Merge pull request #1270 from borglab/hybrid/hybrid-optimize
Linear HybridBayesNet optimizationrelease/4.3a0
commit
ef066a0747
|
@ -11,10 +11,13 @@
|
|||
* @brief A bayes net of Gaussian Conditionals indexed by discrete keys.
|
||||
* @author Fan Jiang
|
||||
* @author Varun Agrawal
|
||||
* @author Shangjie Xue
|
||||
* @date January 2022
|
||||
*/
|
||||
|
||||
#include <gtsam/hybrid/HybridBayesNet.h>
|
||||
#include <gtsam/hybrid/HybridValues.h>
|
||||
#include <gtsam/hybrid/HybridLookupDAG.h>
|
||||
|
||||
namespace gtsam {
|
||||
|
||||
|
@ -40,4 +43,10 @@ GaussianBayesNet HybridBayesNet::choose(
|
|||
return gbn;
|
||||
}
|
||||
|
||||
/* *******************************************************************************/
|
||||
HybridValues HybridBayesNet::optimize() const {
|
||||
auto dag = HybridLookupDAG::FromBayesNet(*this);
|
||||
return dag.argmax();
|
||||
}
|
||||
|
||||
} // namespace gtsam
|
||||
|
|
|
@ -18,6 +18,7 @@
|
|||
#pragma once
|
||||
|
||||
#include <gtsam/hybrid/HybridConditional.h>
|
||||
#include <gtsam/hybrid/HybridValues.h>
|
||||
#include <gtsam/inference/BayesNet.h>
|
||||
#include <gtsam/linear/GaussianBayesNet.h>
|
||||
|
||||
|
@ -61,6 +62,11 @@ class GTSAM_EXPORT HybridBayesNet : public BayesNet<HybridConditional> {
|
|||
* @return GaussianBayesNet
|
||||
*/
|
||||
GaussianBayesNet choose(const DiscreteValues &assignment) const;
|
||||
|
||||
/// Solve the HybridBayesNet by back-substitution.
|
||||
/// TODO(Shangjie) do we need to create a HybridGaussianBayesNet class, and
|
||||
/// put this method there?
|
||||
HybridValues optimize() const;
|
||||
};
|
||||
|
||||
} // namespace gtsam
|
||||
|
|
|
@ -0,0 +1,76 @@
|
|||
/* ----------------------------------------------------------------------------
|
||||
|
||||
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
|
||||
* Atlanta, Georgia 30332-0415
|
||||
* All Rights Reserved
|
||||
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
|
||||
|
||||
* See LICENSE for the license information
|
||||
|
||||
* -------------------------------------------------------------------------- */
|
||||
|
||||
/**
|
||||
* @file DiscreteLookupDAG.cpp
|
||||
* @date Aug, 2022
|
||||
* @author Shangjie Xue
|
||||
*/
|
||||
|
||||
#include <gtsam/discrete/DiscreteBayesNet.h>
|
||||
#include <gtsam/discrete/DiscreteLookupDAG.h>
|
||||
#include <gtsam/discrete/DiscreteValues.h>
|
||||
#include <gtsam/hybrid/HybridBayesNet.h>
|
||||
#include <gtsam/hybrid/HybridConditional.h>
|
||||
#include <gtsam/hybrid/HybridLookupDAG.h>
|
||||
#include <gtsam/hybrid/HybridValues.h>
|
||||
#include <gtsam/linear/VectorValues.h>
|
||||
|
||||
#include <string>
|
||||
#include <utility>
|
||||
|
||||
using std::pair;
|
||||
using std::vector;
|
||||
|
||||
namespace gtsam {
|
||||
|
||||
/* ************************************************************************** */
|
||||
void HybridLookupTable::argmaxInPlace(HybridValues* values) const {
|
||||
// For discrete conditional, uses argmaxInPlace() method in
|
||||
// DiscreteLookupTable.
|
||||
if (isDiscrete()) {
|
||||
boost::static_pointer_cast<DiscreteLookupTable>(inner_)->argmaxInPlace(
|
||||
&(values->discrete));
|
||||
} else if (isContinuous()) {
|
||||
// For Gaussian conditional, uses solve() method in GaussianConditional.
|
||||
values->continuous.insert(
|
||||
boost::static_pointer_cast<GaussianConditional>(inner_)->solve(
|
||||
values->continuous));
|
||||
} else if (isHybrid()) {
|
||||
// For hybrid conditional, since children should not contain discrete
|
||||
// variable, we can condition on the discrete variable in the parents and
|
||||
// solve the resulting GaussianConditional.
