Merge branch 'develop' into hybrid/pruning

release/4.3a0
Varun Agrawal 2022-08-22 17:37:18 -04:00
commit 7227965c38
66 changed files with 1401 additions and 302 deletions

View File

@ -20,26 +20,26 @@ jobs:
# Github Actions requires a single row to be added to the build matrix.
# See https://help.github.com/en/articles/workflow-syntax-for-github-actions.
name: [
ubuntu-18.04-gcc-5,
ubuntu-18.04-gcc-9,
ubuntu-18.04-clang-9,
ubuntu-20.04-gcc-7,
ubuntu-20.04-gcc-9,
ubuntu-20.04-clang-9,
]
build_type: [Debug, Release]
build_unstable: [ON]
include:
- name: ubuntu-18.04-gcc-5
os: ubuntu-18.04
- name: ubuntu-20.04-gcc-7
os: ubuntu-20.04
compiler: gcc
version: "5"
version: "7"
- name: ubuntu-18.04-gcc-9
os: ubuntu-18.04
- name: ubuntu-20.04-gcc-9
os: ubuntu-20.04
compiler: gcc
version: "9"
- name: ubuntu-18.04-clang-9
os: ubuntu-18.04
- name: ubuntu-20.04-clang-9
os: ubuntu-20.04
compiler: clang
version: "9"
@ -60,9 +60,9 @@ jobs:
gpg -a --export $LLVM_KEY | sudo apt-key add -
sudo add-apt-repository "deb http://apt.llvm.org/bionic/ llvm-toolchain-bionic-9 main"
fi
sudo apt-get -y update
sudo apt-get -y install cmake build-essential pkg-config libpython-dev python-numpy libicu-dev
sudo apt-get -y update
sudo apt-get -y install cmake build-essential pkg-config libpython3-dev python3-numpy libicu-dev
if [ "${{ matrix.compiler }}" = "gcc" ]; then
sudo apt-get install -y g++-${{ matrix.version }} g++-${{ matrix.version }}-multilib

View File

@ -19,34 +19,34 @@ jobs:
# Github Actions requires a single row to be added to the build matrix.
# See https://help.github.com/en/articles/workflow-syntax-for-github-actions.
name: [
ubuntu-18.04-gcc-5,
ubuntu-18.04-gcc-9,
ubuntu-18.04-clang-9,
ubuntu-20.04-gcc-7,
ubuntu-20.04-gcc-9,
ubuntu-20.04-clang-9,
macOS-11-xcode-13.4.1,
ubuntu-18.04-gcc-5-tbb,
ubuntu-20.04-gcc-7-tbb,
]
build_type: [Debug, Release]
python_version: [3]
include:
- name: ubuntu-18.04-gcc-5
os: ubuntu-18.04
- name: ubuntu-20.04-gcc-7
os: ubuntu-20.04
compiler: gcc
version: "5"
version: "7"
- name: ubuntu-18.04-gcc-9
os: ubuntu-18.04
- name: ubuntu-20.04-gcc-9
os: ubuntu-20.04
compiler: gcc
version: "9"
- name: ubuntu-18.04-clang-9
os: ubuntu-18.04
- name: ubuntu-20.04-clang-9
os: ubuntu-20.04
compiler: clang
version: "9"
# NOTE temporarily added this as it is a required check.
- name: ubuntu-18.04-clang-9
os: ubuntu-18.04
- name: ubuntu-20.04-clang-9
os: ubuntu-20.04
compiler: clang
version: "9"
build_type: Debug
@ -57,10 +57,10 @@ jobs:
compiler: xcode
version: "13.4.1"
- name: ubuntu-18.04-gcc-5-tbb
os: ubuntu-18.04
- name: ubuntu-20.04-gcc-7-tbb
os: ubuntu-20.04
compiler: gcc
version: "5"
version: "7"
flag: tbb
steps:
@ -79,9 +79,9 @@ jobs:
gpg -a --export $LLVM_KEY | sudo apt-key add -
sudo add-apt-repository "deb http://apt.llvm.org/bionic/ llvm-toolchain-bionic-9 main"
fi
sudo apt-get -y update
sudo apt-get -y install cmake build-essential pkg-config libpython-dev python-numpy libboost-all-dev
sudo apt-get -y install cmake build-essential pkg-config libpython3-dev python3-numpy libboost-all-dev
if [ "${{ matrix.compiler }}" = "gcc" ]; then
sudo apt-get install -y g++-${{ matrix.version }} g++-${{ matrix.version }}-multilib

View File

@ -32,31 +32,31 @@ jobs:
include:
- name: ubuntu-gcc-deprecated
os: ubuntu-18.04
os: ubuntu-20.04
compiler: gcc
version: "9"
flag: deprecated
- name: ubuntu-gcc-quaternions
os: ubuntu-18.04
os: ubuntu-20.04
compiler: gcc
version: "9"
flag: quaternions
- name: ubuntu-gcc-tbb
os: ubuntu-18.04
os: ubuntu-20.04
compiler: gcc
version: "9"
flag: tbb
- name: ubuntu-cayleymap
os: ubuntu-18.04
os: ubuntu-20.04
compiler: gcc
version: "9"
flag: cayley
- name: ubuntu-system-libs
os: ubuntu-18.04
os: ubuntu-20.04
compiler: gcc
version: "9"
flag: system-libs
@ -74,9 +74,9 @@ jobs:
gpg -a --export 15CF4D18AF4F7421 | sudo apt-key add -
sudo add-apt-repository "deb http://apt.llvm.org/bionic/ llvm-toolchain-bionic-9 main"
fi
sudo apt-get -y update
sudo apt-get -y install cmake build-essential pkg-config libpython-dev python-numpy libicu-dev
sudo apt-get -y update
sudo apt-get -y install cmake build-essential pkg-config libpython3-dev python3-numpy libicu-dev
if [ "${{ matrix.compiler }}" = "gcc" ]; then
sudo apt-get install -y g++-${{ matrix.version }} g++-${{ matrix.version }}-multilib

View File

@ -64,6 +64,29 @@ GTSAM 4.1 added a new pybind wrapper, and **removed** the deprecated functionali
We provide support for [MATLAB](matlab/README.md) and [Python](python/README.md) wrappers for GTSAM. Please refer to the linked documents for more details.
## Citation
If you are using GTSAM for academic work, please use the following citation:
```
@software{gtsam,
author = {Frank Dellaert and Richard Roberts and Varun Agrawal and Alex Cunningham and Chris Beall and Duy-Nguyen Ta and Fan Jiang and lucacarlone and nikai and Jose Luis Blanco-Claraco and Stephen Williams and ydjian and John Lambert and Andy Melim and Zhaoyang Lv and Akshay Krishnan and Jing Dong and Gerry Chen and Krunal Chande and balderdash-devil and DiffDecisionTrees and Sungtae An and mpaluri and Ellon Paiva Mendes and Mike Bosse and Akash Patel and Ayush Baid and Paul Furgale and matthewbroadwaynavenio and roderick-koehle},
title = {borglab/gtsam},
month = may,
year = 2022,
publisher = {Zenodo},
version = {4.2a7},
doi = {10.5281/zenodo.5794541},
url = {https://doi.org/10.5281/zenodo.5794541}
}
```
You can also get the latest citation available from Zenodo below:
[![DOI](https://zenodo.org/badge/86362856.svg)](https://doi.org/10.5281/zenodo.5794541)
Specific formats are available in the bottom-right corner of the Zenodo page.
## The Preintegrated IMU Factor
GTSAM includes a state of the art IMU handling scheme based on
@ -73,7 +96,7 @@ GTSAM includes a state of the art IMU handling scheme based on
Our implementation improves on this using integration on the manifold, as detailed in
- Luca Carlone, Zsolt Kira, Chris Beall, Vadim Indelman, and Frank Dellaert, _"Eliminating conditionally independent sets in factor graphs: a unifying perspective based on smart factors"_, Int. Conf. on Robotics and Automation (ICRA), 2014. [[link]](https://ieeexplore.ieee.org/abstract/document/6907483)
- Christian Forster, Luca Carlone, Frank Dellaert, and Davide Scaramuzza, "IMU Preintegration on Manifold for Efficient Visual-Inertial Maximum-a-Posteriori Estimation", Robotics: Science and Systems (RSS), 2015. [[link]](http://www.roboticsproceedings.org/rss11/p06.pdf)
- Christian Forster, Luca Carlone, Frank Dellaert, and Davide Scaramuzza, _"IMU Preintegration on Manifold for Efficient Visual-Inertial Maximum-a-Posteriori Estimation"_, Robotics: Science and Systems (RSS), 2015. [[link]](http://www.roboticsproceedings.org/rss11/p06.pdf)
If you are using the factor in academic work, please cite the publications above.

View File

@ -190,7 +190,7 @@ if(${CMAKE_CXX_COMPILER_ID} STREQUAL "Clang")
endif()
if (NOT MSVC)
option(GTSAM_BUILD_WITH_MARCH_NATIVE "Enable/Disable building with all instructions supported by native architecture (binary may not be portable!)" ON)
option(GTSAM_BUILD_WITH_MARCH_NATIVE "Enable/Disable building with all instructions supported by native architecture (binary may not be portable!)" OFF)
if(GTSAM_BUILD_WITH_MARCH_NATIVE AND (APPLE AND NOT CMAKE_SYSTEM_PROCESSOR STREQUAL "arm64"))
# Add as public flag so all dependant projects also use it, as required
# by Eigen to avid crashes due to SIMD vectorization:

View File

@ -1,7 +1,10 @@
###############################################################################
# Option for using system Eigen or GTSAM-bundled Eigen
option(GTSAM_USE_SYSTEM_EIGEN "Find and use system-installed Eigen. If 'off', use the one bundled with GTSAM" OFF)
# Default: Use system's Eigen if found automatically:
find_package(Eigen3 QUIET)
set(USE_SYSTEM_EIGEN_INITIAL_VALUE ${Eigen3_FOUND})
option(GTSAM_USE_SYSTEM_EIGEN "Find and use system-installed Eigen. If 'off', use the one bundled with GTSAM" ${USE_SYSTEM_EIGEN_INITIAL_VALUE})
unset(USE_SYSTEM_EIGEN_INITIAL_VALUE)
if(NOT GTSAM_USE_SYSTEM_EIGEN)
# This option only makes sense if using the embedded copy of Eigen, it is
@ -11,7 +14,7 @@ endif()
# Switch for using system Eigen or GTSAM-bundled Eigen
if(GTSAM_USE_SYSTEM_EIGEN)
find_package(Eigen3 REQUIRED)
find_package(Eigen3 REQUIRED) # need to find again as REQUIRED
# Use generic Eigen include paths e.g. <Eigen/Core>
set(GTSAM_EIGEN_INCLUDE_FOR_INSTALL "${EIGEN3_INCLUDE_DIR}")

File diff suppressed because it is too large Load Diff

Binary file not shown.

Binary file not shown.

