasOmega = C.topRows<3>();
Matrix3 pos_H_biasAcc = B.middleRows<3>(3);
Matrix3 vel_H_biasAcc = B.bottomRows<3>();
Matrix3 theta_H_biasOmegaInit = -theta_H_biasOmega;
Matrix3 pos_H_biasAccInit = -pos_H_biasAcc;
Matrix3 vel_H_biasAccInit = -vel_H_biasAcc;
// overall Jacobian wrt preintegrated measurements (df/dx)
Eigen::Matrix<double, 15, 15> F;
F.setZero();
F.block<9, 9>(0, 0) = A;
F.block<3, 3>(0, 12) = theta_H_biasOmega;
F.block<3, 3>(3, 9) = pos_H_biasAcc;
F.block<3, 3>(6, 9) = vel_H_biasAcc;
F.block<6, 6>(9, 9) = I_6x6;
// Update the uncertainty on the state (matrix F in [4]).
preintMeasCov_ = F * preintMeasCov_ * F.transpose();
// propagate uncertainty
// TODO(frank): use noiseModel routine so we can have arbitrary noise models.
const Matrix3& aCov = p().accelerometerCovariance;
const Matrix3& wCov = p().gyroscopeCovariance;
const Matrix3& iCov = p().integrationCovariance;
const Matrix6& bInitCov = p().biasAccOmegaInt;
// first order uncertainty propagation
// Optimized matrix multiplication (1/dt) * G * measurementCovariance *
// G.transpose()
// Optimized matrix mult: (1/dt) * G * measurementCovariance * G.transpose()
Eigen::Matrix<double, 15, 15> G_measCov_Gt;
G_measCov_Gt.setZero(15, 15);
const Matrix3& bInitCov11 = bInitCov.block<3, 3>(0, 0) / dt;
const Matrix3& bInitCov12 = bInitCov.block<3, 3>(0, 3) / dt;
const Matrix3& bInitCov21 = bInitCov.block<3, 3>(3, 0) / dt;
const Matrix3& bInitCov22 = bInitCov.block<3, 3>(3, 3) / dt;
// BLOCK DIAGONAL TERMS
D_t_t(&G_measCov_Gt) = dt * iCov;
D_v_v(&G_measCov_Gt) = (1 / dt) * vel_H_biasAcc
* (aCov + p().biasAccOmegaInt.block<3, 3>(0, 0))
* (vel_H_biasAcc.transpose());
D_R_R(&G_measCov_Gt) = (1 / dt) * theta_H_biasOmega
* (wCov + p().biasAccOmegaInt.block<3, 3>(3, 3))
* (theta_H_biasOmega.transpose());
D_R_R(&G_measCov_Gt) =
(theta_H_biasOmega * (wCov / dt) * theta_H_biasOmega.transpose()) //
+
(theta_H_biasOmegaInit * bInitCov22 * theta_H_biasOmegaInit.transpose());
D_t_t(&G_measCov_Gt) =
(pos_H_biasAcc * (aCov / dt) * pos_H_biasAcc.transpose()) //
+ (pos_H_biasAccInit * bInitCov11 * pos_H_biasAccInit.transpose()) //
+ (dt * iCov);
D_v_v(&G_measCov_Gt) =
(vel_H_biasAcc * (aCov / dt) * vel_H_biasAcc.transpose()) //
+ (vel_H_biasAccInit * bInitCov11 * vel_H_biasAccInit.transpose());
D_a_a(&G_measCov_Gt) = dt * p().biasAccCovariance;
D_g_g(&G_measCov_Gt) = dt * p().biasOmegaCovariance;
// OFF BLOCK DIAGONAL TERMS
Matrix3 temp = vel_H_biasAcc * p().biasAccOmegaInt.block<3, 3>(3, 0)
* theta_H_biasOmega.transpose();
D_v_R(&G_measCov_Gt) = temp;
D_R_v(&G_measCov_Gt) = temp.transpose();
preintMeasCov_ = F * preintMeasCov_ * F.transpose() + G_measCov_Gt;
D_R_t(&G_measCov_Gt) =
theta_H_biasOmegaInit * bInitCov21 * pos_H_biasAccInit.transpose();
D_R_v(&G_measCov_Gt) =
theta_H_biasOmegaInit * bInitCov21 * vel_H_biasAccInit.transpose();
D_t_R(&G_measCov_Gt) =
pos_H_biasAccInit * bInitCov12 * theta_H_biasOmegaInit.transpose();
D_t_v(&G_measCov_Gt) =
(pos_H_biasAcc * (aCov / dt) * vel_H_biasAcc.transpose()) +
(pos_H_biasAccInit * bInitCov11 * vel_H_biasAccInit.transpose());
D_v_R(&G_measCov_Gt) =
vel_H_biasAccInit * bInitCov12 * theta_H_biasOmegaInit.transpose();
D_v_t(&G_measCov_Gt) =
(vel_H_biasAcc * (aCov / dt) * pos_H_biasAcc.transpose()) +
(vel_H_biasAccInit * bInitCov11 * pos_H_biasAccInit.transpose());
preintMeasCov_.noalias() += G_measCov_Gt;
}
//------------------------------------------------------------------------------
@ -253,6 +289,5 @@ std::ostream& operator<<(std::ostream& os, const CombinedImuFactor& f) {
os << " noise model sigmas: " << f.noiseModel_->sigmas().transpose();
return os;
}
}
/// namespace gtsam
} // namespace gtsam

View File

@ -51,6 +51,7 @@ typedef ManifoldPreintegration PreintegrationType;
* TRO, 28(1):61-76, 2012.
* [3] L. Carlone, S. Williams, R. Roberts, "Preintegrated IMU factor:
* Computation of the Jacobian Matrices", Tech. Report, 2013.
* Available in this repo as "PreintegratedIMUJacobians.pdf".
* [4] C. Forster, L. Carlone, F. Dellaert, D. Scaramuzza, IMU Preintegration on
* Manifold for Efficient Visual-Inertial Maximum-a-Posteriori Estimation,
* Robotics: Science and Systems (RSS), 2015.
@ -61,7 +62,7 @@ typedef ManifoldPreintegration PreintegrationType;
struct GTSAM_EXPORT PreintegrationCombinedParams : PreintegrationParams {
Matrix3 biasAccCovariance; ///< continuous-time "Covariance" describing accelerometer bias random walk
Matrix3 biasOmegaCovariance; ///< continuous-time "Covariance" describing gyroscope bias random walk
Matrix6 biasAccOmegaInt; ///< covariance of bias used for pre-integration
Matrix6 biasAccOmegaInt; ///< covariance of bias used as initial estimate.
/// Default constructor makes uninitialized params struct.
/// Used for serialization.
@ -92,11 +93,11 @@ struct GTSAM_EXPORT PreintegrationCombinedParams : PreintegrationParams {
void setBiasAccCovariance(const Matrix3& cov) { biasAccCovariance=cov; }
void setBiasOmegaCovariance(const Matrix3& cov) { biasOmegaCovariance=cov; }
void setBiasAccOmegaInt(const Matrix6& cov) { biasAccOmegaInt=cov; }
void setBiasAccOmegaInit(const Matrix6& cov) { biasAccOmegaInt=cov; }
const Matrix3& getBiasAccCovariance() const { return biasAccCovariance; }
const Matrix3& getBiasOmegaCovariance() const { return biasOmegaCovariance; }
const Matrix6& getBiasAccOmegaInt() const { return biasAccOmegaInt; }
const Matrix6& getBiasAccOmegaInit() const { return biasAccOmegaInt; }
private:

View File

@ -105,7 +105,7 @@ public:
/// @{
/** identity for group operation */
static ConstantBias identity() {
static ConstantBias Identity() {
return ConstantBias();
}