|
||||
auto conditional =
|
||||
boost::static_pointer_cast<GaussianMixture>(inner_)->conditionals()(
|
||||
values->discrete);
|
||||
values->continuous.insert(conditional->solve(values->continuous));
|
||||
}
|
||||
}
|
||||
|
||||
/* ************************************************************************** */
|
||||
HybridLookupDAG HybridLookupDAG::FromBayesNet(const HybridBayesNet& bayesNet) {
|
||||
HybridLookupDAG dag;
|
||||
for (auto&& conditional : bayesNet) {
|
||||
HybridLookupTable hlt(*conditional);
|
||||
dag.push_back(hlt);
|
||||
}
|
||||
return dag;
|
||||
}
|
||||
|
||||
/* ************************************************************************** */
|
||||
HybridValues HybridLookupDAG::argmax(HybridValues result) const {
|
||||
// Argmax each node in turn in topological sort order (parents first).
|
||||
for (auto lookupTable : boost::adaptors::reverse(*this))
|
||||
lookupTable->argmaxInPlace(&result);
|
||||
return result;
|
||||
}
|
||||
|
||||
} // namespace gtsam
|
|
@ -0,0 +1,119 @@
|
|||
/* ----------------------------------------------------------------------------
|
||||
|
||||
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
|
||||
* Atlanta, Georgia 30332-0415
|
||||
* All Rights Reserved
|
||||
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
|
||||
|
||||
* See LICENSE for the license information
|
||||
|
||||
* -------------------------------------------------------------------------- */
|
||||
|
||||
/**
|
||||
* @file HybridLookupDAG.h
|
||||
* @date Aug, 2022
|
||||
* @author Shangjie Xue
|
||||
*/
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <gtsam/discrete/DiscreteDistribution.h>
|
||||
#include <gtsam/discrete/DiscreteLookupDAG.h>
|
||||
#include <gtsam/hybrid/HybridConditional.h>
|
||||
#include <gtsam/hybrid/HybridValues.h>
|
||||
#include <gtsam/inference/BayesNet.h>
|
||||
#include <gtsam/inference/FactorGraph.h>
|
||||
|
||||
#include <boost/shared_ptr.hpp>
|
||||
#include <string>
|
||||
#include <utility>
|
||||
#include <vector>
|
||||
|
||||
namespace gtsam {
|
||||
|
||||
/**
|
||||
* @brief HybridLookupTable table for max-product
|
||||
*
|
||||
* Similar to DiscreteLookupTable, inherits from hybrid conditional for
|
||||
* convenience. Is used in the max-product algorithm.
|
||||
*/
|
||||
class GTSAM_EXPORT HybridLookupTable : public HybridConditional {
|
||||
public:
|
||||
using Base = HybridConditional;
|
||||
using This = HybridLookupTable;
|
||||
using shared_ptr = boost::shared_ptr<This>;
|
||||
using BaseConditional = Conditional<DecisionTreeFactor, This>;
|
||||
|
||||
/**
|
||||
* @brief Construct a new Hybrid Lookup Table object form a HybridConditional.
|
||||
*
|
||||
* @param conditional input hybrid conditional
|
||||
*/
|
||||
HybridLookupTable(HybridConditional& conditional) : Base(conditional){};
|
||||
|
||||
/**
|
||||
* @brief Calculate assignment for frontal variables that maximizes value.
|
||||
* @param (in/out) parentsValues Known assignments for the parents.
|
||||
*/
|
||||
void argmaxInPlace(HybridValues* parentsValues) const;
|
||||
};
|
||||
|
||||
/** A DAG made from hybrid lookup tables, as defined above. Similar to
|
||||
* DiscreteLookupDAG */
|
||||
class GTSAM_EXPORT HybridLookupDAG : public BayesNet<HybridLookupTable> {
|
||||
public:
|
||||
using Base = BayesNet<HybridLookupTable>;
|
||||
using This = HybridLookupDAG;
|
||||
using shared_ptr = boost::shared_ptr<This>;
|
||||
|
||||
/// @name Standard Constructors
|
||||
/// @{
|
||||
|
||||
/// Construct empty DAG.
|
||||
HybridLookupDAG() {}
|
||||
|
||||
/// Create from BayesNet with LookupTables
|
||||
static HybridLookupDAG FromBayesNet(const HybridBayesNet& bayesNet);
|
||||
|
||||
/// Destructor
|
||||
virtual ~HybridLookupDAG() {}
|
||||
|
||||
/// @}
|
||||
|
||||
/// @name Standard Interface
|
||||
/// @{
|
||||
|
||||
/** Add a DiscreteLookupTable */
|
||||
template <typename... Args>
|
||||
void add(Args&&... args) {
|
||||
emplace_shared<HybridLookupTable>(std::forward<Args>(args)...);
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief argmax by back-substitution, optionally given certain variables.
|
||||
*
|
||||
* Assumes the DAG is reverse topologically sorted, i.e. last
|
||||
* conditional will be optimized first *and* that the
|
||||
* DAG does not contain any conditionals for the given variables. If the DAG
|
||||
* resulted from eliminating a factor graph, this is true for the elimination
|
||||
* ordering.