View File

@ -1,26 +1,72 @@
%% This BibTeX bibliography file was created using BibDesk.
%% https://bibdesk.sourceforge.io/
%% Created for Varun Agrawal at 2021-09-27 17:39:09 -0400
%% Saved with string encoding Unicode (UTF-8)
@article{Lupton12tro,
author = {Lupton, Todd and Sukkarieh, Salah},
date-added = {2021-09-27 17:38:56 -0400},
date-modified = {2021-09-27 17:39:09 -0400},
doi = {10.1109/TRO.2011.2170332},
journal = {IEEE Transactions on Robotics},
number = {1},
pages = {61-76},
title = {Visual-Inertial-Aided Navigation for High-Dynamic Motion in Built Environments Without Initial Conditions},
volume = {28},
year = {2012},
Bdsk-Url-1 = {https://doi.org/10.1109/TRO.2011.2170332}}
@inproceedings{Forster15rss,
author = {Christian Forster and Luca Carlone and Frank Dellaert and Davide Scaramuzza},
booktitle = {Robotics: Science and Systems},
date-added = {2021-09-26 20:44:41 -0400},
date-modified = {2021-09-26 20:45:03 -0400},
title = {IMU Preintegration on Manifold for Efficient Visual-Inertial Maximum-a-Posteriori Estimation},
year = {2015}}
@article{Iserles00an,
title = {Lie-group methods},
author = {Iserles, Arieh and Munthe-Kaas, Hans Z and
N{\o}rsett, Syvert P and Zanna, Antonella},
journal = {Acta Numerica 2000},
volume = {9},
pages = {215--365},
year = {2000},
publisher = {Cambridge Univ Press}
}
author = {Iserles, Arieh and Munthe-Kaas, Hans Z and N{\o}rsett, Syvert P and Zanna, Antonella},
journal = {Acta Numerica 2000},
pages = {215--365},
publisher = {Cambridge Univ Press},
title = {Lie-group methods},
volume = {9},
year = {2000}}
@book{Murray94book,
title = {A mathematical introduction to robotic manipulation},
author = {Murray, Richard M and Li, Zexiang and Sastry, S
Shankar and Sastry, S Shankara},
year = {1994},
publisher = {CRC press}
}
author = {Murray, Richard M and Li, Zexiang and Sastry, S Shankar and Sastry, S Shankara},
publisher = {CRC press},
title = {A mathematical introduction to robotic manipulation},
year = {1994}}
@book{Spivak65book,
title = {Calculus on manifolds},
author = {Spivak, Michael},
volume = {1},
year = {1965},
publisher = {WA Benjamin New York}
}
author = {Spivak, Michael},
publisher = {WA Benjamin New York},
title = {Calculus on manifolds},
volume = {1},
year = {1965}}
@phdthesis{Nikolic16thesis,
title={Characterisation, calibration, and design of visual-inertial sensor systems for robot navigation},
author={Nikolic, Janosch},
year={2016},
school={ETH Zurich}
}
@book{Simon06book,
title={Optimal state estimation: Kalman, H infinity, and nonlinear approaches},
author={Simon, Dan},
year={2006},
publisher={John Wiley \& Sons}
}
@inproceedings{Trawny05report_IndirectKF,
title={Indirect Kalman Filter for 3 D Attitude Estimation},
author={Nikolas Trawny and Stergios I. Roumeliotis},
year={2005}
}

View File

@ -60,13 +60,14 @@ namespace po = boost::program_options;
po::variables_map parseOptions(int argc, char* argv[]) {
po::options_description desc;
desc.add_options()("help,h", "produce help message")(
"data_csv_path", po::value<string>()->default_value("imuAndGPSdata.csv"),
"path to the CSV file with the IMU data")(
"output_filename",
po::value<string>()->default_value("imuFactorExampleResults.csv"),
"path to the result file to use")("use_isam", po::bool_switch(),
"use ISAM as the optimizer");
desc.add_options()("help,h", "produce help message") // help message
("data_csv_path", po::value<string>()->default_value("imuAndGPSdata.csv"),
"path to the CSV file with the IMU data") // path to the data file
("output_filename",
po::value<string>()->default_value("imuFactorExampleResults.csv"),
"path to the result file to use") // filename to save results to
("use_isam", po::bool_switch(),
"use ISAM as the optimizer"); // flag for ISAM optimizer
po::variables_map vm;
po::store(po::parse_command_line(argc, argv, desc), vm);
@ -106,7 +107,7 @@ boost::shared_ptr<PreintegratedCombinedMeasurements::Params> imuParams() {
I_3x3 * 1e-8; // error committed in integrating position from velocities
Matrix33 bias_acc_cov = I_3x3 * pow(accel_bias_rw_sigma, 2);
Matrix33 bias_omega_cov = I_3x3 * pow(gyro_bias_rw_sigma, 2);
Matrix66 bias_acc_omega_int =
Matrix66 bias_acc_omega_init =
I_6x6 * 1e-5; // error in the bias used for preintegration
auto p = PreintegratedCombinedMeasurements::Params::MakeSharedD(0.0);
@ -122,7 +123,7 @@ boost::shared_ptr<PreintegratedCombinedMeasurements::Params> imuParams() {
// PreintegrationCombinedMeasurements params:
p->biasAccCovariance = bias_acc_cov; // acc bias in continuous
p->biasOmegaCovariance = bias_omega_cov; // gyro bias in continuous
p->biasAccOmegaInt = bias_acc_omega_int;
p->biasAccOmegaInt = bias_acc_omega_init;
return p;
}

View File

@ -94,7 +94,7 @@ boost::shared_ptr<PreintegratedCombinedMeasurements::Params> imuParams() {
I_3x3 * 1e-8; // error committed in integrating position from velocities
Matrix33 bias_acc_cov = I_3x3 * pow(accel_bias_rw_sigma, 2);
Matrix33 bias_omega_cov = I_3x3 * pow(gyro_bias_rw_sigma, 2);
Matrix66 bias_acc_omega_int =
Matrix66 bias_acc_omega_init =
I_6x6 * 1e-5; // error in the bias used for preintegration
auto p = PreintegratedCombinedMeasurements::Params::MakeSharedD(0.0);
@ -110,7 +110,7 @@ boost::shared_ptr<PreintegratedCombinedMeasurements::Params> imuParams() {
// PreintegrationCombinedMeasurements params:
p->biasAccCovariance = bias_acc_cov; // acc bias in continuous
p->biasOmegaCovariance = bias_omega_cov; // gyro bias in continuous
p->biasAccOmegaInt = bias_acc_omega_int;
p->biasAccOmegaInt = bias_acc_omega_init;
return p;
}

View File

@ -33,7 +33,6 @@ The following examples illustrate some concepts from Georgia Tech's research pap
## 2D Pose SLAM
* **LocalizationExample.cpp**: modeling robot motion
* **LocalizationExample2.cpp**: example with GPS like measurements
* **Pose2SLAMExample**: A 2D Pose SLAM example using the predefined typedefs in gtsam/slam/pose2SLAM.h
* **Pose2SLAMExample_advanced**: same, but uses an Optimizer object
* **Pose2SLAMwSPCG**: solve a simple 3 by 3 grid of Pose2 SLAM problem by using easy SPCG interface

View File

@ -95,7 +95,7 @@ template<class Class>
struct MultiplicativeGroupTraits {
typedef group_tag structure_category;
typedef multiplicative_group_tag group_flavor;
static Class Identity() { return Class::identity(); }
static Class Identity() { return Class::Identity(); }
static Class Compose(const Class &g, const Class & h) { return g * h;}
static Class Between(const Class &g, const Class & h) { return g.inverse() * h;}
static Class Inverse(const Class &g) { return g.inverse();}
@ -111,7 +111,7 @@ template<class Class>
struct AdditiveGroupTraits {
typedef group_tag structure_category;
typedef additive_group_tag group_flavor;
static Class Identity() { return Class::identity(); }
static Class Identity() { return Class::Identity(); }
static Class Compose(const Class &g, const Class & h) { return g + h;}
static Class Between(const Class &g, const Class & h) { return h - g;}
static Class Inverse(const Class &g) { return -g;}
@ -147,7 +147,7 @@ public:
DirectProduct(const G& g, const H& h):std::pair<G,H>(g,h) {}
// identity
static DirectProduct identity() { return DirectProduct(); }
static DirectProduct Identity() { return DirectProduct(); }
DirectProduct operator*(const DirectProduct& other) const {
return DirectProduct(traits<G>::Compose(this->first, other.first),
@ -181,7 +181,7 @@ public:
DirectSum(const G& g, const H& h):std::pair<G,H>(g,h) {}
// identity
static DirectSum identity() { return DirectSum(); }
static DirectSum Identity() { return DirectSum(); }
DirectSum operator+(const DirectSum& other) const {
return DirectSum(g()+other.g(), h()+other.h());

View File

@ -177,7 +177,7 @@ struct LieGroupTraits: GetDimensionImpl<Class, Class::dimension> {
/// @name Group
/// @{
typedef multiplicative_group_tag group_flavor;
static Class Identity() { return Class::identity();}
static Class Identity() { return Class::Identity();}
/// @}
/// @name Manifold

View File

@ -48,7 +48,7 @@ public:
/// @name Group
/// @{
typedef multiplicative_group_tag group_flavor;
static ProductLieGroup identity() {return ProductLieGroup();}
static ProductLieGroup Identity() {return ProductLieGroup();}
ProductLieGroup operator*(const ProductLieGroup& other) const {
return ProductLieGroup(traits<G>::Compose(this->first,other.first),

View File

@ -60,6 +60,7 @@ GTSAM_MAKE_VECTOR_DEFS(9)
GTSAM_MAKE_VECTOR_DEFS(10)
GTSAM_MAKE_VECTOR_DEFS(11)
GTSAM_MAKE_VECTOR_DEFS(12)
GTSAM_MAKE_VECTOR_DEFS(15)
typedef Eigen::VectorBlock<Vector> SubVector;
typedef Eigen::VectorBlock<const Vector> ConstSubVector;

View File

@ -169,7 +169,7 @@ struct HasVectorSpacePrereqs {
Vector v;
BOOST_CONCEPT_USAGE(HasVectorSpacePrereqs) {
p = Class::identity(); // identity
p = Class::Identity(); // identity
q = p + p; // addition
q = p - p; // subtraction
v = p.vector(); // conversion to vector
@ -192,7 +192,7 @@ struct VectorSpaceTraits: VectorSpaceImpl<Class, Class::dimension> {
/// @name Group
/// @{
typedef additive_group_tag group_flavor;
static Class Identity() { return Class::identity();}
static Class Identity() { return Class::Identity();}
/// @}
/// @name Manifold

View File

@ -29,7 +29,7 @@ class Symmetric: private Eigen::PermutationMatrix<N> {
Eigen::PermutationMatrix<N>(P) {
}
public:
static Symmetric identity() { return Symmetric(); }
static Symmetric Identity() { return Symmetric(); }
Symmetric() {
Eigen::PermutationMatrix<N>::setIdentity();
}

View File

@ -189,9 +189,9 @@ class ParameterMatrix {
* NOTE: The size at compile time is unknown so this identity is zero
* length and thus not valid.
*/
inline static ParameterMatrix identity() {
inline static ParameterMatrix Identity() {
// throw std::runtime_error(
// "ParameterMatrix::identity(): Don't use this function");
// "ParameterMatrix::Identity(): Don't use this function");
return ParameterMatrix(0);
}