View File

@ -59,7 +59,7 @@ void PreintegratedImuMeasurements::integrateMeasurement(
// Update preintegrated measurements (also get Jacobian)
Matrix9 A; // overall Jacobian wrt preintegrated measurements (df/dx)
Matrix93 B, C;
Matrix93 B, C; // Jacobian of state wrpt accel bias and omega bias respectively.
PreintegrationType::update(measuredAcc, measuredOmega, dt, &A, &B, &C);
// first order covariance propagation:
@ -73,11 +73,13 @@ void PreintegratedImuMeasurements::integrateMeasurement(
const Matrix3& iCov = p().integrationCovariance;
// (1/dt) allows to pass from continuous time noise to discrete time noise
// Update the uncertainty on the state (matrix A in [4]).
preintMeasCov_ = A * preintMeasCov_ * A.transpose();
// These 2 updates account for uncertainty on the IMU measurement (matrix B in [4]).
preintMeasCov_.noalias() += B * (aCov / dt) * B.transpose();
preintMeasCov_.noalias() += C * (wCov / dt) * C.transpose();
// NOTE(frank): (Gi*dt)*(C/dt)*(Gi'*dt), with Gi << Z_3x3, I_3x3, Z_3x3
// NOTE(frank): (Gi*dt)*(C/dt)*(Gi'*dt), with Gi << Z_3x3, I_3x3, Z_3x3 (9x3 matrix)
preintMeasCov_.block<3, 3>(3, 3).noalias() += iCov * dt;
}

View File

@ -53,6 +53,7 @@ typedef ManifoldPreintegration PreintegrationType;
* TRO, 28(1):61-76, 2012.
* [3] L. Carlone, S. Williams, R. Roberts, "Preintegrated IMU factor:
* Computation of the Jacobian Matrices", Tech. Report, 2013.
* Available in this repo as "PreintegratedIMUJacobians.pdf".
* [4] C. Forster, L. Carlone, F. Dellaert, D. Scaramuzza, "IMU Preintegration on
* Manifold for Efficient Visual-Inertial Maximum-a-Posteriori Estimation",
* Robotics: Science and Systems (RSS), 2015.

View File

@ -157,9 +157,9 @@ Vector9 PreintegrationBase::computeError(const NavState& state_i,
state_j.localCoordinates(predictedState_j, H2 ? &D_error_state_j : 0,
H1 || H3 ? &D_error_predict : 0);
if (H1) *H1 << D_error_predict* D_predict_state_i;
if (H1) *H1 << D_error_predict * D_predict_state_i;
if (H2) *H2 << D_error_state_j;
if (H3) *H3 << D_error_predict* D_predict_bias_i;
if (H3) *H3 << D_error_predict * D_predict_bias_i;
return error;
}

View File

@ -15,8 +15,8 @@
* @author Frank Dellaert
*/
#include <gtsam/navigation/ScenarioRunner.h>
#include <gtsam/base/timing.h>
#include <gtsam/navigation/ScenarioRunner.h>
#include <boost/assign.hpp>
#include <cmath>
@ -105,4 +105,62 @@ Matrix6 ScenarioRunner::estimateNoiseCovariance(size_t N) const {
return Q / (N - 1);
}
PreintegratedCombinedMeasurements CombinedScenarioRunner::integrate(
double T, const Bias& estimatedBias, bool corrupted) const {
gttic_(integrate);
PreintegratedCombinedMeasurements pim(p_, estimatedBias);
const double dt = imuSampleTime();
const size_t nrSteps = T / dt;
double t = 0;
for (size_t k = 0; k < nrSteps; k++, t += dt) {
Vector3 measuredOmega =
corrupted ? measuredAngularVelocity(t) : actualAngularVelocity(t);
Vector3 measuredAcc =
corrupted ? measuredSpecificForce(t) : actualSpecificForce(t);
pim.integrateMeasurement(measuredAcc, measuredOmega, dt);
}
return pim;
}
NavState CombinedScenarioRunner::predict(
const PreintegratedCombinedMeasurements& pim,
const Bias& estimatedBias) const {
const NavState state_i(scenario().pose(0), scenario().velocity_n(0));
return pim.predict(state_i, estimatedBias);
}
Eigen::Matrix<double, 15, 15> CombinedScenarioRunner::estimateCovariance(
double T, size_t N, const Bias& estimatedBias) const {
gttic_(estimateCovariance);
// Get predict prediction from ground truth measurements
NavState prediction = predict(integrate(T));
// Sample !
Matrix samples(15, N);
Vector15 sum = Vector15::Zero();
for (size_t i = 0; i < N; i++) {
auto pim = integrate(T, estimatedBias, true);
NavState sampled = predict(pim);
Vector15 xi = Vector15::Zero();
xi << sampled.localCoordinates(prediction),
(estimatedBias_.vector() - estimatedBias.vector());
samples.col(i) = xi;
sum += xi;
}
// Compute MC covariance
Vector15 sampleMean = sum / N;
Eigen::Matrix<double, 15, 15> Q;
Q.setZero();
for (size_t i = 0; i < N; i++) {
Vector15 xi = samples.col(i) - sampleMean;
Q += xi * xi.transpose();
}
return Q / (N - 1);
}
} // namespace gtsam

View File

@ -16,9 +16,10 @@
*/
#pragma once
#include <gtsam/linear/Sampler.h>
#include <gtsam/navigation/CombinedImuFactor.h>
#include <gtsam/navigation/ImuFactor.h>
#include <gtsam/navigation/Scenario.h>
#include <gtsam/linear/Sampler.h>
namespace gtsam {
@ -66,10 +67,10 @@ class GTSAM_EXPORT ScenarioRunner {
// also, uses g=10 for easy debugging
const Vector3& gravity_n() const { return p_->n_gravity; }
const Scenario& scenario() const { return scenario_; }
// A gyro simply measures angular velocity in body frame
Vector3 actualAngularVelocity(double t) const {
return scenario_.omega_b(t);
}
Vector3 actualAngularVelocity(double t) const { return scenario_.omega_b(t); }
// An accelerometer measures acceleration in body, but not gravity
Vector3 actualSpecificForce(double t) const {
@ -106,4 +107,39 @@ class GTSAM_EXPORT ScenarioRunner {
Matrix6 estimateNoiseCovariance(size_t N = 1000) const;
};
/*
* Simple class to test navigation scenarios with CombinedImuMeasurements.
* Takes a trajectory scenario as input, and can generate IMU measurements
*/
class GTSAM_EXPORT CombinedScenarioRunner : public ScenarioRunner {
public:
typedef boost::shared_ptr<PreintegrationCombinedParams> SharedParams;
private:
const SharedParams p_;
const Bias estimatedBias_;
public:
CombinedScenarioRunner(const Scenario& scenario, const SharedParams& p,
double imuSampleTime = 1.0 / 100.0,
const Bias& bias = Bias())
: ScenarioRunner(scenario, static_cast<ScenarioRunner::SharedParams>(p),
imuSampleTime, bias),
p_(p),
estimatedBias_(bias) {}
/// Integrate measurements for T seconds into a PIM
PreintegratedCombinedMeasurements integrate(
double T, const Bias& estimatedBias = Bias(),
bool corrupted = false) const;
/// Predict predict given a PIM
NavState predict(const PreintegratedCombinedMeasurements& pim,
const Bias& estimatedBias = Bias()) const;
/// Compute a Monte Carlo estimate of the predict covariance using N samples
Eigen::Matrix<double, 15, 15> estimateCovariance(
double T, size_t N = 1000, const Bias& estimatedBias = Bias()) const;
};
} // namespace gtsam