|
||||
*
|
||||
* @return given assignment extended w. optimal assignment for all variables.
|
||||
*/
|
||||
HybridValues argmax(HybridValues given = HybridValues()) const;
|
||||
/// @}
|
||||
|
||||
private:
|
||||
/** Serialization function */
|
||||
friend class boost::serialization::access;
|
||||
template <class ARCHIVE>
|
||||
void serialize(ARCHIVE& ar, const unsigned int /*version*/) {
|
||||
ar& BOOST_SERIALIZATION_BASE_OBJECT_NVP(Base);
|
||||
}
|
||||
};
|
||||
|
||||
// traits
|
||||
template <>
|
||||
struct traits<HybridLookupDAG> : public Testable<HybridLookupDAG> {};
|
||||
|
||||
} // namespace gtsam
|
|
@ -0,0 +1,127 @@
|
|||
/* ----------------------------------------------------------------------------
|
||||
|
||||
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
|
||||
* Atlanta, Georgia 30332-0415
|
||||
* All Rights Reserved
|
||||
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
|
||||
|
||||
* See LICENSE for the license information
|
||||
|
||||
* -------------------------------------------------------------------------- */
|
||||
|
||||
/**
|
||||
* @file HybridValues.h
|
||||
* @date Jul 28, 2022
|
||||
* @author Shangjie Xue
|
||||
*/
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <gtsam/discrete/Assignment.h>
|
||||
#include <gtsam/discrete/DiscreteKey.h>
|
||||
#include <gtsam/discrete/DiscreteValues.h>
|
||||
#include <gtsam/inference/Key.h>
|
||||
#include <gtsam/linear/VectorValues.h>
|
||||
#include <gtsam/nonlinear/Values.h>
|
||||
|
||||
#include <map>
|
||||
#include <string>
|
||||
#include <vector>
|
||||
|
||||
namespace gtsam {
|
||||
|
||||
/**
|
||||
* HybridValues represents a collection of DiscreteValues and VectorValues. It
|
||||
* is typically used to store the variables of a HybridGaussianFactorGraph.
|
||||
* Optimizing a HybridGaussianBayesNet returns this class.
|
||||
*/
|
||||
class GTSAM_EXPORT HybridValues {
|
||||
public:
|
||||
// DiscreteValue stored the discrete components of the HybridValues.
|
||||
DiscreteValues discrete;
|
||||
|
||||
// VectorValue stored the continuous components of the HybridValues.
|
||||
VectorValues continuous;
|
||||
|
||||
// Default constructor creates an empty HybridValues.
|
||||
HybridValues() : discrete(), continuous(){};
|
||||
|
||||
// Construct from DiscreteValues and VectorValues.
|
||||
HybridValues(const DiscreteValues& dv, const VectorValues& cv)
|
||||
: discrete(dv), continuous(cv){};
|
||||
|
||||
// print required by Testable for unit testing
|
||||
void print(const std::string& s = "HybridValues",
|
||||
const KeyFormatter& keyFormatter = DefaultKeyFormatter) const {
|
||||
std::cout << s << ": \n";
|
||||
discrete.print(" Discrete", keyFormatter); // print discrete components
|
||||
continuous.print(" Continuous",
|
||||
keyFormatter); // print continuous components
|
||||
};
|
||||
|
||||
// equals required by Testable for unit testing
|
||||
bool equals(const HybridValues& other, double tol = 1e-9) const {
|
||||
return discrete.equals(other.discrete, tol) &&
|
||||
continuous.equals(other.continuous, tol);
|
||||
}
|
||||
|
||||
// Check whether a variable with key \c j exists in DiscreteValue.
|
||||
bool existsDiscrete(Key j) { return (discrete.find(j) != discrete.end()); };
|
||||
|
||||
// Check whether a variable with key \c j exists in VectorValue.
|
||||
bool existsVector(Key j) { return continuous.exists(j); };
|
||||
|
||||
// Check whether a variable with key \c j exists.
|
||||
bool exists(Key j) { return existsDiscrete(j) || existsVector(j); };
|
||||
|
||||
/** Insert a discrete \c value with key \c j. Replaces the existing value if
|
||||
* the key \c j is already used.
|
||||
* @param value The vector to be inserted.
|
||||
* @param j The index with which the value will be associated. */
|
||||
void insert(Key j, int value) { discrete[j] = value; };
|
||||
|
||||
/** Insert a vector \c value with key \c j. Throws an invalid_argument
|
||||
* exception if the key \c j is already used.
|
||||
* @param value The vector to be inserted.