View File

@ -133,7 +133,7 @@ TEST(ParameterMatrix, VectorSpace) {
// vector
EXPECT(assert_equal(Vector::Ones(M * N), params.vector()));
// identity
EXPECT(assert_equal(ParameterMatrix<M>::identity(),
EXPECT(assert_equal(ParameterMatrix<M>::Identity(),
ParameterMatrix<M>(Matrix::Zero(M, 0))));
}

View File

@ -38,7 +38,7 @@ public:
/// Default constructor yields identity
Cyclic():i_(0) {
}
static Cyclic identity() { return Cyclic();}
static Cyclic Identity() { return Cyclic();}
/// Cast to size_t
operator size_t() const {

View File

@ -213,7 +213,7 @@ public:
}
/// for Canonical
static PinholeCamera identity() {
static PinholeCamera Identity() {
return PinholeCamera(); // assumes that the default constructor is valid
}

View File

@ -412,7 +412,7 @@ public:
}
/// for Canonical
static PinholePose identity() {
static PinholePose Identity() {
return PinholePose(); // assumes that the default constructor is valid
}

View File

@ -119,7 +119,7 @@ public:
/// @{
/// identity for group operation
inline static Pose2 identity() { return Pose2(); }
inline static Pose2 Identity() { return Pose2(); }
/// inverse
GTSAM_EXPORT Pose2 inverse() const;

View File

@ -103,7 +103,7 @@ public:
/// @{
/// identity for group operation
static Pose3 identity() {
static Pose3 Identity() {
return Pose3();
}

View File

@ -107,8 +107,8 @@ namespace gtsam {
/// @name Group
/// @{
/** identity */
inline static Rot2 identity() { return Rot2(); }
/** Identity */
inline static Rot2 Identity() { return Rot2(); }
/** The inverse rotation - negative angle */
Rot2 inverse() const { return Rot2(c_, -s_);}

View File

@ -297,7 +297,7 @@ class GTSAM_EXPORT Rot3 : public LieGroup<Rot3, 3> {
/// @{
/// identity rotation for group operation
inline static Rot3 identity() {
inline static Rot3 Identity() {
return Rot3();
}

View File

@ -178,13 +178,13 @@ class SO : public LieGroup<SO<N>, internal::DimensionSO(N)> {
/// SO<N> identity for N >= 2
template <int N_ = N, typename = IsFixed<N_>>
static SO identity() {
static SO Identity() {
return SO();
}
/// SO<N> identity for N == Eigen::Dynamic
template <int N_ = N, typename = IsDynamic<N_>>
static SO identity(size_t n = 0) {
static SO Identity(size_t n = 0) {
return SO(n);
}

View File

@ -134,7 +134,7 @@ void Similarity2::print(const std::string& s) const {
<< std::endl;
}
Similarity2 Similarity2::identity() { return Similarity2(); }
Similarity2 Similarity2::Identity() { return Similarity2(); }
Similarity2 Similarity2::operator*(const Similarity2& S) const {
return Similarity2(R_ * S.R_, ((1.0 / S.s_) * t_) + R_ * S.t_, s_ * S.s_);

View File

@ -83,7 +83,7 @@ class GTSAM_EXPORT Similarity2 : public LieGroup<Similarity2, 4> {
/// @{
/// Return an identity transform
static Similarity2 identity();
static Similarity2 Identity();
/// Composition
Similarity2 operator*(const Similarity2& S) const;

View File

@ -122,7 +122,7 @@ void Similarity3::print(const std::string& s) const {
std::cout << "t: " << translation().transpose() << " s: " << scale() << std::endl;
}
Similarity3 Similarity3::identity() {
Similarity3 Similarity3::Identity() {
return Similarity3();
}
Similarity3 Similarity3::operator*(const Similarity3& S) const {

View File

@ -84,7 +84,7 @@ class GTSAM_EXPORT Similarity3 : public LieGroup<Similarity3, 7> {
/// @{
/// Return an identity transform
static Similarity3 identity();
static Similarity3 Identity();
/// Composition
Similarity3 operator*(const Similarity3& S) const;

View File

@ -88,7 +88,7 @@ class GTSAM_EXPORT SphericalCamera {
/// Default constructor
SphericalCamera()
: pose_(Pose3::identity()), emptyCal_(boost::make_shared<EmptyCal>()) {}
: pose_(Pose3()), emptyCal_(boost::make_shared<EmptyCal>()) {}
/// Constructor with pose
explicit SphericalCamera(const Pose3& pose)
@ -198,9 +198,9 @@ class GTSAM_EXPORT SphericalCamera {
}
/// for Canonical
static SphericalCamera identity() {
static SphericalCamera Identity() {
return SphericalCamera(
Pose3::identity()); // assumes that the default constructor is valid
Pose3::Identity()); // assumes that the default constructor is valid
}
/// for Linear Triangulation

View File

@ -71,7 +71,7 @@ public:
/// @{
/// identity
inline static StereoPoint2 identity() {
inline static StereoPoint2 Identity() {
return StereoPoint2();
}

View File

@ -16,7 +16,7 @@ class Point2 {
bool equals(const gtsam::Point2& point, double tol) const;
// Group
static gtsam::Point2 identity();
static gtsam::Point2 Identity();
// Standard Interface
double x() const;
@ -73,7 +73,7 @@ class StereoPoint2 {
bool equals(const gtsam::StereoPoint2& point, double tol) const;
// Group
static gtsam::StereoPoint2 identity();
static gtsam::StereoPoint2 Identity();
gtsam::StereoPoint2 inverse() const;
gtsam::StereoPoint2 compose(const gtsam::StereoPoint2& p2) const;
gtsam::StereoPoint2 between(const gtsam::StereoPoint2& p2) const;
@ -115,7 +115,7 @@ class Point3 {
bool equals(const gtsam::Point3& p, double tol) const;
// Group
static gtsam::Point3 identity();
static gtsam::Point3 Identity();
// Standard Interface
Vector vector() const;
@ -149,7 +149,7 @@ class Rot2 {
bool equals(const gtsam::Rot2& rot, double tol) const;
// Group
static gtsam::Rot2 identity();
static gtsam::Rot2 Identity();
gtsam::Rot2 inverse();
gtsam::Rot2 compose(const gtsam::Rot2& p2) const;
gtsam::Rot2 between(const gtsam::Rot2& p2) const;
@ -198,7 +198,7 @@ class SO3 {
bool equals(const gtsam::SO3& other, double tol) const;
// Group
static gtsam::SO3 identity();
static gtsam::SO3 Identity();
gtsam::SO3 inverse() const;
gtsam::SO3 between(const gtsam::SO3& R) const;
gtsam::SO3 compose(const gtsam::SO3& R) const;
@ -228,7 +228,7 @@ class SO4 {
bool equals(const gtsam::SO4& other, double tol) const;
// Group
static gtsam::SO4 identity();
static gtsam::SO4 Identity();
gtsam::SO4 inverse() const;
gtsam::SO4 between(const gtsam::SO4& Q) const;
gtsam::SO4 compose(const gtsam::SO4& Q) const;
@ -258,7 +258,7 @@ class SOn {
bool equals(const gtsam::SOn& other, double tol) const;
// Group
static gtsam::SOn identity();
static gtsam::SOn Identity();
gtsam::SOn inverse() const;
gtsam::SOn between(const gtsam::SOn& Q) const;
gtsam::SOn compose(const gtsam::SOn& Q) const;
@ -322,7 +322,7 @@ class Rot3 {
bool equals(const gtsam::Rot3& rot, double tol) const;
// Group
static gtsam::Rot3 identity();
static gtsam::Rot3 Identity();
gtsam::Rot3 inverse() const;
gtsam::Rot3 compose(const gtsam::Rot3& p2) const;
gtsam::Rot3 between(const gtsam::Rot3& p2) const;
@ -380,7 +380,7 @@ class Pose2 {
bool equals(const gtsam::Pose2& pose, double tol) const;
// Group
static gtsam::Pose2 identity();
static gtsam::Pose2 Identity();
gtsam::Pose2 inverse() const;
gtsam::Pose2 compose(const gtsam::Pose2& p2) const;
gtsam::Pose2 between(const gtsam::Pose2& p2) const;
@ -444,7 +444,7 @@ class Pose3 {
bool equals(const gtsam::Pose3& pose, double tol) const;
// Group
static gtsam::Pose3 identity();
static gtsam::Pose3 Identity();
gtsam::Pose3 inverse() const;
gtsam::Pose3 inverse(Eigen::Ref<Eigen::MatrixXd> H) const;
gtsam::Pose3 compose(const gtsam::Pose3& pose) const;

View File

@ -902,7 +902,7 @@ TEST(Pose2 , TransformCovariance3) {
/* ************************************************************************* */
TEST(Pose2, Print) {
Pose2 pose(Rot2::identity(), Point2(1, 2));
Pose2 pose(Rot2::Identity(), Point2(1, 2));
// Generate the expected output
string s = "Planar Pose";

View File

@ -1133,7 +1133,7 @@ Pose3 testing_interpolate(const Pose3& t1, const Pose3& t2, double gamma) { retu
TEST(Pose3, interpolateJacobians) {
{
Pose3 X = Pose3::identity();
Pose3 X = Pose3::Identity();
Pose3 Y(Rot3::Rz(M_PI_2), Point3(1, 0, 0));
double t = 0.5;
Pose3 expectedPoseInterp(Rot3::Rz(M_PI_4), Point3(0.5, -0.207107, 0)); // note: different from test above: this is full Pose3 interpolation
@ -1147,10 +1147,10 @@ TEST(Pose3, interpolateJacobians) {
EXPECT(assert_equal(expectedJacobianY,actualJacobianY,1e-6));
}
{
Pose3 X = Pose3::identity();
Pose3 Y(Rot3::identity(), Point3(1, 0, 0));
Pose3 X = Pose3::Identity();
Pose3 Y(Rot3::Identity(), Point3(1, 0, 0));
double t = 0.3;
Pose3 expectedPoseInterp(Rot3::identity(), Point3(0.3, 0, 0));
Pose3 expectedPoseInterp(Rot3::Identity(), Point3(0.3, 0, 0));
Matrix actualJacobianX, actualJacobianY;
EXPECT(assert_equal(expectedPoseInterp, interpolate(X, Y, t, actualJacobianX, actualJacobianY), 1e-5));
@ -1161,7 +1161,7 @@ TEST(Pose3, interpolateJacobians) {
EXPECT(assert_equal(expectedJacobianY,actualJacobianY,1e-6));
}
{
Pose3 X = Pose3::identity();
Pose3 X = Pose3::Identity();
Pose3 Y(Rot3::Rz(M_PI_2), Point3(0, 0, 0));
double t = 0.5;
Pose3 expectedPoseInterp(Rot3::Rz(M_PI_4), Point3(0, 0, 0));
@ -1204,7 +1204,7 @@ TEST(Pose3, Create) {
/* ************************************************************************* */
TEST(Pose3, Print) {
Pose3 pose(Rot3::identity(), Point3(1, 2, 3));
Pose3 pose(Rot3::Identity(), Point3(1, 2, 3));
// Generate the expected output
std::string expected = "R: [\n\t1, 0, 0;\n\t0, 1, 0;\n\t0, 0, 1\n]\nt: 1 2 3\n";