View File

@ -17,7 +17,7 @@ class ConstantBias {
bool equals(const gtsam::imuBias::ConstantBias& expected, double tol) const;
// Group
static gtsam::imuBias::ConstantBias identity();
static gtsam::imuBias::ConstantBias Identity();
// Operator Overloads
gtsam::imuBias::ConstantBias operator-() const;
@ -165,11 +165,11 @@ virtual class PreintegrationCombinedParams : gtsam::PreintegrationParams {
void setBiasAccCovariance(Matrix cov);
void setBiasOmegaCovariance(Matrix cov);
void setBiasAccOmegaInt(Matrix cov);
void setBiasAccOmegaInit(Matrix cov);
Matrix getBiasAccCovariance() const ;
Matrix getBiasOmegaCovariance() const ;
Matrix getBiasAccOmegaInt() const;
Matrix getBiasAccOmegaInit() const;
};

View File

@ -16,18 +16,19 @@
* @author Frank Dellaert
* @author Richard Roberts
* @author Stephen Williams
* @author Varun Agrawal
*/
#include <gtsam/navigation/ImuFactor.h>
#include <gtsam/navigation/CombinedImuFactor.h>
#include <gtsam/navigation/ImuBias.h>
#include <gtsam/geometry/Pose3.h>
#include <gtsam/nonlinear/Values.h>
#include <gtsam/inference/Symbol.h>
#include <CppUnitLite/TestHarness.h>
#include <gtsam/base/TestableAssertions.h>
#include <gtsam/base/numericalDerivative.h>
#include <CppUnitLite/TestHarness.h>
#include <gtsam/geometry/Pose3.h>
#include <gtsam/inference/Symbol.h>
#include <gtsam/navigation/CombinedImuFactor.h>
#include <gtsam/navigation/ImuBias.h>
#include <gtsam/navigation/ImuFactor.h>
#include <gtsam/navigation/ScenarioRunner.h>
#include <gtsam/nonlinear/Values.h>
#include <list>
@ -40,12 +41,15 @@ static boost::shared_ptr<PreintegratedCombinedMeasurements::Params> Params() {
p->gyroscopeCovariance = kGyroSigma * kGyroSigma * I_3x3;
p->accelerometerCovariance = kAccelSigma * kAccelSigma * I_3x3;
p->integrationCovariance = 0.0001 * I_3x3;
p->biasAccCovariance = Z_3x3;
p->biasOmegaCovariance = Z_3x3;
p->biasAccOmegaInt = Z_6x6;
return p;
}
}
} // namespace testing
/* ************************************************************************* */
TEST( CombinedImuFactor, PreintegratedMeasurements ) {
TEST(CombinedImuFactor, PreintegratedMeasurements ) {
// Linearization point
Bias bias(Vector3(0, 0, 0), Vector3(0, 0, 0)); ///< Current estimate of acceleration and angular rate biases
@ -71,8 +75,9 @@ TEST( CombinedImuFactor, PreintegratedMeasurements ) {
DOUBLES_EQUAL(expected1.deltaTij(), actual1.deltaTij(), tol);
}
/* ************************************************************************* */
TEST( CombinedImuFactor, ErrorWithBiases ) {
TEST(CombinedImuFactor, ErrorWithBiases ) {
Bias bias(Vector3(0.2, 0, 0), Vector3(0, 0, 0.3)); // Biases (acc, rot)
Bias bias2(Vector3(0.2, 0.2, 0), Vector3(1, 0, 0.3)); // Biases (acc, rot)
Pose3 x1(Rot3::Expmap(Vector3(0, 0, M_PI / 4.0)), Point3(5.0, 1.0, -50.0));
@ -203,6 +208,114 @@ TEST(CombinedImuFactor, PredictRotation) {
EXPECT(assert_equal(expectedPose, actual.pose(), tol));
}
/* ************************************************************************* */
// Testing covariance to check if all the jacobians are accounted for.
TEST(CombinedImuFactor, CheckCovariance) {
auto params = PreintegrationCombinedParams::MakeSharedU(9.81);
params->setAccelerometerCovariance(pow(0.01, 2) * I_3x3);
params->setGyroscopeCovariance(pow(1.75e-4, 2) * I_3x3);
params->setIntegrationCovariance(pow(0.0, 2) * I_3x3);
params->setOmegaCoriolis(Vector3::Zero());
imuBias::ConstantBias currentBias;
PreintegratedCombinedMeasurements actual(params, currentBias);
// Measurements
Vector3 measuredAcc(0.1577, -0.8251, 9.6111);
Vector3 measuredOmega(-0.0210, 0.0311, 0.0145);
double deltaT = 0.01;
actual.integrateMeasurement(measuredAcc, measuredOmega, deltaT);
Eigen::Matrix<double, 15, 15> expected;
expected << 0.01, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, //
0, 0.01, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, //
0, 0, 0.01, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, //
0, 0, 0, 2.50025e-07, 0, 0, 5.0005e-05, 0, 0, 0, 0, 0, 0, 0, 0, //
0, 0, 0, 0, 2.50025e-07, 0, 0, 5.0005e-05, 0, 0, 0, 0, 0, 0, 0, //
0, 0, 0, 0, 0, 2.50025e-07, 0, 0, 5.0005e-05, 0, 0, 0, 0, 0, 0, //
0, 0, 0, 5.0005e-05, 0, 0, 0.010001, 0, 0, 0, 0, 0, 0, 0, 0, //
0, 0, 0, 0, 5.0005e-05, 0, 0, 0.010001, 0, 0, 0, 0, 0, 0, 0, //
0, 0, 0, 0, 0, 5.0005e-05, 0, 0, 0.010001, 0, 0, 0, 0, 0, 0, //
0, 0, 0, 0, 0, 0, 0, 0, 0, 0.01, 0, 0, 0, 0, 0, //
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.01, 0, 0, 0, 0, //
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.01, 0, 0, 0, //
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.01, 0, 0, //
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.01, 0, //
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.01;
// regression
EXPECT(assert_equal(expected, actual.preintMeasCov()));
}
// Test that the covariance values for the ImuFactor and the CombinedImuFactor
// (top-left 9x9) are the same
TEST(CombinedImuFactor, SameCovariance) {
// IMU measurements and time delta
Vector3 accMeas(0.1577, -0.8251, 9.6111);
Vector3 omegaMeas(-0.0210, 0.0311, 0.0145);
double deltaT = 0.01;
// Assume zero bias
imuBias::ConstantBias currentBias;
// Define params for ImuFactor
auto params = PreintegrationParams::MakeSharedU();
params->setAccelerometerCovariance(pow(0.01, 2) * I_3x3);
params->setGyroscopeCovariance(pow(1.75e-4, 2) * I_3x3);
params->setIntegrationCovariance(pow(0, 2) * I_3x3);
params->setOmegaCoriolis(Vector3::Zero());
// The IMU preintegration object for ImuFactor
PreintegratedImuMeasurements pim(params, currentBias);
pim.integrateMeasurement(accMeas, omegaMeas, deltaT);
// Define params for CombinedImuFactor
auto combined_params = PreintegrationCombinedParams::MakeSharedU();
combined_params->setAccelerometerCovariance(pow(0.01, 2) * I_3x3);
combined_params->setGyroscopeCovariance(pow(1.75e-4, 2) * I_3x3);
// Set bias integration covariance explicitly to zero
combined_params->setIntegrationCovariance(Z_3x3);
combined_params->setOmegaCoriolis(Z_3x1);
// Set bias initial covariance explicitly to zero
combined_params->setBiasAccOmegaInit(Z_6x6);
// The IMU preintegration object for CombinedImuFactor
PreintegratedCombinedMeasurements cpim(combined_params, currentBias);
cpim.integrateMeasurement(accMeas, omegaMeas, deltaT);
// Assert if the noise covariance
EXPECT(assert_equal(pim.preintMeasCov(),
cpim.preintMeasCov().block(0, 0, 9, 9)));
}
/* ************************************************************************* */
TEST(CombinedImuFactor, Accelerating) {
const double a = 0.2, v = 50;
// Set up body pointing towards y axis, and start at 10,20,0 with velocity
// going in X The body itself has Z axis pointing down
const Rot3 nRb(Point3(0, 1, 0), Point3(1, 0, 0), Point3(0, 0, -1));
const Point3 initial_position(10, 20, 0);
const Vector3 initial_velocity(v, 0, 0);
const AcceleratingScenario scenario(nRb, initial_position, initial_velocity,
Vector3(a, 0, 0));
const double T = 3.0; // seconds
CombinedScenarioRunner runner(scenario, testing::Params(), T / 10);
PreintegratedCombinedMeasurements pim = runner.integrate(T);
EXPECT(assert_equal(scenario.pose(T), runner.predict(pim).pose(), 1e-9));
auto estimatedCov = runner.estimateCovariance(T, 100);
Eigen::Matrix<double, 15, 15> expected = pim.preintMeasCov();
EXPECT(assert_equal(estimatedCov, expected, 0.1));
}
/* ************************************************************************* */
int main() {
TestResult tr;