|
||||
* @param j The index with which the value will be associated. */
|
||||
void insert(Key j, const Vector& value) { continuous.insert(j, value); }
|
||||
|
||||
// TODO(Shangjie)- update() and insert_or_assign() , similar to Values.h
|
||||
|
||||
/**
|
||||
* Read/write access to the discrete value with key \c j, throws
|
||||
* std::out_of_range if \c j does not exist.
|
||||
*/
|
||||
size_t& atDiscrete(Key j) { return discrete.at(j); };
|
||||
|
||||
/**
|
||||
* Read/write access to the vector value with key \c j, throws
|
||||
* std::out_of_range if \c j does not exist.
|
||||
*/
|
||||
Vector& at(Key j) { return continuous.at(j); };
|
||||
|
||||
/// @name Wrapper support
|
||||
/// @{
|
||||
|
||||
/**
|
||||
* @brief Output as a html table.
|
||||
*
|
||||
* @param keyFormatter function that formats keys.
|
||||
* @return string html output.
|
||||
*/
|
||||
std::string html(
|
||||
const KeyFormatter& keyFormatter = DefaultKeyFormatter) const {
|
||||
std::stringstream ss;
|
||||
ss << this->discrete.html(keyFormatter);
|
||||
ss << this->continuous.html(keyFormatter);
|
||||
return ss.str();
|
||||
};
|
||||
|
||||
/// @}
|
||||
};
|
||||
|
||||
// traits
|
||||
template <>
|
||||
struct traits<HybridValues> : public Testable<HybridValues> {};
|
||||
|
||||
} // namespace gtsam
|
|
@ -4,6 +4,22 @@
|
|||
|
||||
namespace gtsam {
|
||||
|
||||
#include <gtsam/hybrid/HybridValues.h>
|
||||
class HybridValues {
|
||||
gtsam::DiscreteValues discrete;
|
||||
gtsam::VectorValues continuous;
|
||||
HybridValues();
|
||||
HybridValues(const gtsam::DiscreteValues &dv, const gtsam::VectorValues &cv);
|
||||
void print(string s = "HybridValues",
|
||||
const gtsam::KeyFormatter& keyFormatter =
|
||||
gtsam::DefaultKeyFormatter) const;
|
||||
bool equals(const gtsam::HybridValues& other, double tol) const;
|
||||
void insert(gtsam::Key j, int value);
|
||||
void insert(gtsam::Key j, const gtsam::Vector& value);
|
||||
size_t& atDiscrete(gtsam::Key j);
|
||||
gtsam::Vector& at(gtsam::Key j);
|
||||
};
|
||||
|
||||
#include <gtsam/hybrid/HybridFactor.h>
|
||||
virtual class HybridFactor {
|
||||
void print(string s = "HybridFactor\n",
|
||||
|
@ -84,6 +100,7 @@ class HybridBayesNet {
|
|||
size_t size() const;
|
||||
gtsam::KeySet keys() const;
|
||||
const gtsam::HybridConditional* at(size_t i) const;
|
||||
gtsam::HybridValues optimize() const;
|
||||
void print(string s = "HybridBayesNet\n",
|
||||
const gtsam::KeyFormatter& keyFormatter =
|
||||
gtsam::DefaultKeyFormatter) const;
|
||||
|
|
|
@ -17,6 +17,7 @@
|
|||
|
||||
#include <CppUnitLite/Test.h>
|
||||
#include <CppUnitLite/TestHarness.h>
|
||||
#include <gtsam/base/TestableAssertions.h>
|
||||
#include <gtsam/discrete/DecisionTreeFactor.h>
|
||||
#include <gtsam/discrete/DiscreteKey.h>
|
||||
#include <gtsam/discrete/DiscreteValues.h>
|
||||
|
@ -30,6 +31,7 @@
|
|||
#include <gtsam/hybrid/HybridGaussianFactor.h>
|
||||
#include <gtsam/hybrid/HybridGaussianFactorGraph.h>
|
||||
#include <gtsam/hybrid/HybridGaussianISAM.h>
|
||||
#include <gtsam/hybrid/HybridValues.h>
|
||||
#include <gtsam/inference/BayesNet.h>
|
||||
#include <gtsam/inference/DotWriter.h>
|
||||
#include <gtsam/inference/Key.h>
|
||||
|
@ -501,6 +503,27 @@ TEST_DISABLED(HybridGaussianFactorGraph, SwitchingTwoVar) {
|
|||
}
|
||||
}
|
||||
|
||||
TEST(HybridGaussianFactorGraph, optimize) {
|
||||