View File

@ -203,11 +203,11 @@ TEST(Similarity3, ExpLogMap) {
Vector7 zeros;
zeros << 0, 0, 0, 0, 0, 0, 0;
Vector7 logIdentity = Similarity3::Logmap(Similarity3::identity());
Vector7 logIdentity = Similarity3::Logmap(Similarity3::Identity());
EXPECT(assert_equal(zeros, logIdentity));
Similarity3 expZero = Similarity3::Expmap(zeros);
Similarity3 ident = Similarity3::identity();
Similarity3 ident = Similarity3::Identity();
EXPECT(assert_equal(expZero, ident));
// Compare to matrix exponential, using expm in Lie.h
@ -391,7 +391,7 @@ TEST(Similarity3, Optimization) {
NonlinearFactorGraph graph;
graph.addPrior(key, prior, model);
// Create initial estimate with identity transform
// Create initial estimate with Identity transform
Values initial;
initial.insert<Similarity3>(key, Similarity3());

View File

@ -93,9 +93,14 @@ void PreintegratedCombinedMeasurements::resetIntegration() {
//------------------------------------------------------------------------------
void PreintegratedCombinedMeasurements::integrateMeasurement(
const Vector3& measuredAcc, const Vector3& measuredOmega, double dt) {
if (dt <= 0) {
throw std::runtime_error(
"PreintegratedCombinedMeasurements::integrateMeasurement: dt <=0");
}
// Update preintegrated measurements.
Matrix9 A; // overall Jacobian wrt preintegrated measurements (df/dx)
Matrix93 B, C;
Matrix9 A; // Jacobian wrt preintegrated measurements without bias (df/dx)
Matrix93 B, C; // Jacobian of state wrpt accel bias and omega bias respectively.
PreintegrationType::update(measuredAcc, measuredOmega, dt, &A, &B, &C);
// Update preintegrated measurements covariance: as in [2] we consider a first
@ -105,47 +110,78 @@ void PreintegratedCombinedMeasurements::integrateMeasurement(
// and preintegrated measurements
// Single Jacobians to propagate covariance
// TODO(frank): should we not also account for bias on position?
Matrix3 theta_H_biasOmega = -C.topRows<3>();
Matrix3 vel_H_biasAcc = -B.bottomRows<3>();
Matrix3 theta_H_biasOmega = C.topRows<3>();
Matrix3 pos_H_biasAcc = B.middleRows<3>(3);
Matrix3 vel_H_biasAcc = B.bottomRows<3>();
Matrix3 theta_H_biasOmegaInit = -theta_H_biasOmega;
Matrix3 pos_H_biasAccInit = -pos_H_biasAcc;
Matrix3 vel_H_biasAccInit = -vel_H_biasAcc;
// overall Jacobian wrt preintegrated measurements (df/dx)
Eigen::Matrix<double, 15, 15> F;
F.setZero();
F.block<9, 9>(0, 0) = A;
F.block<3, 3>(0, 12) = theta_H_biasOmega;
F.block<3, 3>(3, 9) = pos_H_biasAcc;
F.block<3, 3>(6, 9) = vel_H_biasAcc;
F.block<6, 6>(9, 9) = I_6x6;
// Update the uncertainty on the state (matrix F in [4]).
preintMeasCov_ = F * preintMeasCov_ * F.transpose();
// propagate uncertainty
// TODO(frank): use noiseModel routine so we can have arbitrary noise models.
const Matrix3& aCov = p().accelerometerCovariance;
const Matrix3& wCov = p().gyroscopeCovariance;
const Matrix3& iCov = p().integrationCovariance;
const Matrix6& bInitCov = p().biasAccOmegaInt;
// first order uncertainty propagation
// Optimized matrix multiplication (1/dt) * G * measurementCovariance *
// G.transpose()
// Optimized matrix mult: (1/dt) * G * measurementCovariance * G.transpose()
Eigen::Matrix<double, 15, 15> G_measCov_Gt;
G_measCov_Gt.setZero(15, 15);
const Matrix3& bInitCov11 = bInitCov.block<3, 3>(0, 0) / dt;
const Matrix3& bInitCov12 = bInitCov.block<3, 3>(0, 3) / dt;
const Matrix3& bInitCov21 = bInitCov.block<3, 3>(3, 0) / dt;
const Matrix3& bInitCov22 = bInitCov.block<3, 3>(3, 3) / dt;
// BLOCK DIAGONAL TERMS
D_t_t(&G_measCov_Gt) = dt * iCov;
D_v_v(&G_measCov_Gt) = (1 / dt) * vel_H_biasAcc
* (aCov + p().biasAccOmegaInt.block<3, 3>(0, 0))
* (vel_H_biasAcc.transpose());
D_R_R(&G_measCov_Gt) = (1 / dt) * theta_H_biasOmega
* (wCov + p().biasAccOmegaInt.block<3, 3>(3, 3))
* (theta_H_biasOmega.transpose());
D_R_R(&G_measCov_Gt) =
(theta_H_biasOmega * (wCov / dt) * theta_H_biasOmega.transpose()) //
+
(theta_H_biasOmegaInit * bInitCov22 * theta_H_biasOmegaInit.transpose());
D_t_t(&G_measCov_Gt) =
(pos_H_biasAcc * (aCov / dt) * pos_H_biasAcc.transpose()) //
+ (pos_H_biasAccInit * bInitCov11 * pos_H_biasAccInit.transpose()) //
+ (dt * iCov);
D_v_v(&G_measCov_Gt) =
(vel_H_biasAcc * (aCov / dt) * vel_H_biasAcc.transpose()) //
+ (vel_H_biasAccInit * bInitCov11 * vel_H_biasAccInit.transpose());
D_a_a(&G_measCov_Gt) = dt * p().biasAccCovariance;
D_g_g(&G_measCov_Gt) = dt * p().biasOmegaCovariance;
// OFF BLOCK DIAGONAL TERMS
Matrix3 temp = vel_H_biasAcc * p().biasAccOmegaInt.block<3, 3>(3, 0)
* theta_H_biasOmega.transpose();
D_v_R(&G_measCov_Gt) = temp;
D_R_v(&G_measCov_Gt) = temp.transpose();
preintMeasCov_ = F * preintMeasCov_ * F.transpose() + G_measCov_Gt;
D_R_t(&G_measCov_Gt) =
theta_H_biasOmegaInit * bInitCov21 * pos_H_biasAccInit.transpose();
D_R_v(&G_measCov_Gt) =
theta_H_biasOmegaInit * bInitCov21 * vel_H_biasAccInit.transpose();
D_t_R(&G_measCov_Gt) =
pos_H_biasAccInit * bInitCov12 * theta_H_biasOmegaInit.transpose();
D_t_v(&G_measCov_Gt) =
(pos_H_biasAcc * (aCov / dt) * vel_H_biasAcc.transpose()) +
(pos_H_biasAccInit * bInitCov11 * vel_H_biasAccInit.transpose());
D_v_R(&G_measCov_Gt) =
vel_H_biasAccInit * bInitCov12 * theta_H_biasOmegaInit.transpose();
D_v_t(&G_measCov_Gt) =
(vel_H_biasAcc * (aCov / dt) * pos_H_biasAcc.transpose()) +
(vel_H_biasAccInit * bInitCov11 * pos_H_biasAccInit.transpose());
preintMeasCov_.noalias() += G_measCov_Gt;
}
//------------------------------------------------------------------------------
@ -253,6 +289,5 @@ std::ostream& operator<<(std::ostream& os, const CombinedImuFactor& f) {
os << " noise model sigmas: " << f.noiseModel_->sigmas().transpose();
return os;
}
}
/// namespace gtsam
} // namespace gtsam

View File

@ -51,6 +51,7 @@ typedef ManifoldPreintegration PreintegrationType;
* TRO, 28(1):61-76, 2012.
* [3] L. Carlone, S. Williams, R. Roberts, "Preintegrated IMU factor:
* Computation of the Jacobian Matrices", Tech. Report, 2013.
* Available in this repo as "PreintegratedIMUJacobians.pdf".
* [4] C. Forster, L. Carlone, F. Dellaert, D. Scaramuzza, IMU Preintegration on
* Manifold for Efficient Visual-Inertial Maximum-a-Posteriori Estimation,
* Robotics: Science and Systems (RSS), 2015.
@ -61,7 +62,7 @@ typedef ManifoldPreintegration PreintegrationType;
struct GTSAM_EXPORT PreintegrationCombinedParams : PreintegrationParams {
Matrix3 biasAccCovariance; ///< continuous-time "Covariance" describing accelerometer bias random walk
Matrix3 biasOmegaCovariance; ///< continuous-time "Covariance" describing gyroscope bias random walk
Matrix6 biasAccOmegaInt; ///< covariance of bias used for pre-integration
Matrix6 biasAccOmegaInt; ///< covariance of bias used as initial estimate.
/// Default constructor makes uninitialized params struct.
/// Used for serialization.
@ -92,11 +93,11 @@ struct GTSAM_EXPORT PreintegrationCombinedParams : PreintegrationParams {
void setBiasAccCovariance(const Matrix3& cov) { biasAccCovariance=cov; }
void setBiasOmegaCovariance(const Matrix3& cov) { biasOmegaCovariance=cov; }
void setBiasAccOmegaInt(const Matrix6& cov) { biasAccOmegaInt=cov; }
void setBiasAccOmegaInit(const Matrix6& cov) { biasAccOmegaInt=cov; }
const Matrix3& getBiasAccCovariance() const { return biasAccCovariance; }
const Matrix3& getBiasOmegaCovariance() const { return biasOmegaCovariance; }
const Matrix6& getBiasAccOmegaInt() const { return biasAccOmegaInt; }
const Matrix6& getBiasAccOmegaInit() const { return biasAccOmegaInt; }
private:

View File

@ -105,7 +105,7 @@ public:
/// @{
/** identity for group operation */
static ConstantBias identity() {
static ConstantBias Identity() {
return ConstantBias();
}

View File

@ -59,7 +59,7 @@ void PreintegratedImuMeasurements::integrateMeasurement(
// Update preintegrated measurements (also get Jacobian)
Matrix9 A; // overall Jacobian wrt preintegrated measurements (df/dx)
Matrix93 B, C;
Matrix93 B, C; // Jacobian of state wrpt accel bias and omega bias respectively.
PreintegrationType::update(measuredAcc, measuredOmega, dt, &A, &B, &C);
// first order covariance propagation:
@ -73,11 +73,13 @@ void PreintegratedImuMeasurements::integrateMeasurement(
const Matrix3& iCov = p().integrationCovariance;
// (1/dt) allows to pass from continuous time noise to discrete time noise
// Update the uncertainty on the state (matrix A in [4]).
preintMeasCov_ = A * preintMeasCov_ * A.transpose();
// These 2 updates account for uncertainty on the IMU measurement (matrix B in [4]).
preintMeasCov_.noalias() += B * (aCov / dt) * B.transpose();
preintMeasCov_.noalias() += C * (wCov / dt) * C.transpose();
// NOTE(frank): (Gi*dt)*(C/dt)*(Gi'*dt), with Gi << Z_3x3, I_3x3, Z_3x3
// NOTE(frank): (Gi*dt)*(C/dt)*(Gi'*dt), with Gi << Z_3x3, I_3x3, Z_3x3 (9x3 matrix)
preintMeasCov_.block<3, 3>(3, 3).noalias() += iCov * dt;
}

View File

@ -53,6 +53,7 @@ typedef ManifoldPreintegration PreintegrationType;
* TRO, 28(1):61-76, 2012.
* [3] L. Carlone, S. Williams, R. Roberts, "Preintegrated IMU factor:
* Computation of the Jacobian Matrices", Tech. Report, 2013.
* Available in this repo as "PreintegratedIMUJacobians.pdf".
* [4] C. Forster, L. Carlone, F. Dellaert, D. Scaramuzza, "IMU Preintegration on
* Manifold for Efficient Visual-Inertial Maximum-a-Posteriori Estimation",
* Robotics: Science and Systems (RSS), 2015.