View File

@ -122,7 +122,7 @@ class Class : public Point3 {
enum {dimension = 3};
using Point3::Point3;
const Vector3& vector() const { return *this; }
inline static Class identity() { return Class(0,0,0); }
inline static Class Identity() { return Class(0,0,0); }
double norm(OptionalJacobian<1,3> H = boost::none) const {
return norm3(*this, H);
}
@ -285,7 +285,7 @@ TEST(Expression, compose2) {
// Test compose with one arguments referring to constant rotation.
TEST(Expression, compose3) {
// Create expression
Rot3_ R1(Rot3::identity()), R2(3);
Rot3_ R1(Rot3::Identity()), R2(3);
Rot3_ R3 = R1 * R2;
// Check keys

View File

@ -217,7 +217,7 @@ TEST(OrientedPlane3Factor, Issue561Simplified) {
// Setup prior factors
// Note: If x0 is too far away from the origin (e.g. x=100) this test can fail.
Pose3 x0(Rot3::identity(), Vector3(10, -1, 1));
Pose3 x0(Rot3::Identity(), Vector3(10, -1, 1));
auto x0_noise = noiseModel::Isotropic::Sigma(6, 0.01);
graph.addPrior<Pose3>(X(0), x0, x0_noise);
@ -241,7 +241,7 @@ TEST(OrientedPlane3Factor, Issue561Simplified) {
// Initial values
// Just offset the initial pose by 1m. This is what we are trying to optimize.
Values initialEstimate;
Pose3 x0_initial = x0.compose(Pose3(Rot3::identity(), Vector3(1,0,0)));
Pose3 x0_initial = x0.compose(Pose3(Rot3::Identity(), Vector3(1,0,0)));
initialEstimate.insert(P(1), p1);
initialEstimate.insert(P(2), p2);
initialEstimate.insert(X(0), x0_initial);