HybridGaussianFactorGraph hfg;
|
||||
|
||||
DiscreteKey c1(C(1), 2);
|
||||
|
||||
hfg.add(JacobianFactor(X(0), I_3x3, Z_3x1));
|
||||
hfg.add(JacobianFactor(X(0), I_3x3, X(1), -I_3x3, Z_3x1));
|
||||
|
||||
DecisionTree<Key, GaussianFactor::shared_ptr> dt(
|
||||
C(1), boost::make_shared<JacobianFactor>(X(1), I_3x3, Z_3x1),
|
||||
boost::make_shared<JacobianFactor>(X(1), I_3x3, Vector3::Ones()));
|
||||
|
||||
hfg.add(GaussianMixtureFactor({X(1)}, {c1}, dt));
|
||||
|
||||
auto result =
|
||||
hfg.eliminateSequential(Ordering::ColamdConstrainedLast(hfg, {C(1)}));
|
||||
|
||||
HybridValues hv = result->optimize();
|
||||
|
||||
EXPECT(assert_equal(hv.atDiscrete(C(1)), int(0)));
|
||||
}
|
||||
/* ************************************************************************* */
|
||||
int main() {
|
||||
TestResult tr;
|
||||
|
|
|
@ -0,0 +1,272 @@
|
|||
/* ----------------------------------------------------------------------------
|
||||
|
||||
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
|
||||
* Atlanta, Georgia 30332-0415
|
||||
* All Rights Reserved
|
||||
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
|
||||
|
||||
* See LICENSE for the license information
|
||||
|
||||
* -------------------------------------------------------------------------- */
|
||||
|
||||
/**
|
||||
* @file testHybridLookupDAG.cpp
|
||||
* @date Aug, 2022
|
||||
* @author Shangjie Xue
|
||||
*/
|
||||
|
||||
#include <gtsam/base/Testable.h>
|
||||
#include <gtsam/base/TestableAssertions.h>
|
||||
#include <gtsam/discrete/Assignment.h>
|
||||
#include <gtsam/discrete/DecisionTreeFactor.h>
|
||||
#include <gtsam/discrete/DiscreteKey.h>
|
||||
#include <gtsam/discrete/DiscreteValues.h>
|
||||
#include <gtsam/hybrid/GaussianMixture.h>
|
||||
#include <gtsam/hybrid/HybridBayesNet.h>
|
||||
#include <gtsam/hybrid/HybridLookupDAG.h>
|
||||
#include <gtsam/hybrid/HybridValues.h>
|
||||
#include <gtsam/inference/Key.h>
|
||||
#include <gtsam/inference/Symbol.h>
|
||||
#include <gtsam/linear/GaussianConditional.h>
|
||||
#include <gtsam/linear/VectorValues.h>
|
||||
#include <gtsam/nonlinear/Values.h>
|
||||
|
||||
// Include for test suite
|
||||
#include <CppUnitLite/TestHarness.h>
|
||||
|
||||
#include <iostream>
|
||||
|
||||
using namespace std;
|
||||
using namespace gtsam;
|
||||
using noiseModel::Isotropic;
|
||||
using symbol_shorthand::M;
|
||||
using symbol_shorthand::X;
|
||||
|
||||
TEST(HybridLookupTable, basics) {
|
||||
// create a conditional gaussian node
|
||||
Matrix S1(2, 2);
|
||||
S1(0, 0) = 1;
|
||||
S1(1, 0) = 2;
|
||||
S1(0, 1) = 3;
|
||||
S1(1, 1) = 4;
|
||||
|
||||
Matrix S2(2, 2);
|
||||
S2(0, 0) = 6;
|
||||
S2(1, 0) = 0.2;
|
||||
S2(0, 1) = 8;
|
||||
S2(1, 1) = 0.4;
|
||||
|
||||
Matrix R1(2, 2);
|
||||
R1(0, 0) = 0.1;
|
||||
R1(1, 0) = 0.3;
|
||||
R1(0, 1) = 0.0;
|
||||
R1(1, 1) = 0.34;
|
||||
|
||||
Matrix R2(2, 2);
|
||||
R2(0, 0) = 0.1;
|
||||
R2(1, 0) = 0.3;
|
||||
R2(0, 1) = 0.0;
|
||||
R2(1, 1) = 0.34;
|
||||
|
||||
SharedDiagonal model = noiseModel::Diagonal::Sigmas(Vector2(1.0, 0.34));
|
||||
|
||||
Vector2 d1(0.2, 0.5), d2(0.5, 0.2);
|
||||
|
||||
auto conditional0 = boost::make_shared<GaussianConditional>(X(1), d1, R1,
|
||||
X(2), S1, model),
|
||||
conditional1 = boost::make_shared<GaussianConditional>(X(1), d2, R2,
|
||||
X(2), S2, model);
|
||||
|
||||
// Create decision tree
|
||||
DiscreteKey m1(1, 2);