View File

@ -157,9 +157,9 @@ Vector9 PreintegrationBase::computeError(const NavState& state_i,
state_j.localCoordinates(predictedState_j, H2 ? &D_error_state_j : 0,
H1 || H3 ? &D_error_predict : 0);
if (H1) *H1 << D_error_predict* D_predict_state_i;
if (H1) *H1 << D_error_predict * D_predict_state_i;
if (H2) *H2 << D_error_state_j;
if (H3) *H3 << D_error_predict* D_predict_bias_i;
if (H3) *H3 << D_error_predict * D_predict_bias_i;
return error;
}

View File

@ -15,8 +15,8 @@
* @author Frank Dellaert
*/
#include <gtsam/navigation/ScenarioRunner.h>
#include <gtsam/base/timing.h>
#include <gtsam/navigation/ScenarioRunner.h>
#include <boost/assign.hpp>
#include <cmath>
@ -105,4 +105,62 @@ Matrix6 ScenarioRunner::estimateNoiseCovariance(size_t N) const {
return Q / (N - 1);
}
PreintegratedCombinedMeasurements CombinedScenarioRunner::integrate(
double T, const Bias& estimatedBias, bool corrupted) const {
gttic_(integrate);
PreintegratedCombinedMeasurements pim(p_, estimatedBias);
const double dt = imuSampleTime();
const size_t nrSteps = T / dt;
double t = 0;
for (size_t k = 0; k < nrSteps; k++, t += dt) {
Vector3 measuredOmega =
corrupted ? measuredAngularVelocity(t) : actualAngularVelocity(t);
Vector3 measuredAcc =
corrupted ? measuredSpecificForce(t) : actualSpecificForce(t);
pim.integrateMeasurement(measuredAcc, measuredOmega, dt);
}
return pim;
}
NavState CombinedScenarioRunner::predict(
const PreintegratedCombinedMeasurements& pim,
const Bias& estimatedBias) const {
const NavState state_i(scenario().pose(0), scenario().velocity_n(0));
return pim.predict(state_i, estimatedBias);
}
Eigen::Matrix<double, 15, 15> CombinedScenarioRunner::estimateCovariance(
double T, size_t N, const Bias& estimatedBias) const {
gttic_(estimateCovariance);
// Get predict prediction from ground truth measurements
NavState prediction = predict(integrate(T));
// Sample !
Matrix samples(15, N);
Vector15 sum = Vector15::Zero();
for (size_t i = 0; i < N; i++) {
auto pim = integrate(T, estimatedBias, true);
NavState sampled = predict(pim);
Vector15 xi = Vector15::Zero();
xi << sampled.localCoordinates(prediction),
(estimatedBias_.vector() - estimatedBias.vector());
samples.col(i) = xi;
sum += xi;
}
// Compute MC covariance
Vector15 sampleMean = sum / N;
Eigen::Matrix<double, 15, 15> Q;
Q.setZero();
for (size_t i = 0; i < N; i++) {
Vector15 xi = samples.col(i) - sampleMean;
Q += xi * xi.transpose();
}
return Q / (N - 1);
}
} // namespace gtsam

View File

@ -16,9 +16,10 @@
*/
#pragma once
#include <gtsam/linear/Sampler.h>
#include <gtsam/navigation/CombinedImuFactor.h>
#include <gtsam/navigation/ImuFactor.h>
#include <gtsam/navigation/Scenario.h>
#include <gtsam/linear/Sampler.h>
namespace gtsam {
@ -66,10 +67,10 @@ class GTSAM_EXPORT ScenarioRunner {
// also, uses g=10 for easy debugging
const Vector3& gravity_n() const { return p_->n_gravity; }
const Scenario& scenario() const { return scenario_; }
// A gyro simply measures angular velocity in body frame
Vector3 actualAngularVelocity(double t) const {
return scenario_.omega_b(t);
}
Vector3 actualAngularVelocity(double t) const { return scenario_.omega_b(t); }
// An accelerometer measures acceleration in body, but not gravity
Vector3 actualSpecificForce(double t) const {
@ -106,4 +107,39 @@ class GTSAM_EXPORT ScenarioRunner {
Matrix6 estimateNoiseCovariance(size_t N = 1000) const;
};
/*
* Simple class to test navigation scenarios with CombinedImuMeasurements.
* Takes a trajectory scenario as input, and can generate IMU measurements
*/
class GTSAM_EXPORT CombinedScenarioRunner : public ScenarioRunner {
public:
typedef boost::shared_ptr<PreintegrationCombinedParams> SharedParams;
private:
const SharedParams p_;
const Bias estimatedBias_;
public:
CombinedScenarioRunner(const Scenario& scenario, const SharedParams& p,
double imuSampleTime = 1.0 / 100.0,
const Bias& bias = Bias())
: ScenarioRunner(scenario, static_cast<ScenarioRunner::SharedParams>(p),
imuSampleTime, bias),
p_(p),
estimatedBias_(bias) {}
/// Integrate measurements for T seconds into a PIM
PreintegratedCombinedMeasurements integrate(
double T, const Bias& estimatedBias = Bias(),
bool corrupted = false) const;
/// Predict predict given a PIM
NavState predict(const PreintegratedCombinedMeasurements& pim,
const Bias& estimatedBias = Bias()) const;
/// Compute a Monte Carlo estimate of the predict covariance using N samples
Eigen::Matrix<double, 15, 15> estimateCovariance(
double T, size_t N = 1000, const Bias& estimatedBias = Bias()) const;
};
} // namespace gtsam

View File

@ -17,7 +17,7 @@ class ConstantBias {
bool equals(const gtsam::imuBias::ConstantBias& expected, double tol) const;
// Group
static gtsam::imuBias::ConstantBias identity();
static gtsam::imuBias::ConstantBias Identity();
// Operator Overloads
gtsam::imuBias::ConstantBias operator-() const;
@ -165,11 +165,11 @@ virtual class PreintegrationCombinedParams : gtsam::PreintegrationParams {
void setBiasAccCovariance(Matrix cov);
void setBiasOmegaCovariance(Matrix cov);
void setBiasAccOmegaInt(Matrix cov);
void setBiasAccOmegaInit(Matrix cov);
Matrix getBiasAccCovariance() const ;
Matrix getBiasOmegaCovariance() const ;
Matrix getBiasAccOmegaInt() const;
Matrix getBiasAccOmegaInit() const;
};