View File

@ -69,7 +69,7 @@ SmartProjectionParams params(
TEST(SmartProjectionRigFactor, Constructor) {
using namespace vanillaRig;
boost::shared_ptr<Cameras> cameraRig(new Cameras());
cameraRig->push_back(Camera(Pose3::identity(), sharedK));
cameraRig->push_back(Camera(Pose3(), sharedK));
SmartRigFactor::shared_ptr factor1(
new SmartRigFactor(model, cameraRig, params));
}
@ -89,7 +89,7 @@ TEST(SmartProjectionRigFactor, Constructor2) {
TEST(SmartProjectionRigFactor, Constructor3) {
using namespace vanillaRig;
boost::shared_ptr<Cameras> cameraRig(new Cameras());
cameraRig->push_back(Camera(Pose3::identity(), sharedK));
cameraRig->push_back(Camera(Pose3(), sharedK));
SmartRigFactor::shared_ptr factor1(
new SmartRigFactor(model, cameraRig, params));
factor1->add(measurement1, x1, cameraId1);
@ -99,7 +99,7 @@ TEST(SmartProjectionRigFactor, Constructor3) {
TEST(SmartProjectionRigFactor, Constructor4) {
using namespace vanillaRig;
boost::shared_ptr<Cameras> cameraRig(new Cameras());
cameraRig->push_back(Camera(Pose3::identity(), sharedK));
cameraRig->push_back(Camera(Pose3(), sharedK));
SmartProjectionParams params2(
gtsam::HESSIAN,
gtsam::ZERO_ON_DEGENERACY); // only config that works with rig factors
@ -112,7 +112,7 @@ TEST(SmartProjectionRigFactor, Constructor4) {
TEST(SmartProjectionRigFactor, Equals) {
using namespace vanillaRig;
boost::shared_ptr<Cameras> cameraRig(new Cameras()); // single camera in the rig
cameraRig->push_back(Camera(Pose3::identity(), sharedK));
cameraRig->push_back(Camera(Pose3(), sharedK));
SmartRigFactor::shared_ptr factor1(
new SmartRigFactor(model, cameraRig, params));
@ -140,7 +140,7 @@ TEST(SmartProjectionRigFactor, noiseless) {
Point2 level_uv_right = level_camera_right.project(landmark1);
boost::shared_ptr<Cameras> cameraRig(new Cameras()); // single camera in the rig
cameraRig->push_back(Camera(Pose3::identity(), sharedK));
cameraRig->push_back(Camera(Pose3(), sharedK));
SmartRigFactor factor(model, cameraRig, params);
factor.add(level_uv, x1); // both taken from the same camera
@ -197,7 +197,7 @@ TEST(SmartProjectionRigFactor, noisy) {
using namespace vanillaRig;
boost::shared_ptr<Cameras> cameraRig(new Cameras()); // single camera in the rig
cameraRig->push_back(Camera(Pose3::identity(), sharedK));
cameraRig->push_back(Camera(Pose3(), sharedK));
// Project two landmarks into two cameras
Point2 pixelError(0.2, 0.2);
@ -323,7 +323,7 @@ TEST(SmartProjectionRigFactor, smartFactorWithMultipleCameras) {
Pose3(Rot3::Ypr(-M_PI / 2, 0., -M_PI / 2), Point3(1, 1, 1));
Pose3 body_T_sensor2 =
Pose3(Rot3::Ypr(-M_PI / 5, 0., -M_PI / 2), Point3(0, 0, 1));
Pose3 body_T_sensor3 = Pose3::identity();
Pose3 body_T_sensor3 = Pose3();
boost::shared_ptr<Cameras> cameraRig(new Cameras()); // single camera in the rig
cameraRig->push_back(Camera(body_T_sensor1, sharedK));
@ -407,7 +407,7 @@ TEST(SmartProjectionRigFactor, 3poses_smart_projection_factor) {
Point2Vector measurements_cam1, measurements_cam2, measurements_cam3;
boost::shared_ptr<Cameras> cameraRig(new Cameras()); // single camera in the rig
cameraRig->push_back(Camera(Pose3::identity(), sharedK2));
cameraRig->push_back(Camera(Pose3(), sharedK2));
// Project three landmarks into three cameras
projectToMultipleCameras(cam1, cam2, cam3, landmark1, measurements_cam1);
@ -495,7 +495,7 @@ TEST(SmartProjectionRigFactor, Factors) {
FastVector<size_t> cameraIds{0, 0};
boost::shared_ptr<Cameras> cameraRig(new Cameras()); // single camera in the rig
cameraRig->push_back(Camera(Pose3::identity(), sharedK));
cameraRig->push_back(Camera(Pose3(), sharedK));
SmartRigFactor::shared_ptr smartFactor1 = boost::make_shared<SmartRigFactor>(
model, cameraRig, params);
@ -578,7 +578,7 @@ TEST(SmartProjectionRigFactor, 3poses_iterative_smart_projection_factor) {
// create smart factor
boost::shared_ptr<Cameras> cameraRig(new Cameras()); // single camera in the rig
cameraRig->push_back(Camera(Pose3::identity(), sharedK));
cameraRig->push_back(Camera(Pose3(), sharedK));
FastVector<size_t> cameraIds{0, 0, 0};
SmartRigFactor::shared_ptr smartFactor1(
new SmartRigFactor(model, cameraRig, params));
@ -646,7 +646,7 @@ TEST(SmartProjectionRigFactor, landmarkDistance) {
params.setEnableEPI(false);
boost::shared_ptr<Cameras> cameraRig(new Cameras()); // single camera in the rig
cameraRig->push_back(Camera(Pose3::identity(), sharedK));
cameraRig->push_back(Camera(Pose3(), sharedK));
FastVector<size_t> cameraIds{0, 0, 0};
SmartRigFactor::shared_ptr smartFactor1(
@ -717,7 +717,7 @@ TEST(SmartProjectionRigFactor, dynamicOutlierRejection) {
params.setDynamicOutlierRejectionThreshold(dynamicOutlierRejectionThreshold);
boost::shared_ptr<Cameras> cameraRig(new Cameras()); // single camera in the rig
cameraRig->push_back(Camera(Pose3::identity(), sharedK));
cameraRig->push_back(Camera(Pose3(), sharedK));
FastVector<size_t> cameraIds{0, 0, 0};
SmartRigFactor::shared_ptr smartFactor1(
@ -783,7 +783,7 @@ TEST(SmartProjectionRigFactor, CheckHessian) {
params.setDegeneracyMode(gtsam::ZERO_ON_DEGENERACY);
boost::shared_ptr<Cameras> cameraRig(new Cameras()); // single camera in the rig
cameraRig->push_back(Camera(Pose3::identity(), sharedK));
cameraRig->push_back(Camera(Pose3(), sharedK));
FastVector<size_t> cameraIds{0, 0, 0};
SmartRigFactor::shared_ptr smartFactor1(
@ -859,7 +859,7 @@ TEST(SmartProjectionRigFactor, Hessian) {
measurements_cam1.push_back(cam2_uv1);
boost::shared_ptr<Cameras> cameraRig(new Cameras()); // single camera in the rig
cameraRig->push_back(Camera(Pose3::identity(), sharedK2));
cameraRig->push_back(Camera(Pose3(), sharedK2));
FastVector<size_t> cameraIds{0, 0};
SmartProjectionParams params(
@ -889,7 +889,7 @@ TEST(SmartProjectionRigFactor, Hessian) {
TEST(SmartProjectionRigFactor, ConstructorWithCal3Bundler) {
using namespace bundlerPose;
boost::shared_ptr<Cameras> cameraRig(new Cameras()); // single camera in the rig
cameraRig->push_back(Camera(Pose3::identity(), sharedBundlerK));
cameraRig->push_back(Camera(Pose3(), sharedBundlerK));
SmartProjectionParams params;
params.setDegeneracyMode(gtsam::ZERO_ON_DEGENERACY);
@ -917,7 +917,7 @@ TEST(SmartProjectionRigFactor, Cal3Bundler) {
KeyVector views{x1, x2, x3};
boost::shared_ptr<Cameras> cameraRig(new Cameras()); // single camera in the rig
cameraRig->push_back(Camera(Pose3::identity(), sharedBundlerK));
cameraRig->push_back(Camera(Pose3(), sharedBundlerK));
FastVector<size_t> cameraIds{0, 0, 0};
SmartRigFactor::shared_ptr smartFactor1(
@ -988,7 +988,7 @@ TEST(SmartProjectionRigFactor,
KeyVector keys{x1, x2, x3, x1};
boost::shared_ptr<Cameras> cameraRig(new Cameras()); // single camera in the rig
cameraRig->push_back(Camera(Pose3::identity(), sharedK));
cameraRig->push_back(Camera(Pose3(), sharedK));
FastVector<size_t> cameraIds{0, 0, 0, 0};
SmartRigFactor::shared_ptr smartFactor1(
@ -1116,7 +1116,7 @@ TEST(SmartProjectionRigFactor, optimization_3poses_measurementsFromSamePose) {
// create inputs
KeyVector keys{x1, x2, x3};
boost::shared_ptr<Cameras> cameraRig(new Cameras()); // single camera in the rig
cameraRig->push_back(Camera(Pose3::identity(), sharedK));
cameraRig->push_back(Camera(Pose3(), sharedK));
FastVector<size_t> cameraIds{0, 0, 0};
FastVector<size_t> cameraIdsRedundant{0, 0, 0, 0};
@ -1195,11 +1195,11 @@ TEST(SmartProjectionRigFactor, timing) {
// Default cameras for simple derivatives
static Cal3_S2::shared_ptr sharedKSimple(new Cal3_S2(100, 100, 0, 0, 0));
Rot3 R = Rot3::identity();
Rot3 R = Rot3::Identity();
Pose3 pose1 = Pose3(R, Point3(0, 0, 0));
Pose3 pose2 = Pose3(R, Point3(1, 0, 0));
Camera cam1(pose1, sharedKSimple), cam2(pose2, sharedKSimple);
Pose3 body_P_sensorId = Pose3::identity();
Pose3 body_P_sensorId = Pose3();
boost::shared_ptr<Cameras> cameraRig(new Cameras()); // single camera in the rig
cameraRig->push_back(Camera(body_P_sensorId, sharedKSimple));
@ -1267,7 +1267,7 @@ TEST(SmartProjectionFactorP, optimization_3poses_sphericalCamera) {
keys.push_back(x3);
boost::shared_ptr<Cameras> cameraRig(new Cameras());
cameraRig->push_back(Camera(Pose3::identity(), emptyK));
cameraRig->push_back(Camera(Pose3(), emptyK));
SmartProjectionParams params(
gtsam::HESSIAN,
@ -1330,10 +1330,10 @@ TEST(SmartProjectionFactorP, optimization_3poses_sphericalCamera) {
/* *************************************************************************/
TEST(SmartProjectionFactorP, timing_sphericalCamera) {
// create common data
Rot3 R = Rot3::identity();
Rot3 R = Rot3::Identity();
Pose3 pose1 = Pose3(R, Point3(0, 0, 0));
Pose3 pose2 = Pose3(R, Point3(1, 0, 0));
Pose3 body_P_sensorId = Pose3::identity();
Pose3 body_P_sensorId = Pose3();
Point3 landmark1(0, 0, 10);
// create spherical data
@ -1423,7 +1423,7 @@ TEST(SmartProjectionFactorP, 2poses_rankTol) {
boost::shared_ptr<CameraSet<PinholePose<Cal3_S2>>> cameraRig(
new CameraSet<PinholePose<Cal3_S2>>()); // single camera in the rig
cameraRig->push_back(PinholePose<Cal3_S2>(Pose3::identity(), sharedK));
cameraRig->push_back(PinholePose<Cal3_S2>(Pose3(), sharedK));
SmartRigFactor::shared_ptr smartFactor1(
new SmartRigFactor(model, cameraRig, params));
@ -1461,7 +1461,7 @@ TEST(SmartProjectionFactorP, 2poses_rankTol) {
boost::shared_ptr<CameraSet<PinholePose<Cal3_S2>>> cameraRig(
new CameraSet<PinholePose<Cal3_S2>>()); // single camera in the rig
cameraRig->push_back(PinholePose<Cal3_S2>(Pose3::identity(), canonicalK));
cameraRig->push_back(PinholePose<Cal3_S2>(Pose3(), canonicalK));
SmartRigFactor::shared_ptr smartFactor1(
new SmartRigFactor(model, cameraRig, params));
@ -1498,7 +1498,7 @@ TEST(SmartProjectionFactorP, 2poses_rankTol) {
boost::shared_ptr<CameraSet<PinholePose<Cal3_S2>>> cameraRig(
new CameraSet<PinholePose<Cal3_S2>>()); // single camera in the rig
cameraRig->push_back(PinholePose<Cal3_S2>(Pose3::identity(), canonicalK));
cameraRig->push_back(PinholePose<Cal3_S2>(Pose3(), canonicalK));
SmartRigFactor::shared_ptr smartFactor1(
new SmartRigFactor(model, cameraRig, params));
@ -1537,7 +1537,7 @@ TEST(SmartProjectionFactorP, 2poses_sphericalCamera_rankTol) {
boost::shared_ptr<CameraSet<SphericalCamera>> cameraRig(
new CameraSet<SphericalCamera>()); // single camera in the rig
cameraRig->push_back(SphericalCamera(Pose3::identity(), emptyK));
cameraRig->push_back(SphericalCamera(Pose3(), emptyK));
// TRIANGULATION TEST WITH DEFAULT RANK TOL
{ // rankTol = 1 or 0.1 gives a degenerate point, which is undesirable for a