|
||||
GaussianMixture::Conditionals conditionals(
|
||||
{m1},
|
||||
vector<GaussianConditional::shared_ptr>{conditional0, conditional1});
|
||||
// GaussianMixture mixtureFactor2({X(1)}, {X(2)}, {m1}, conditionals);
|
||||
|
||||
boost::shared_ptr<GaussianMixture> mixtureFactor(
|
||||
new GaussianMixture({X(1)}, {X(2)}, {m1}, conditionals));
|
||||
|
||||
HybridConditional hc(mixtureFactor);
|
||||
|
||||
GaussianMixture::Conditionals conditional2 =
|
||||
boost::static_pointer_cast<GaussianMixture>(hc.inner())->conditionals();
|
||||
|
||||
DiscreteValues dv;
|
||||
dv[1] = 1;
|
||||
|
||||
VectorValues cv;
|
||||
cv.insert(X(2), Vector2(0.0, 0.0));
|
||||
|
||||
HybridValues hv(dv, cv);
|
||||
|
||||
// std::cout << conditional2(values).markdown();
|
||||
EXPECT(assert_equal(*conditional2(dv), *conditionals(dv), 1e-6));
|
||||
EXPECT(conditional2(dv) == conditionals(dv));
|
||||
HybridLookupTable hlt(hc);
|
||||
|
||||
// hlt.argmaxInPlace(&hv);
|
||||
|
||||
HybridLookupDAG dag;
|
||||
dag.push_back(hlt);
|
||||
dag.argmax(hv);
|
||||
|
||||
// HybridBayesNet hbn;
|
||||
// hbn.push_back(hc);
|
||||
// hbn.optimize();
|
||||
}
|
||||
|
||||
TEST(HybridLookupTable, hybrid_argmax) {
|
||||
Matrix S1(2, 2);
|
||||
S1(0, 0) = 1;
|
||||
S1(1, 0) = 0;
|
||||
S1(0, 1) = 0;
|
||||
S1(1, 1) = 1;
|
||||
|
||||
Vector2 d1(0.2, 0.5), d2(-0.5, 0.6);
|
||||
|
||||
SharedDiagonal model = noiseModel::Diagonal::Sigmas(Vector2(1.0, 0.34));
|
||||
|
||||
auto conditional0 =
|
||||
boost::make_shared<GaussianConditional>(X(1), d1, S1, model),
|
||||
conditional1 =
|
||||
boost::make_shared<GaussianConditional>(X(1), d2, S1, model);
|
||||
|
||||
DiscreteKey m1(1, 2);
|
||||
GaussianMixture::Conditionals conditionals(
|
||||
{m1},
|
||||
vector<GaussianConditional::shared_ptr>{conditional0, conditional1});
|
||||
boost::shared_ptr<GaussianMixture> mixtureFactor(
|
||||
new GaussianMixture({X(1)}, {}, {m1}, conditionals));
|
||||
|
||||
HybridConditional hc(mixtureFactor);
|
||||
|
||||
DiscreteValues dv;
|
||||
dv[1] = 1;
|
||||
VectorValues cv;
|
||||
// cv.insert(X(2),Vector2(0.0, 0.0));
|
||||
HybridValues hv(dv, cv);
|
||||
|
||||
HybridLookupTable hlt(hc);
|
||||
|
||||
hlt.argmaxInPlace(&hv);
|
||||
|
||||
EXPECT(assert_equal(hv.at(X(1)), d2));
|
||||
}
|
||||
|
||||
TEST(HybridLookupTable, discrete_argmax) {
|
||||
DiscreteKey X(0, 2), Y(1, 2);
|
||||
|
||||
auto conditional = boost::make_shared<DiscreteConditional>(X | Y = "0/1 3/2");
|
||||
|
||||
HybridConditional hc(conditional);
|
||||
|
||||
HybridLookupTable hlt(hc);
|
||||
|
||||
DiscreteValues dv;
|
||||
dv[1] = 0;
|
||||
VectorValues cv;
|
||||
// cv.insert(X(2),Vector2(0.0, 0.0));
|
||||
HybridValues hv(dv, cv);
|
||||
|
||||
hlt.argmaxInPlace(&hv);
|
||||
|
||||
EXPECT(assert_equal(hv.atDiscrete(0), 1));
|
||||
|
||||
DecisionTreeFactor f1(X, "2 3");
|
||||
auto conditional2 = boost::make_shared<DiscreteConditional>(1, f1);
|
||||
|
||||
HybridConditional hc2(conditional2);
|
||||
|
||||
HybridLookupTable hlt2(hc2);
|
||||
|
||||
HybridValues hv2;
|
||||
|
||||
hlt2.argmaxInPlace(&hv2);
|
||||
|
||||
EXPECT(assert_equal(hv2.atDiscrete(0), 1));
|
||||
}
|
||||
|
||||
TEST(HybridLookupTable, gaussian_argmax) {
|
||||
Matrix S1(2, 2);
|
||||
S1(0, 0) = 1;
|
||||
S1(1, 0) = 0;
|
||||
S1(0, 1) = 0;
|
||||
S1(1, 1) = 1;
|
||||
|
||||
Vector2 d1(0.2, 0.5), d2(-0.5, 0.6);