View File

@ -16,18 +16,19 @@
* @author Frank Dellaert
* @author Richard Roberts
* @author Stephen Williams
* @author Varun Agrawal
*/
#include <gtsam/navigation/ImuFactor.h>
#include <gtsam/navigation/CombinedImuFactor.h>
#include <gtsam/navigation/ImuBias.h>
#include <gtsam/geometry/Pose3.h>
#include <gtsam/nonlinear/Values.h>
#include <gtsam/inference/Symbol.h>
#include <CppUnitLite/TestHarness.h>
#include <gtsam/base/TestableAssertions.h>
#include <gtsam/base/numericalDerivative.h>
#include <CppUnitLite/TestHarness.h>
#include <gtsam/geometry/Pose3.h>
#include <gtsam/inference/Symbol.h>
#include <gtsam/navigation/CombinedImuFactor.h>
#include <gtsam/navigation/ImuBias.h>
#include <gtsam/navigation/ImuFactor.h>
#include <gtsam/navigation/ScenarioRunner.h>
#include <gtsam/nonlinear/Values.h>
#include <list>
@ -40,12 +41,15 @@ static boost::shared_ptr<PreintegratedCombinedMeasurements::Params> Params() {
p->gyroscopeCovariance = kGyroSigma * kGyroSigma * I_3x3;
p->accelerometerCovariance = kAccelSigma * kAccelSigma * I_3x3;
p->integrationCovariance = 0.0001 * I_3x3;
p->biasAccCovariance = Z_3x3;
p->biasOmegaCovariance = Z_3x3;
p->biasAccOmegaInt = Z_6x6;
return p;
}
}
} // namespace testing
/* ************************************************************************* */
TEST( CombinedImuFactor, PreintegratedMeasurements ) {
TEST(CombinedImuFactor, PreintegratedMeasurements ) {
// Linearization point
Bias bias(Vector3(0, 0, 0), Vector3(0, 0, 0)); ///< Current estimate of acceleration and angular rate biases
@ -71,8 +75,9 @@ TEST( CombinedImuFactor, PreintegratedMeasurements ) {
DOUBLES_EQUAL(expected1.deltaTij(), actual1.deltaTij(), tol);
}
/* ************************************************************************* */
TEST( CombinedImuFactor, ErrorWithBiases ) {
TEST(CombinedImuFactor, ErrorWithBiases ) {
Bias bias(Vector3(0.2, 0, 0), Vector3(0, 0, 0.3)); // Biases (acc, rot)
Bias bias2(Vector3(0.2, 0.2, 0), Vector3(1, 0, 0.3)); // Biases (acc, rot)
Pose3 x1(Rot3::Expmap(Vector3(0, 0, M_PI / 4.0)), Point3(5.0, 1.0, -50.0));
@ -203,6 +208,114 @@ TEST(CombinedImuFactor, PredictRotation) {
EXPECT(assert_equal(expectedPose, actual.pose(), tol));
}
/* ************************************************************************* */
// Testing covariance to check if all the jacobians are accounted for.
TEST(CombinedImuFactor, CheckCovariance) {
auto params = PreintegrationCombinedParams::MakeSharedU(9.81);
params->setAccelerometerCovariance(pow(0.01, 2) * I_3x3);
params->setGyroscopeCovariance(pow(1.75e-4, 2) * I_3x3);
params->setIntegrationCovariance(pow(0.0, 2) * I_3x3);
params->setOmegaCoriolis(Vector3::Zero());
imuBias::ConstantBias currentBias;
PreintegratedCombinedMeasurements actual(params, currentBias);
// Measurements
Vector3 measuredAcc(0.1577, -0.8251, 9.6111);
Vector3 measuredOmega(-0.0210, 0.0311, 0.0145);
double deltaT = 0.01;
actual.integrateMeasurement(measuredAcc, measuredOmega, deltaT);
Eigen::Matrix<double, 15, 15> expected;
expected << 0.01, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, //
0, 0.01, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, //
0, 0, 0.01, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, //
0, 0, 0, 2.50025e-07, 0, 0, 5.0005e-05, 0, 0, 0, 0, 0, 0, 0, 0, //
0, 0, 0, 0, 2.50025e-07, 0, 0, 5.0005e-05, 0, 0, 0, 0, 0, 0, 0, //
0, 0, 0, 0, 0, 2.50025e-07, 0, 0, 5.0005e-05, 0, 0, 0, 0, 0, 0, //
0, 0, 0, 5.0005e-05, 0, 0, 0.010001, 0, 0, 0, 0, 0, 0, 0, 0, //
0, 0, 0, 0, 5.0005e-05, 0, 0, 0.010001, 0, 0, 0, 0, 0, 0, 0, //
0, 0, 0, 0, 0, 5.0005e-05, 0, 0, 0.010001, 0, 0, 0, 0, 0, 0, //
0, 0, 0, 0, 0, 0, 0, 0, 0, 0.01, 0, 0, 0, 0, 0, //
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.01, 0, 0, 0, 0, //
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.01, 0, 0, 0, //
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.01, 0, 0, //
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.01, 0, //
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.01;
// regression
EXPECT(assert_equal(expected, actual.preintMeasCov()));
}
// Test that the covariance values for the ImuFactor and the CombinedImuFactor
// (top-left 9x9) are the same
TEST(CombinedImuFactor, SameCovariance) {
// IMU measurements and time delta
Vector3 accMeas(0.1577, -0.8251, 9.6111);
Vector3 omegaMeas(-0.0210, 0.0311, 0.0145);
double deltaT = 0.01;
// Assume zero bias
imuBias::ConstantBias currentBias;
// Define params for ImuFactor
auto params = PreintegrationParams::MakeSharedU();
params->setAccelerometerCovariance(pow(0.01, 2) * I_3x3);
params->setGyroscopeCovariance(pow(1.75e-4, 2) * I_3x3);
params->setIntegrationCovariance(pow(0, 2) * I_3x3);
params->setOmegaCoriolis(Vector3::Zero());
// The IMU preintegration object for ImuFactor
PreintegratedImuMeasurements pim(params, currentBias);
pim.integrateMeasurement(accMeas, omegaMeas, deltaT);
// Define params for CombinedImuFactor
auto combined_params = PreintegrationCombinedParams::MakeSharedU();
combined_params->setAccelerometerCovariance(pow(0.01, 2) * I_3x3);
combined_params->setGyroscopeCovariance(pow(1.75e-4, 2) * I_3x3);
// Set bias integration covariance explicitly to zero
combined_params->setIntegrationCovariance(Z_3x3);
combined_params->setOmegaCoriolis(Z_3x1);
// Set bias initial covariance explicitly to zero
combined_params->setBiasAccOmegaInit(Z_6x6);
// The IMU preintegration object for CombinedImuFactor
PreintegratedCombinedMeasurements cpim(combined_params, currentBias);
cpim.integrateMeasurement(accMeas, omegaMeas, deltaT);
// Assert if the noise covariance
EXPECT(assert_equal(pim.preintMeasCov(),
cpim.preintMeasCov().block(0, 0, 9, 9)));
}
/* ************************************************************************* */
TEST(CombinedImuFactor, Accelerating) {
const double a = 0.2, v = 50;
// Set up body pointing towards y axis, and start at 10,20,0 with velocity
// going in X The body itself has Z axis pointing down
const Rot3 nRb(Point3(0, 1, 0), Point3(1, 0, 0), Point3(0, 0, -1));
const Point3 initial_position(10, 20, 0);
const Vector3 initial_velocity(v, 0, 0);
const AcceleratingScenario scenario(nRb, initial_position, initial_velocity,
Vector3(a, 0, 0));
const double T = 3.0; // seconds
CombinedScenarioRunner runner(scenario, testing::Params(), T / 10);
PreintegratedCombinedMeasurements pim = runner.integrate(T);
EXPECT(assert_equal(scenario.pose(T), runner.predict(pim).pose(), 1e-9));
auto estimatedCov = runner.estimateCovariance(T, 100);
Eigen::Matrix<double, 15, 15> expected = pim.preintMeasCov();
EXPECT(assert_equal(estimatedCov, expected, 0.1));
}
/* ************************************************************************* */
int main() {
TestResult tr;

View File

@ -122,7 +122,7 @@ class Class : public Point3 {
enum {dimension = 3};
using Point3::Point3;
const Vector3& vector() const { return *this; }
inline static Class identity() { return Class(0,0,0); }
inline static Class Identity() { return Class(0,0,0); }
double norm(OptionalJacobian<1,3> H = boost::none) const {
return norm3(*this, H);
}
@ -285,7 +285,7 @@ TEST(Expression, compose2) {
// Test compose with one arguments referring to constant rotation.
TEST(Expression, compose3) {
// Create expression
Rot3_ R1(Rot3::identity()), R2(3);
Rot3_ R1(Rot3::Identity()), R2(3);
Rot3_ R3 = R1 * R2;
// Check keys

View File

@ -217,7 +217,7 @@ TEST(OrientedPlane3Factor, Issue561Simplified) {
// Setup prior factors
// Note: If x0 is too far away from the origin (e.g. x=100) this test can fail.
Pose3 x0(Rot3::identity(), Vector3(10, -1, 1));
Pose3 x0(Rot3::Identity(), Vector3(10, -1, 1));
auto x0_noise = noiseModel::Isotropic::Sigma(6, 0.01);
graph.addPrior<Pose3>(X(0), x0, x0_noise);
@ -241,7 +241,7 @@ TEST(OrientedPlane3Factor, Issue561Simplified) {
// Initial values
// Just offset the initial pose by 1m. This is what we are trying to optimize.
Values initialEstimate;
Pose3 x0_initial = x0.compose(Pose3(Rot3::identity(), Vector3(1,0,0)));
Pose3 x0_initial = x0.compose(Pose3(Rot3::Identity(), Vector3(1,0,0)));
initialEstimate.insert(P(1), p1);
initialEstimate.insert(P(2), p2);
initialEstimate.insert(X(0), x0_initial);