View File

@ -15,9 +15,9 @@ const Key x1 = 1, x2 = 2;
const double dt = 1.0;
PoseRTV origin,
pose1(Point3(0.5, 0.0, 0.0), Rot3::identity(), Velocity3(1.0, 0.0, 0.0)),
pose1(Point3(0.5, 0.0, 0.0), Rot3(), Velocity3(1.0, 0.0, 0.0)),
pose1a(Point3(0.5, 0.0, 0.0)),
pose2(Point3(1.5, 0.0, 0.0), Rot3::identity(), Velocity3(1.0, 0.0, 0.0));
pose2(Point3(1.5, 0.0, 0.0), Rot3(), Velocity3(1.0, 0.0, 0.0));
/* ************************************************************************* */
TEST( testVelocityConstraint, trapezoidal ) {

View File

@ -53,7 +53,7 @@ int main(int argc, char** argv){
normal_distribution<double> normalInliers(0.0, 0.05);
Values initial;
initial.insert(0, Pose3::identity()); // identity pose as initialization
initial.insert(0, Pose3()); // identity pose as initialization
// create ground truth pose
Vector6 poseGtVector;

View File

@ -129,8 +129,8 @@ int main(int argc, char* argv[]) {
// Pose prior - at identity
auto priorPoseNoise = noiseModel::Diagonal::Sigmas(
(Vector(6) << Vector3::Constant(0.1), Vector3::Constant(0.1)).finished());
graph.addPrior(X(1), Pose3::identity(), priorPoseNoise);
initialEstimate.insert(X(0), Pose3::identity());
graph.addPrior(X(1), Pose3::Identity(), priorPoseNoise);
initialEstimate.insert(X(0), Pose3::Identity());
// Bias prior
graph.addPrior(B(1), imu.priorImuBias,
@ -157,7 +157,7 @@ int main(int argc, char* argv[]) {
if (frame != lastFrame || in.eof()) {
cout << "Running iSAM for frame: " << lastFrame << "\n";
initialEstimate.insert(X(lastFrame), Pose3::identity());
initialEstimate.insert(X(lastFrame), Pose3::Identity());
initialEstimate.insert(V(lastFrame), Vector3(0, 0, 0));
initialEstimate.insert(B(lastFrame), imu.prevBias);

View File

@ -95,7 +95,7 @@ public:
/// @{
/// identity for group operation
static Pose3Upright identity() { return Pose3Upright(); }
static Pose3Upright Identity() { return Pose3Upright(); }
/// inverse transformation with derivatives
Pose3Upright inverse(boost::optional<Matrix&> H1=boost::none) const;

View File

@ -130,7 +130,7 @@ class Pose3Upright {
gtsam::Pose3Upright retract(Vector v) const;
Vector localCoordinates(const gtsam::Pose3Upright& p2) const;
static gtsam::Pose3Upright identity();
static gtsam::Pose3Upright Identity();
gtsam::Pose3Upright inverse() const;
gtsam::Pose3Upright compose(const gtsam::Pose3Upright& p2) const;
gtsam::Pose3Upright between(const gtsam::Pose3Upright& p2) const;

View File

@ -44,8 +44,8 @@ TEST(LocalOrientedPlane3Factor, lm_translation_error) {
// Init pose and prior. Pose Prior is needed since a single plane measurement
// does not fully constrain the pose
Pose3 init_pose = Pose3::identity();
Pose3 anchor_pose = Pose3::identity();
Pose3 init_pose = Pose3::Identity();
Pose3 anchor_pose = Pose3::Identity();
graph.addPrior(X(0), init_pose, noiseModel::Isotropic::Sigma(6, 0.001));
graph.addPrior(X(1), anchor_pose, noiseModel::Isotropic::Sigma(6, 0.001));
@ -89,7 +89,7 @@ TEST (LocalOrientedPlane3Factor, lm_rotation_error) {
// Init pose and prior. Pose Prior is needed since a single plane measurement
// does not fully constrain the pose
Pose3 init_pose = Pose3::identity();
Pose3 init_pose = Pose3::Identity();
graph.addPrior(X(0), init_pose, noiseModel::Isotropic::Sigma(6, 0.001));
// Add two landmark measurements, differing in angle
@ -180,8 +180,8 @@ TEST(LocalOrientedPlane3Factor, Issue561Simplified) {
NonlinearFactorGraph graph;
// Setup prior factors
Pose3 x0(Rot3::identity(), Vector3(100, 30, 10)); // the "sensor pose"
Pose3 x1(Rot3::identity(), Vector3(90, 40, 5) ); // the "anchor pose"
Pose3 x0(Rot3::Identity(), Vector3(100, 30, 10)); // the "sensor pose"
Pose3 x1(Rot3::Identity(), Vector3(90, 40, 5) ); // the "anchor pose"
auto x0_noise = noiseModel::Isotropic::Sigma(6, 0.01);
auto x1_noise = noiseModel::Isotropic::Sigma(6, 0.01);
@ -213,7 +213,7 @@ TEST(LocalOrientedPlane3Factor, Issue561Simplified) {
// Initial values
// Just offset the initial pose by 1m. This is what we are trying to optimize.
Values initialEstimate;
Pose3 x0_initial = x0.compose(Pose3(Rot3::identity(), Vector3(1, 0, 0)));
Pose3 x0_initial = x0.compose(Pose3(Rot3::Identity(), Vector3(1, 0, 0)));
initialEstimate.insert(P(1), p1_in_x1);
initialEstimate.insert(P(2), p2_in_x1);
initialEstimate.insert(X(0), x0_initial);

View File

@ -173,7 +173,7 @@ TEST(PartialPriorFactor, Constructors3) {
/* ************************************************************************* */
TEST(PartialPriorFactor, JacobianAtIdentity3) {
Key poseKey(1);
Pose3 measurement = Pose3::identity();
Pose3 measurement = Pose3::Identity();
SharedNoiseModel model = NM::Isotropic::Sigma(1, 0.25);
TestPartialPriorFactor3 factor(poseKey, kIndexTy, measurement.translation().y(), model);

View File

@ -16,7 +16,7 @@ using namespace gtsam::noiseModel;
/* ************************************************************************* */
// Verify zero error when there is no noise
TEST(PoseToPointFactor, errorNoiseless_2D) {
Pose2 pose = Pose2::identity();
Pose2 pose = Pose2::Identity();
Point2 point(1.0, 2.0);
Point2 noise(0.0, 0.0);
Point2 measured = point + noise;
@ -33,7 +33,7 @@ TEST(PoseToPointFactor, errorNoiseless_2D) {
/* ************************************************************************* */
// Verify expected error in test scenario
TEST(PoseToPointFactor, errorNoise_2D) {
Pose2 pose = Pose2::identity();
Pose2 pose = Pose2::Identity();
Point2 point(1.0, 2.0);
Point2 noise(-1.0, 0.5);
Point2 measured = point + noise;
@ -86,7 +86,7 @@ TEST(PoseToPointFactor, jacobian_2D) {
/* ************************************************************************* */
// Verify zero error when there is no noise
TEST(PoseToPointFactor, errorNoiseless_3D) {
Pose3 pose = Pose3::identity();
Pose3 pose = Pose3::Identity();
Point3 point(1.0, 2.0, 3.0);
Point3 noise(0.0, 0.0, 0.0);
Point3 measured = point + noise;
@ -103,7 +103,7 @@ TEST(PoseToPointFactor, errorNoiseless_3D) {
/* ************************************************************************* */
// Verify expected error in test scenario
TEST(PoseToPointFactor, errorNoise_3D) {
Pose3 pose = Pose3::identity();
Pose3 pose = Pose3::Identity();
Point3 point(1.0, 2.0, 3.0);
Point3 noise(-1.0, 0.5, 0.3);
Point3 measured = point + noise;