|
||||
|
||||
SharedDiagonal model = noiseModel::Diagonal::Sigmas(Vector2(1.0, 0.34));
|
||||
|
||||
auto conditional =
|
||||
boost::make_shared<GaussianConditional>(X(1), d1, S1, X(2), -S1, model);
|
||||
|
||||
HybridConditional hc(conditional);
|
||||
|
||||
HybridLookupTable hlt(hc);
|
||||
|
||||
DiscreteValues dv;
|
||||
// dv[1]=0;
|
||||
VectorValues cv;
|
||||
cv.insert(X(2), d2);
|
||||
HybridValues hv(dv, cv);
|
||||
|
||||
hlt.argmaxInPlace(&hv);
|
||||
|
||||
EXPECT(assert_equal(hv.at(X(1)), d1 + d2));
|
||||
}
|
||||
|
||||
TEST(HybridLookupDAG, argmax) {
|
||||
Matrix S1(2, 2);
|
||||
S1(0, 0) = 1;
|
||||
S1(1, 0) = 0;
|
||||
S1(0, 1) = 0;
|
||||
S1(1, 1) = 1;
|
||||
|
||||
Vector2 d1(0.2, 0.5), d2(-0.5, 0.6);
|
||||
|
||||
SharedDiagonal model = noiseModel::Diagonal::Sigmas(Vector2(1.0, 0.34));
|
||||
|
||||
auto conditional0 =
|
||||
boost::make_shared<GaussianConditional>(X(2), d1, S1, model),
|
||||
conditional1 =
|
||||
boost::make_shared<GaussianConditional>(X(2), d2, S1, model);
|
||||
|
||||
DiscreteKey m1(1, 2);
|
||||
GaussianMixture::Conditionals conditionals(
|
||||
{m1},
|
||||
vector<GaussianConditional::shared_ptr>{conditional0, conditional1});
|
||||
boost::shared_ptr<GaussianMixture> mixtureFactor(
|
||||
new GaussianMixture({X(2)}, {}, {m1}, conditionals));
|
||||
HybridConditional hc2(mixtureFactor);
|
||||
HybridLookupTable hlt2(hc2);
|
||||
|
||||
auto conditional2 =
|
||||
boost::make_shared<GaussianConditional>(X(1), d1, S1, X(2), -S1, model);
|
||||
|
||||
HybridConditional hc1(conditional2);
|
||||
HybridLookupTable hlt1(hc1);
|
||||
|
||||
DecisionTreeFactor f1(m1, "2 3");
|
||||
auto discrete_conditional = boost::make_shared<DiscreteConditional>(1, f1);
|
||||
|
||||
HybridConditional hc3(discrete_conditional);
|
||||
HybridLookupTable hlt3(hc3);
|
||||
|
||||
HybridLookupDAG dag;
|
||||
dag.push_back(hlt1);
|
||||
dag.push_back(hlt2);
|
||||
dag.push_back(hlt3);
|
||||
auto hv = dag.argmax();
|
||||
|
||||
EXPECT(assert_equal(hv.atDiscrete(1), 1));
|
||||
EXPECT(assert_equal(hv.at(X(2)), d2));
|
||||
EXPECT(assert_equal(hv.at(X(1)), d2 + d1));
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
int main() {
|
||||
TestResult tr;
|
||||
return TestRegistry::runAllTests(tr);
|
||||
}
|
||||
/* ************************************************************************* */
|
|
@ -0,0 +1,58 @@
|
|||
/* ----------------------------------------------------------------------------
|
||||
|
||||
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
|
||||
* Atlanta, Georgia 30332-0415
|
||||
* All Rights Reserved
|
||||
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
|
||||
|
||||
* See LICENSE for the license information
|
||||
|
||||
* -------------------------------------------------------------------------- */
|
||||
|
||||
/**
|
||||
* @file testHybridValues.cpp
|
||||
* @date Jul 28, 2022
|
||||
* @author Shangjie Xue
|
||||
*/
|
||||
|
||||
#include <gtsam/base/Testable.h>
|
||||
#include <gtsam/base/TestableAssertions.h>
|
||||
#include <gtsam/discrete/Assignment.h>
|
||||
#include <gtsam/discrete/DiscreteKey.h>
|
||||
#include <gtsam/discrete/DiscreteValues.h>
|
||||
#include <gtsam/hybrid/HybridValues.h>
|
||||
#include <gtsam/inference/Key.h>
|
||||
#include <gtsam/inference/Symbol.h>
|
||||
#include <gtsam/linear/VectorValues.h>
|
||||
#include <gtsam/nonlinear/Values.h>