View File

@ -69,7 +69,7 @@ SmartProjectionParams params(
TEST(SmartProjectionRigFactor, Constructor) {
using namespace vanillaRig;
boost::shared_ptr<Cameras> cameraRig(new Cameras());
cameraRig->push_back(Camera(Pose3::identity(), sharedK));
cameraRig->push_back(Camera(Pose3(), sharedK));
SmartRigFactor::shared_ptr factor1(
new SmartRigFactor(model, cameraRig, params));
}
@ -89,7 +89,7 @@ TEST(SmartProjectionRigFactor, Constructor2) {
TEST(SmartProjectionRigFactor, Constructor3) {
using namespace vanillaRig;
boost::shared_ptr<Cameras> cameraRig(new Cameras());
cameraRig->push_back(Camera(Pose3::identity(), sharedK));
cameraRig->push_back(Camera(Pose3(), sharedK));
SmartRigFactor::shared_ptr factor1(
new SmartRigFactor(model, cameraRig, params));
factor1->add(measurement1, x1, cameraId1);
@ -99,7 +99,7 @@ TEST(SmartProjectionRigFactor, Constructor3) {
TEST(SmartProjectionRigFactor, Constructor4) {
using namespace vanillaRig;
boost::shared_ptr<Cameras> cameraRig(new Cameras());
cameraRig->push_back(Camera(Pose3::identity(), sharedK));
cameraRig->push_back(Camera(Pose3(), sharedK));
SmartProjectionParams params2(
gtsam::HESSIAN,
gtsam::ZERO_ON_DEGENERACY); // only config that works with rig factors
@ -112,7 +112,7 @@ TEST(SmartProjectionRigFactor, Constructor4) {
TEST(SmartProjectionRigFactor, Equals) {
using namespace vanillaRig;
boost::shared_ptr<Cameras> cameraRig(new Cameras()); // single camera in the rig
cameraRig->push_back(Camera(Pose3::identity(), sharedK));
cameraRig->push_back(Camera(Pose3(), sharedK));
SmartRigFactor::shared_ptr factor1(
new SmartRigFactor(model, cameraRig, params));
@ -140,7 +140,7 @@ TEST(SmartProjectionRigFactor, noiseless) {
Point2 level_uv_right = level_camera_right.project(landmark1);
boost::shared_ptr<Cameras> cameraRig(new Cameras()); // single camera in the rig
cameraRig->push_back(Camera(Pose3::identity(), sharedK));
cameraRig->push_back(Camera(Pose3(), sharedK));
SmartRigFactor factor(model, cameraRig, params);
factor.add(level_uv, x1); // both taken from the same camera
@ -197,7 +197,7 @@ TEST(SmartProjectionRigFactor, noisy) {
using namespace vanillaRig;
boost::shared_ptr<Cameras> cameraRig(new Cameras()); // single camera in the rig
cameraRig->push_back(Camera(Pose3::identity(), sharedK));
cameraRig->push_back(Camera(Pose3(), sharedK));
// Project two landmarks into two cameras
Point2 pixelError(0.2, 0.2);
@ -323,7 +323,7 @@ TEST(SmartProjectionRigFactor, smartFactorWithMultipleCameras) {
Pose3(Rot3::Ypr(-M_PI / 2, 0., -M_PI / 2), Point3(1, 1, 1));
Pose3 body_T_sensor2 =
Pose3(Rot3::Ypr(-M_PI / 5, 0., -M_PI / 2), Point3(0, 0, 1));
Pose3 body_T_sensor3 = Pose3::identity();
Pose3 body_T_sensor3 = Pose3();
boost::shared_ptr<Cameras> cameraRig(new Cameras()); // single camera in the rig
cameraRig->push_back(Camera(body_T_sensor1, sharedK));
@ -407,7 +407,7 @@ TEST(SmartProjectionRigFactor, 3poses_smart_projection_factor) {
Point2Vector measurements_cam1, measurements_cam2, measurements_cam3;
boost::shared_ptr<Cameras> cameraRig(new Cameras()); // single camera in the rig
cameraRig->push_back(Camera(Pose3::identity(), sharedK2));
cameraRig->push_back(Camera(Pose3(), sharedK2));
// Project three landmarks into three cameras
projectToMultipleCameras(cam1, cam2, cam3, landmark1, measurements_cam1);
@ -495,7 +495,7 @@ TEST(SmartProjectionRigFactor, Factors) {
FastVector<size_t> cameraIds{0, 0};
boost::shared_ptr<Cameras> cameraRig(new Cameras()); // single camera in the rig
cameraRig->push_back(Camera(Pose3::identity(), sharedK));
cameraRig->push_back(Camera(Pose3(), sharedK));
SmartRigFactor::shared_ptr smartFactor1 = boost::make_shared<SmartRigFactor>(
model, cameraRig, params);
@ -578,7 +578,7 @@ TEST(SmartProjectionRigFactor, 3poses_iterative_smart_projection_factor) {
// create smart factor
boost::shared_ptr<Cameras> cameraRig(new Cameras()); // single camera in the rig
cameraRig->push_back(Camera(Pose3::identity(), sharedK));
cameraRig->push_back(Camera(Pose3(), sharedK));
FastVector<size_t> cameraIds{0, 0, 0};
SmartRigFactor::shared_ptr smartFactor1(
new SmartRigFactor(model, cameraRig, params));
@ -646,7 +646,7 @@ TEST(SmartProjectionRigFactor, landmarkDistance) {
params.setEnableEPI(false);
boost::shared_ptr<Cameras> cameraRig(new Cameras()); // single camera in the rig
cameraRig->push_back(Camera(Pose3::identity(), sharedK));
cameraRig->push_back(Camera(Pose3(), sharedK));
FastVector<size_t> cameraIds{0, 0, 0};
SmartRigFactor::shared_ptr smartFactor1(
@ -717,7 +717,7 @@ TEST(SmartProjectionRigFactor, dynamicOutlierRejection) {
params.setDynamicOutlierRejectionThreshold(dynamicOutlierRejectionThreshold);
boost::shared_ptr<Cameras> cameraRig(new Cameras()); // single camera in the rig
cameraRig->push_back(Camera(Pose3::identity(), sharedK));
cameraRig->push_back(Camera(Pose3(), sharedK));
FastVector<size_t> cameraIds{0, 0, 0};
SmartRigFactor::shared_ptr smartFactor1(
@ -783,7 +783,7 @@ TEST(SmartProjectionRigFactor, CheckHessian) {
params.setDegeneracyMode(gtsam::ZERO_ON_DEGENERACY);
boost::shared_ptr<Cameras> cameraRig(new Cameras()); // single camera in the rig
cameraRig->push_back(Camera(Pose3::identity(), sharedK));
cameraRig->push_back(Camera(Pose3(), sharedK));
FastVector<size_t> cameraIds{0, 0, 0};
SmartRigFactor::shared_ptr smartFactor1(
@ -859,7 +859,7 @@ TEST(SmartProjectionRigFactor, Hessian) {
measurements_cam1.push_back(cam2_uv1);
boost::shared_ptr<Cameras> cameraRig(new Cameras()); // single camera in the rig
cameraRig->push_back(Camera(Pose3::identity(), sharedK2));
cameraRig->push_back(Camera(Pose3(), sharedK2));
FastVector<size_t> cameraIds{0, 0};
SmartProjectionParams params(
@ -889,7 +889,7 @@ TEST(SmartProjectionRigFactor, Hessian) {
TEST(SmartProjectionRigFactor, ConstructorWithCal3Bundler) {
using namespace bundlerPose;
boost::shared_ptr<Cameras> cameraRig(new Cameras()); // single camera in the rig
cameraRig->push_back(Camera(Pose3::identity(), sharedBundlerK));
cameraRig->push_back(Camera(Pose3(), sharedBundlerK));
SmartProjectionParams params;
params.setDegeneracyMode(gtsam::ZERO_ON_DEGENERACY);
@ -917,7 +917,7 @@ TEST(SmartProjectionRigFactor, Cal3Bundler) {
KeyVector views{x1, x2, x3};
boost::shared_ptr<Cameras> cameraRig(new Cameras()); // single camera in the rig
cameraRig->push_back(Camera(Pose3::identity(), sharedBundlerK));
cameraRig->push_back(Camera(Pose3(), sharedBundlerK));
FastVector<size_t> cameraIds{0, 0, 0};
SmartRigFactor::shared_ptr smartFactor1(
@ -988,7 +988,7 @@ TEST(SmartProjectionRigFactor,
KeyVector keys{x1, x2, x3, x1};
boost::shared_ptr<Cameras> cameraRig(new Cameras()); // single camera in the rig
cameraRig->push_back(Camera(Pose3::identity(), sharedK));
cameraRig->push_back(Camera(Pose3(), sharedK));
FastVector<size_t> cameraIds{0, 0, 0, 0};
SmartRigFactor::shared_ptr smartFactor1(
@ -1116,7 +1116,7 @@ TEST(SmartProjectionRigFactor, optimization_3poses_measurementsFromSamePose) {
// create inputs
KeyVector keys{x1, x2, x3};
boost::shared_ptr<Cameras> cameraRig(new Cameras()); // single camera in the rig
cameraRig->push_back(Camera(Pose3::identity(), sharedK));
cameraRig->push_back(Camera(Pose3(), sharedK));
FastVector<size_t> cameraIds{0, 0, 0};
FastVector<size_t> cameraIdsRedundant{0, 0, 0, 0};
@ -1195,11 +1195,11 @@ TEST(SmartProjectionRigFactor, timing) {
// Default cameras for simple derivatives
static Cal3_S2::shared_ptr sharedKSimple(new Cal3_S2(100, 100, 0, 0, 0));
Rot3 R = Rot3::identity();
Rot3 R = Rot3::Identity();
Pose3 pose1 = Pose3(R, Point3(0, 0, 0));
Pose3 pose2 = Pose3(R, Point3(1, 0, 0));
Camera cam1(pose1, sharedKSimple), cam2(pose2, sharedKSimple);
Pose3 body_P_sensorId = Pose3::identity();
Pose3 body_P_sensorId = Pose3();
boost::shared_ptr<Cameras> cameraRig(new Cameras()); // single camera in the rig
cameraRig->push_back(Camera(body_P_sensorId, sharedKSimple));
@ -1267,7 +1267,7 @@ TEST(SmartProjectionFactorP, optimization_3poses_sphericalCamera) {
keys.push_back(x3);
boost::shared_ptr<Cameras> cameraRig(new Cameras());
cameraRig->push_back(Camera(Pose3::identity(), emptyK));
cameraRig->push_back(Camera(Pose3(), emptyK));
SmartProjectionParams params(
gtsam::HESSIAN,
@ -1330,10 +1330,10 @@ TEST(SmartProjectionFactorP, optimization_3poses_sphericalCamera) {
/* *************************************************************************/
TEST(SmartProjectionFactorP, timing_sphericalCamera) {
// create common data
Rot3 R = Rot3::identity();
Rot3 R = Rot3::Identity();
Pose3 pose1 = Pose3(R, Point3(0, 0, 0));
Pose3 pose2 = Pose3(R, Point3(1, 0, 0));
Pose3 body_P_sensorId = Pose3::identity();
Pose3 body_P_sensorId = Pose3();
Point3 landmark1(0, 0, 10);
// create spherical data
@ -1423,7 +1423,7 @@ TEST(SmartProjectionFactorP, 2poses_rankTol) {
boost::shared_ptr<CameraSet<PinholePose<Cal3_S2>>> cameraRig(
new CameraSet<PinholePose<Cal3_S2>>()); // single camera in the rig
cameraRig->push_back(PinholePose<Cal3_S2>(Pose3::identity(), sharedK));
cameraRig->push_back(PinholePose<Cal3_S2>(Pose3(), sharedK));
SmartRigFactor::shared_ptr smartFactor1(
new SmartRigFactor(model, cameraRig, params));
@ -1461,7 +1461,7 @@ TEST(SmartProjectionFactorP, 2poses_rankTol) {
boost::shared_ptr<CameraSet<PinholePose<Cal3_S2>>> cameraRig(
new CameraSet<PinholePose<Cal3_S2>>()); // single camera in the rig
cameraRig->push_back(PinholePose<Cal3_S2>(Pose3::identity(), canonicalK));
cameraRig->push_back(PinholePose<Cal3_S2>(Pose3(), canonicalK));
SmartRigFactor::shared_ptr smartFactor1(
new SmartRigFactor(model, cameraRig, params));
@ -1498,7 +1498,7 @@ TEST(SmartProjectionFactorP, 2poses_rankTol) {
boost::shared_ptr<CameraSet<PinholePose<Cal3_S2>>> cameraRig(
new CameraSet<PinholePose<Cal3_S2>>()); // single camera in the rig
cameraRig->push_back(PinholePose<Cal3_S2>(Pose3::identity(), canonicalK));
cameraRig->push_back(PinholePose<Cal3_S2>(Pose3(), canonicalK));
SmartRigFactor::shared_ptr smartFactor1(
new SmartRigFactor(model, cameraRig, params));
@ -1537,7 +1537,7 @@ TEST(SmartProjectionFactorP, 2poses_sphericalCamera_rankTol) {
boost::shared_ptr<CameraSet<SphericalCamera>> cameraRig(
new CameraSet<SphericalCamera>()); // single camera in the rig
cameraRig->push_back(SphericalCamera(Pose3::identity(), emptyK));
cameraRig->push_back(SphericalCamera(Pose3(), emptyK));
// TRIANGULATION TEST WITH DEFAULT RANK TOL
{ // rankTol = 1 or 0.1 gives a degenerate point, which is undesirable for a

View File

@ -15,9 +15,9 @@ const Key x1 = 1, x2 = 2;
const double dt = 1.0;
PoseRTV origin,
pose1(Point3(0.5, 0.0, 0.0), Rot3::identity(), Velocity3(1.0, 0.0, 0.0)),
pose1(Point3(0.5, 0.0, 0.0), Rot3(), Velocity3(1.0, 0.0, 0.0)),
pose1a(Point3(0.5, 0.0, 0.0)),
pose2(Point3(1.5, 0.0, 0.0), Rot3::identity(), Velocity3(1.0, 0.0, 0.0));
pose2(Point3(1.5, 0.0, 0.0), Rot3(), Velocity3(1.0, 0.0, 0.0));
/* ************************************************************************* */
TEST( testVelocityConstraint, trapezoidal ) {

View File

@ -53,7 +53,7 @@ int main(int argc, char** argv){
normal_distribution<double> normalInliers(0.0, 0.05);
Values initial;
initial.insert(0, Pose3::identity()); // identity pose as initialization
initial.insert(0, Pose3()); // identity pose as initialization
// create ground truth pose
Vector6 poseGtVector;

View File

@ -129,8 +129,8 @@ int main(int argc, char* argv[]) {
// Pose prior - at identity
auto priorPoseNoise = noiseModel::Diagonal::Sigmas(
(Vector(6) << Vector3::Constant(0.1), Vector3::Constant(0.1)).finished());
graph.addPrior(X(1), Pose3::identity(), priorPoseNoise);
initialEstimate.insert(X(0), Pose3::identity());
graph.addPrior(X(1), Pose3::Identity(), priorPoseNoise);
initialEstimate.insert(X(0), Pose3::Identity());
// Bias prior
graph.addPrior(B(1), imu.priorImuBias,
@ -157,7 +157,7 @@ int main(int argc, char* argv[]) {
if (frame != lastFrame || in.eof()) {
cout << "Running iSAM for frame: " << lastFrame << "\n";
initialEstimate.insert(X(lastFrame), Pose3::identity());
initialEstimate.insert(X(lastFrame), Pose3::Identity());
initialEstimate.insert(V(lastFrame), Vector3(0, 0, 0));
initialEstimate.insert(B(lastFrame), imu.prevBias);

View File

@ -95,7 +95,7 @@ public:
/// @{
/// identity for group operation
static Pose3Upright identity() { return Pose3Upright(); }
static Pose3Upright Identity() { return Pose3Upright(); }
/// inverse transformation with derivatives
Pose3Upright inverse(boost::optional<Matrix&> H1=boost::none) const;