View File

@ -88,7 +88,7 @@ typedef SmartProjectionPoseFactorRollingShutter<PinholePose<Cal3_S2>>
TEST(SmartProjectionPoseFactorRollingShutter, Constructor) {
using namespace vanillaPoseRS;
boost::shared_ptr<Cameras> cameraRig(new Cameras());
cameraRig->push_back(Camera(Pose3::identity(), sharedK));
cameraRig->push_back(Camera(Pose3::Identity(), sharedK));
SmartFactorRS::shared_ptr factor1(
new SmartFactorRS(model, cameraRig, params));
}
@ -97,7 +97,7 @@ TEST(SmartProjectionPoseFactorRollingShutter, Constructor) {
TEST(SmartProjectionPoseFactorRollingShutter, Constructor2) {
using namespace vanillaPoseRS;
boost::shared_ptr<Cameras> cameraRig(new Cameras());
cameraRig->push_back(Camera(Pose3::identity(), sharedK));
cameraRig->push_back(Camera(Pose3::Identity(), sharedK));
params.setRankTolerance(rankTol);
SmartFactorRS factor1(model, cameraRig, params);
}
@ -106,7 +106,7 @@ TEST(SmartProjectionPoseFactorRollingShutter, Constructor2) {
TEST(SmartProjectionPoseFactorRollingShutter, add) {
using namespace vanillaPoseRS;
boost::shared_ptr<Cameras> cameraRig(new Cameras());
cameraRig->push_back(Camera(Pose3::identity(), sharedK));
cameraRig->push_back(Camera(Pose3::Identity(), sharedK));
SmartFactorRS::shared_ptr factor1(
new SmartFactorRS(model, cameraRig, params));
factor1->add(measurement1, x1, x2, interp_factor);
@ -230,7 +230,7 @@ TEST(SmartProjectionPoseFactorRollingShutter, noiselessErrorAndJacobians) {
// Project two landmarks into two cameras
Point2 level_uv = cam1.project(landmark1);
Point2 level_uv_right = cam2.project(landmark1);
Pose3 body_P_sensorId = Pose3::identity();
Pose3 body_P_sensorId = Pose3::Identity();
boost::shared_ptr<Cameras> cameraRig(new Cameras());
cameraRig->push_back(Camera(body_P_sensorId, sharedK));
@ -405,7 +405,7 @@ TEST(SmartProjectionPoseFactorRollingShutter, optimization_3poses) {
interp_factors.push_back(interp_factor3);
boost::shared_ptr<Cameras> cameraRig(new Cameras());
cameraRig->push_back(Camera(Pose3::identity(), sharedK));
cameraRig->push_back(Camera(Pose3::Identity(), sharedK));
SmartFactorRS::shared_ptr smartFactor1(
new SmartFactorRS(model, cameraRig, params));
@ -480,7 +480,7 @@ TEST(SmartProjectionPoseFactorRollingShutter, optimization_3poses_multiCam) {
boost::shared_ptr<Cameras> cameraRig(new Cameras());
cameraRig->push_back(Camera(body_P_sensor, sharedK));
cameraRig->push_back(Camera(Pose3::identity(), sharedK));
cameraRig->push_back(Camera(Pose3::Identity(), sharedK));
SmartFactorRS::shared_ptr smartFactor1(
new SmartFactorRS(model, cameraRig, params));
@ -633,11 +633,11 @@ TEST(SmartProjectionPoseFactorRollingShutter, hessian_simple_2poses) {
// Default cameras for simple derivatives
static Cal3_S2::shared_ptr sharedKSimple(new Cal3_S2(100, 100, 0, 0, 0));
Rot3 R = Rot3::identity();
Rot3 R = Rot3::Identity();
Pose3 pose1 = Pose3(R, Point3(0, 0, 0));
Pose3 pose2 = Pose3(R, Point3(1, 0, 0));
Camera cam1(pose1, sharedKSimple), cam2(pose2, sharedKSimple);
Pose3 body_P_sensorId = Pose3::identity();
Pose3 body_P_sensorId = Pose3::Identity();
// one landmarks 1m in front of camera
Point3 landmark1(0, 0, 10);
@ -747,7 +747,7 @@ TEST(SmartProjectionPoseFactorRollingShutter, optimization_3poses_EPI) {
params.setEnableEPI(true);
boost::shared_ptr<Cameras> cameraRig(new Cameras());
cameraRig->push_back(Camera(Pose3::identity(), sharedK));
cameraRig->push_back(Camera(Pose3::Identity(), sharedK));
SmartFactorRS smartFactor1(model, cameraRig, params);
smartFactor1.add(measurements_lmk1, key_pairs, interp_factors);
@ -816,7 +816,7 @@ TEST(SmartProjectionPoseFactorRollingShutter,
params.setEnableEPI(false);
boost::shared_ptr<Cameras> cameraRig(new Cameras());
cameraRig->push_back(Camera(Pose3::identity(), sharedK));
cameraRig->push_back(Camera(Pose3::Identity(), sharedK));
SmartFactorRS smartFactor1(model, cameraRig, params);
smartFactor1.add(measurements_lmk1, key_pairs, interp_factors);
@ -894,7 +894,7 @@ TEST(SmartProjectionPoseFactorRollingShutter,
params.setEnableEPI(false);
boost::shared_ptr<Cameras> cameraRig(new Cameras());
cameraRig->push_back(Camera(Pose3::identity(), sharedK));
cameraRig->push_back(Camera(Pose3::Identity(), sharedK));
SmartFactorRS::shared_ptr smartFactor1(
new SmartFactorRS(model, cameraRig, params));
@ -961,7 +961,7 @@ TEST(SmartProjectionPoseFactorRollingShutter,
interp_factors.push_back(interp_factor3);
boost::shared_ptr<Cameras> cameraRig(new Cameras());
cameraRig->push_back(Camera(Pose3::identity(), sharedK));
cameraRig->push_back(Camera(Pose3::Identity(), sharedK));
SmartFactorRS::shared_ptr smartFactor1(
new SmartFactorRS(model, cameraRig, params));
@ -1102,7 +1102,7 @@ TEST(SmartProjectionPoseFactorRollingShutter,
interp_factors.push_back(interp_factor1);
boost::shared_ptr<Cameras> cameraRig(new Cameras());
cameraRig->push_back(Camera(Pose3::identity(), sharedK));
cameraRig->push_back(Camera(Pose3::Identity(), sharedK));
SmartFactorRS::shared_ptr smartFactor1(
new SmartFactorRS(model, cameraRig, params));
@ -1261,7 +1261,7 @@ TEST(SmartProjectionPoseFactorRollingShutter,
interp_factors.at(0)); // we readd the first interp factor
boost::shared_ptr<Cameras> cameraRig(new Cameras());
cameraRig->push_back(Camera(Pose3::identity(), sharedK));
cameraRig->push_back(Camera(Pose3::Identity(), sharedK));
SmartFactorRS::shared_ptr smartFactor1(
new SmartFactorRS(model, cameraRig, params));
@ -1331,11 +1331,11 @@ TEST(SmartProjectionPoseFactorRollingShutter, timing) {
gtsam::HESSIAN,
gtsam::ZERO_ON_DEGENERACY); // only config that works with RS factors
Rot3 R = Rot3::identity();
Rot3 R = Rot3::Identity();
Pose3 pose1 = Pose3(R, Point3(0, 0, 0));
Pose3 pose2 = Pose3(R, Point3(1, 0, 0));
Camera cam1(pose1, sharedKSimple), cam2(pose2, sharedKSimple);
Pose3 body_P_sensorId = Pose3::identity();
Pose3 body_P_sensorId = Pose3::Identity();
// one landmarks 1m in front of camera
Point3 landmark1(0, 0, 10);
@ -1431,7 +1431,7 @@ TEST(SmartProjectionPoseFactorRollingShutter,
params.setRankTolerance(0.1);
boost::shared_ptr<Cameras> cameraRig(new Cameras());
cameraRig->push_back(Camera(Pose3::identity(), emptyK));
cameraRig->push_back(Camera(Pose3::Identity(), emptyK));
SmartFactorRS_spherical::shared_ptr smartFactor1(
new SmartFactorRS_spherical(model, cameraRig, params));