|
||||
|
||||
// Include for test suite
|
||||
#include <CppUnitLite/TestHarness.h>
|
||||
|
||||
using namespace std;
|
||||
using namespace gtsam;
|
||||
|
||||
TEST(HybridValues, basics) {
|
||||
HybridValues values;
|
||||
values.insert(99, Vector2(2, 3));
|
||||
values.insert(100, 3);
|
||||
EXPECT(assert_equal(values.at(99), Vector2(2, 3)));
|
||||
EXPECT(assert_equal(values.atDiscrete(100), int(3)));
|
||||
|
||||
values.print();
|
||||
|
||||
HybridValues values2;
|
||||
values2.insert(100, 3);
|
||||
values2.insert(99, Vector2(2, 3));
|
||||
EXPECT(assert_equal(values2, values));
|
||||
|
||||
values2.insert(98, Vector2(2, 3));
|
||||
EXPECT(!assert_equal(values2, values));
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
int main() {
|
||||
TestResult tr;
|
||||
return TestRegistry::runAllTests(tr);
|
||||
}
|
||||
/* ************************************************************************* */
|
|
@ -55,6 +55,34 @@ class TestHybridGaussianFactorGraph(GtsamTestCase):
|
|||
discrete_conditional = hbn.at(hbn.size() - 1).inner()
|
||||
self.assertIsInstance(discrete_conditional, gtsam.DiscreteConditional)
|
||||
|
||||
def test_optimize(self):
|
||||
"""Test contruction of hybrid factor graph."""
|
||||
noiseModel = gtsam.noiseModel.Unit.Create(3)
|
||||
dk = gtsam.DiscreteKeys()
|
||||
dk.push_back((C(0), 2))
|
||||
|
||||
jf1 = gtsam.JacobianFactor(X(0), np.eye(3), np.zeros((3, 1)),
|
||||
noiseModel)
|
||||
jf2 = gtsam.JacobianFactor(X(0), np.eye(3), np.ones((3, 1)),
|
||||
noiseModel)
|
||||
|
||||
gmf = gtsam.GaussianMixtureFactor.FromFactors([X(0)], dk, [jf1, jf2])
|
||||
|
||||
hfg = gtsam.HybridGaussianFactorGraph()
|
||||
hfg.add(jf1)
|
||||
hfg.add(jf2)
|
||||
hfg.push_back(gmf)
|
||||
|
||||
dtf = gtsam.DecisionTreeFactor([(C(0), 2)],"0 1")
|
||||
hfg.add(dtf)
|
||||
|
||||
hbn = hfg.eliminateSequential(
|
||||
gtsam.Ordering.ColamdConstrainedLastHybridGaussianFactorGraph(
|
||||
hfg, [C(0)]))
|
||||
|
||||
# print("hbn = ", hbn)
|
||||
hv = hbn.optimize()
|
||||
self.assertEqual(hv.atDiscrete(C(0)), 1)
|
||||
|
||||
if __name__ == "__main__":
|
||||
unittest.main()
|
||||
|
|
|
@ -0,0 +1,41 @@
|
|||
"""
|
||||
GTSAM Copyright 2010-2019, Georgia Tech Research Corporation,
|
||||
Atlanta, Georgia 30332-0415
|
||||
All Rights Reserved
|
||||
|
||||
See LICENSE for the license information
|
||||
|
||||
Unit tests for Hybrid Values.
|
||||
Author: Shangjie Xue
|
||||
"""
|
||||
# pylint: disable=invalid-name, no-name-in-module, no-member
|
||||
|
||||
from __future__ import print_function
|
||||
|
||||
import unittest
|
||||
|
||||
import gtsam
|
||||
import numpy as np
|
||||
from gtsam.symbol_shorthand import C, X
|
||||
from gtsam.utils.test_case import GtsamTestCase
|
||||
|
||||
|
||||
class TestHybridGaussianFactorGraph(GtsamTestCase):
|
||||
"""Unit tests for HybridValues."""
|
||||
|
||||
def test_basic(self):
|
||||
"""Test contruction and basic methods of hybrid values."""
|
||||
|
||||
hv1 = gtsam.HybridValues()
|
||||
hv1.insert(X(0), np.ones((3,1)))
|
||||
hv1.insert(C(0), 2)
|
||||
|
||||
hv2 = gtsam.HybridValues()
|
||||
hv2.insert(C(0), 2)
|
||||
hv2.insert(X(0), np.ones((3,1)))
|
||||
|
||||
self.assertEqual(hv1.atDiscrete(C(0)), 2)
|
||||
self.assertEqual(hv1.at(X(0))[0], np.ones((3,1))[0])
|
||||
|
||||
if __name__ == "__main__":
|
||||
unittest.main()
|
Loading…
Reference in New Issue