View File

@ -198,10 +198,10 @@ TEST(testISAM2SmartFactor, Stereo_Batch) {
// prior, for the first keyframe:
if (kf_id == 0) {
batch_graph.addPrior(X(kf_id), Pose3::identity(), priorPoseNoise);
batch_graph.addPrior(X(kf_id), Pose3::Identity(), priorPoseNoise);
}
batch_values.insert(X(kf_id), Pose3::identity());
batch_values.insert(X(kf_id), Pose3::Identity());
}
LevenbergMarquardtParams parameters;
@ -267,7 +267,7 @@ TEST(testISAM2SmartFactor, Stereo_iSAM2) {
// Storage of smart factors:
std::map<lm_id_t, SmartStereoProjectionPoseFactor::shared_ptr> smartFactors;
Pose3 lastKeyframePose = Pose3::identity();
Pose3 lastKeyframePose = Pose3::Identity();
// Run one timestep at once:
for (const auto &entries : dataset) {
@ -307,7 +307,7 @@ TEST(testISAM2SmartFactor, Stereo_iSAM2) {
// prior, for the first keyframe:
if (kf_id == 0) {
newFactors.addPrior(X(kf_id), Pose3::identity(), priorPoseNoise);
newFactors.addPrior(X(kf_id), Pose3::Identity(), priorPoseNoise);
}
// 2) Run iSAM2:

View File

@ -181,8 +181,8 @@ TEST_UNSAFE( SmartStereoProjectionFactorPP, noiseless_error_identityExtrinsics )
Values values;
values.insert(x1, w_Pose_cam1);
values.insert(x2, w_Pose_cam2);
values.insert(body_P_cam1_key, Pose3::identity());
values.insert(body_P_cam2_key, Pose3::identity());
values.insert(body_P_cam1_key, Pose3::Identity());
values.insert(body_P_cam2_key, Pose3::Identity());
SmartStereoProjectionFactorPP factor1(model);
factor1.add(cam1_uv, x1, body_P_cam1_key, K2);
@ -426,7 +426,7 @@ TEST( SmartStereoProjectionFactorPP, 3poses_optimization_multipleExtrinsics ) {
// Values
Pose3 body_Pose_cam1 = Pose3(Rot3::Ypr(-M_PI, 1., 0.1),Point3(0, 1, 0));
Pose3 body_Pose_cam2 = Pose3(Rot3::Ypr(-M_PI / 4, 0.1, 1.0),Point3(1, 1, 1));
Pose3 body_Pose_cam3 = Pose3::identity();
Pose3 body_Pose_cam3 = Pose3::Identity();
Pose3 w_Pose_body1 = w_Pose_cam1.compose(body_Pose_cam1.inverse());
Pose3 w_Pose_body2 = w_Pose_cam2.compose(body_Pose_cam2.inverse());
Pose3 w_Pose_body3 = w_Pose_cam3.compose(body_Pose_cam3.inverse());
@ -1147,7 +1147,7 @@ TEST( SmartStereoProjectionFactorPP, landmarkDistance ) {
graph.push_back(smartFactor3);
graph.addPrior(x1, pose1, noisePrior);
graph.addPrior(x2, pose2, noisePrior);
graph.addPrior(body_P_cam_key, Pose3::identity(), noisePrior);
graph.addPrior(body_P_cam_key, Pose3::Identity(), noisePrior);
// Pose3 noise_pose = Pose3(Rot3::Ypr(-M_PI/10, 0., -M_PI/10), Point3(0.5,0.1,0.3)); // noise from regular projection factor test below
Pose3 noise_pose = Pose3(Rot3::Ypr(-M_PI / 100, 0., -M_PI / 100),
@ -1156,7 +1156,7 @@ TEST( SmartStereoProjectionFactorPP, landmarkDistance ) {
values.insert(x1, pose1);
values.insert(x2, pose2);
values.insert(x3, pose3 * noise_pose);
values.insert(body_P_cam_key, Pose3::identity());
values.insert(body_P_cam_key, Pose3::Identity());
// All smart factors are disabled and pose should remain where it is
Values result;
@ -1245,7 +1245,7 @@ TEST( SmartStereoProjectionFactorPP, dynamicOutlierRejection ) {
values.insert(x1, pose1);
values.insert(x2, pose2);
values.insert(x3, pose3);
values.insert(body_P_cam_key, Pose3::identity());
values.insert(body_P_cam_key, Pose3::Identity());
EXPECT_DOUBLES_EQUAL(0, smartFactor1->error(values), 1e-9);
EXPECT_DOUBLES_EQUAL(0, smartFactor2->error(values), 1e-9);
@ -1267,7 +1267,7 @@ TEST( SmartStereoProjectionFactorPP, dynamicOutlierRejection ) {
Values result;
LevenbergMarquardtOptimizer optimizer(graph, values, lm_params);
result = optimizer.optimize();
EXPECT(assert_equal(Pose3::identity(), result.at<Pose3>(body_P_cam_key)));
EXPECT(assert_equal(Pose3::Identity(), result.at<Pose3>(body_P_cam_key)));
}
/* ************************************************************************* */

View File

@ -382,7 +382,7 @@ TEST(ExpressionFactor, compose2) {
TEST(ExpressionFactor, compose3) {
// Create expression
Rot3_ R1(Rot3::identity()), R2(3);
Rot3_ R1(Rot3::Identity()), R2(3);
Rot3_ R3 = R1 * R2;
// Create factor

View File

@ -139,7 +139,7 @@ TEST(Manifold, DefaultChart) {
Vector v3(3);
v3 << 1, 1, 1;
Rot3 I = Rot3::identity();
Rot3 I = Rot3::Identity();
Rot3 R = I.retract(v3);
//DefaultChart<Rot3> chart5;
EXPECT(assert_equal(v3, traits<Rot3>::Local(I, R)));

View File

@ -62,9 +62,9 @@ int main(int argc, char* argv[]) {
// Build graph
NonlinearFactorGraph graph;
// graph.add(NonlinearEquality<SOn>(0, SOn::identity(4)));
// graph.add(NonlinearEquality<SOn>(0, SOn::Identity(4)));
auto priorModel = noiseModel::Isotropic::Sigma(6, 10000);
graph.add(PriorFactor<SOn>(0, SOn::identity(4), priorModel));
graph.add(PriorFactor<SOn>(0, SOn::Identity(4), priorModel));
auto G = boost::make_shared<Matrix>(SOn::VectorizedGenerators(4));
for (const auto &m : measurements) {
const auto &keys = m.keys();
@ -92,7 +92,7 @@ int main(int argc, char* argv[]) {
for (size_t i = 0; i < 100; i++) {
gttic_(optimize);
Values initial;
initial.insert(0, SOn::identity(4));
initial.insert(0, SOn::Identity(4));
for (size_t j = 1; j < poses.size(); j++) {
initial.insert(j, SOn::Random(rng, 4));
}