View File

@ -130,7 +130,7 @@ class Pose3Upright {
gtsam::Pose3Upright retract(Vector v) const;
Vector localCoordinates(const gtsam::Pose3Upright& p2) const;
static gtsam::Pose3Upright identity();
static gtsam::Pose3Upright Identity();
gtsam::Pose3Upright inverse() const;
gtsam::Pose3Upright compose(const gtsam::Pose3Upright& p2) const;
gtsam::Pose3Upright between(const gtsam::Pose3Upright& p2) const;

View File

@ -44,8 +44,8 @@ TEST(LocalOrientedPlane3Factor, lm_translation_error) {
// Init pose and prior. Pose Prior is needed since a single plane measurement
// does not fully constrain the pose
Pose3 init_pose = Pose3::identity();
Pose3 anchor_pose = Pose3::identity();
Pose3 init_pose = Pose3::Identity();
Pose3 anchor_pose = Pose3::Identity();
graph.addPrior(X(0), init_pose, noiseModel::Isotropic::Sigma(6, 0.001));
graph.addPrior(X(1), anchor_pose, noiseModel::Isotropic::Sigma(6, 0.001));
@ -89,7 +89,7 @@ TEST (LocalOrientedPlane3Factor, lm_rotation_error) {
// Init pose and prior. Pose Prior is needed since a single plane measurement
// does not fully constrain the pose
Pose3 init_pose = Pose3::identity();
Pose3 init_pose = Pose3::Identity();
graph.addPrior(X(0), init_pose, noiseModel::Isotropic::Sigma(6, 0.001));
// Add two landmark measurements, differing in angle
@ -180,8 +180,8 @@ TEST(LocalOrientedPlane3Factor, Issue561Simplified) {
NonlinearFactorGraph graph;
// Setup prior factors
Pose3 x0(Rot3::identity(), Vector3(100, 30, 10)); // the "sensor pose"
Pose3 x1(Rot3::identity(), Vector3(90, 40, 5) ); // the "anchor pose"
Pose3 x0(Rot3::Identity(), Vector3(100, 30, 10)); // the "sensor pose"
Pose3 x1(Rot3::Identity(), Vector3(90, 40, 5) ); // the "anchor pose"
auto x0_noise = noiseModel::Isotropic::Sigma(6, 0.01);
auto x1_noise = noiseModel::Isotropic::Sigma(6, 0.01);
@ -213,7 +213,7 @@ TEST(LocalOrientedPlane3Factor, Issue561Simplified) {
// Initial values
// Just offset the initial pose by 1m. This is what we are trying to optimize.
Values initialEstimate;
Pose3 x0_initial = x0.compose(Pose3(Rot3::identity(), Vector3(1, 0, 0)));
Pose3 x0_initial = x0.compose(Pose3(Rot3::Identity(), Vector3(1, 0, 0)));
initialEstimate.insert(P(1), p1_in_x1);
initialEstimate.insert(P(2), p2_in_x1);
initialEstimate.insert(X(0), x0_initial);

View File

@ -173,7 +173,7 @@ TEST(PartialPriorFactor, Constructors3) {
/* ************************************************************************* */
TEST(PartialPriorFactor, JacobianAtIdentity3) {
Key poseKey(1);
Pose3 measurement = Pose3::identity();
Pose3 measurement = Pose3::Identity();
SharedNoiseModel model = NM::Isotropic::Sigma(1, 0.25);
TestPartialPriorFactor3 factor(poseKey, kIndexTy, measurement.translation().y(), model);

View File

@ -16,7 +16,7 @@ using namespace gtsam::noiseModel;
/* ************************************************************************* */
// Verify zero error when there is no noise
TEST(PoseToPointFactor, errorNoiseless_2D) {
Pose2 pose = Pose2::identity();
Pose2 pose = Pose2::Identity();
Point2 point(1.0, 2.0);
Point2 noise(0.0, 0.0);
Point2 measured = point + noise;
@ -33,7 +33,7 @@ TEST(PoseToPointFactor, errorNoiseless_2D) {
/* ************************************************************************* */
// Verify expected error in test scenario
TEST(PoseToPointFactor, errorNoise_2D) {
Pose2 pose = Pose2::identity();
Pose2 pose = Pose2::Identity();
Point2 point(1.0, 2.0);
Point2 noise(-1.0, 0.5);
Point2 measured = point + noise;
@ -86,7 +86,7 @@ TEST(PoseToPointFactor, jacobian_2D) {
/* ************************************************************************* */
// Verify zero error when there is no noise
TEST(PoseToPointFactor, errorNoiseless_3D) {
Pose3 pose = Pose3::identity();
Pose3 pose = Pose3::Identity();
Point3 point(1.0, 2.0, 3.0);
Point3 noise(0.0, 0.0, 0.0);
Point3 measured = point + noise;
@ -103,7 +103,7 @@ TEST(PoseToPointFactor, errorNoiseless_3D) {
/* ************************************************************************* */
// Verify expected error in test scenario
TEST(PoseToPointFactor, errorNoise_3D) {
Pose3 pose = Pose3::identity();
Pose3 pose = Pose3::Identity();
Point3 point(1.0, 2.0, 3.0);
Point3 noise(-1.0, 0.5, 0.3);
Point3 measured = point + noise;

View File

@ -88,7 +88,7 @@ typedef SmartProjectionPoseFactorRollingShutter<PinholePose<Cal3_S2>>
TEST(SmartProjectionPoseFactorRollingShutter, Constructor) {
using namespace vanillaPoseRS;
boost::shared_ptr<Cameras> cameraRig(new Cameras());
cameraRig->push_back(Camera(Pose3::identity(), sharedK));
cameraRig->push_back(Camera(Pose3::Identity(), sharedK));
SmartFactorRS::shared_ptr factor1(
new SmartFactorRS(model, cameraRig, params));
}
@ -97,7 +97,7 @@ TEST(SmartProjectionPoseFactorRollingShutter, Constructor) {
TEST(SmartProjectionPoseFactorRollingShutter, Constructor2) {
using namespace vanillaPoseRS;
boost::shared_ptr<Cameras> cameraRig(new Cameras());
cameraRig->push_back(Camera(Pose3::identity(), sharedK));
cameraRig->push_back(Camera(Pose3::Identity(), sharedK));
params.setRankTolerance(rankTol);
SmartFactorRS factor1(model, cameraRig, params);
}
@ -106,7 +106,7 @@ TEST(SmartProjectionPoseFactorRollingShutter, Constructor2) {
TEST(SmartProjectionPoseFactorRollingShutter, add) {
using namespace vanillaPoseRS;
boost::shared_ptr<Cameras> cameraRig(new Cameras());
cameraRig->push_back(Camera(Pose3::identity(), sharedK));
cameraRig->push_back(Camera(Pose3::Identity(), sharedK));
SmartFactorRS::shared_ptr factor1(
new SmartFactorRS(model, cameraRig, params));
factor1->add(measurement1, x1, x2, interp_factor);
@ -230,7 +230,7 @@ TEST(SmartProjectionPoseFactorRollingShutter, noiselessErrorAndJacobians) {
// Project two landmarks into two cameras
Point2 level_uv = cam1.project(landmark1);
Point2 level_uv_right = cam2.project(landmark1);
Pose3 body_P_sensorId = Pose3::identity();
Pose3 body_P_sensorId = Pose3::Identity();
boost::shared_ptr<Cameras> cameraRig(new Cameras());
cameraRig->push_back(Camera(body_P_sensorId, sharedK));
@ -405,7 +405,7 @@ TEST(SmartProjectionPoseFactorRollingShutter, optimization_3poses) {
interp_factors.push_back(interp_factor3);
boost::shared_ptr<Cameras> cameraRig(new Cameras());
cameraRig->push_back(Camera(Pose3::identity(), sharedK));
cameraRig->push_back(Camera(Pose3::Identity(), sharedK));
SmartFactorRS::shared_ptr smartFactor1(
new SmartFactorRS(model, cameraRig, params));
@ -480,7 +480,7 @@ TEST(SmartProjectionPoseFactorRollingShutter, optimization_3poses_multiCam) {
boost::shared_ptr<Cameras> cameraRig(new Cameras());
cameraRig->push_back(Camera(body_P_sensor, sharedK));
cameraRig->push_back(Camera(Pose3::identity(), sharedK));
cameraRig->push_back(Camera(Pose3::Identity(), sharedK));
SmartFactorRS::shared_ptr smartFactor1(
new SmartFactorRS(model, cameraRig, params));
@ -633,11 +633,11 @@ TEST(SmartProjectionPoseFactorRollingShutter, hessian_simple_2poses) {
// Default cameras for simple derivatives
static Cal3_S2::shared_ptr sharedKSimple(new Cal3_S2(100, 100, 0, 0, 0));
Rot3 R = Rot3::identity();
Rot3 R = Rot3::Identity();
Pose3 pose1 = Pose3(R, Point3(0, 0, 0));
Pose3 pose2 = Pose3(R, Point3(1, 0, 0));
Camera cam1(pose1, sharedKSimple), cam2(pose2, sharedKSimple);
Pose3 body_P_sensorId = Pose3::identity();
Pose3 body_P_sensorId = Pose3::Identity();
// one landmarks 1m in front of camera
Point3 landmark1(0, 0, 10);
@ -747,7 +747,7 @@ TEST(SmartProjectionPoseFactorRollingShutter, optimization_3poses_EPI) {
params.setEnableEPI(true);
boost::shared_ptr<Cameras> cameraRig(new Cameras());
cameraRig->push_back(Camera(Pose3::identity(), sharedK));
cameraRig->push_back(Camera(Pose3::Identity(), sharedK));
SmartFactorRS smartFactor1(model, cameraRig, params);
smartFactor1.add(measurements_lmk1, key_pairs, interp_factors);
@ -816,7 +816,7 @@ TEST(SmartProjectionPoseFactorRollingShutter,
params.setEnableEPI(false);
boost::shared_ptr<Cameras> cameraRig(new Cameras());
cameraRig->push_back(Camera(Pose3::identity(), sharedK));
cameraRig->push_back(Camera(Pose3::Identity(), sharedK));
SmartFactorRS smartFactor1(model, cameraRig, params);
smartFactor1.add(measurements_lmk1, key_pairs, interp_factors);
@ -894,7 +894,7 @@ TEST(SmartProjectionPoseFactorRollingShutter,
params.setEnableEPI(false);
boost::shared_ptr<Cameras> cameraRig(new Cameras());
cameraRig->push_back(Camera(Pose3::identity(), sharedK));
cameraRig->push_back(Camera(Pose3::Identity(), sharedK));
SmartFactorRS::shared_ptr smartFactor1(
new SmartFactorRS(model, cameraRig, params));
@ -961,7 +961,7 @@ TEST(SmartProjectionPoseFactorRollingShutter,
interp_factors.push_back(interp_factor3);
boost::shared_ptr<Cameras> cameraRig(new Cameras());
cameraRig->push_back(Camera(Pose3::identity(), sharedK));
cameraRig->push_back(Camera(Pose3::Identity(), sharedK));
SmartFactorRS::shared_ptr smartFactor1(
new SmartFactorRS(model, cameraRig, params));
@ -1102,7 +1102,7 @@ TEST(SmartProjectionPoseFactorRollingShutter,
interp_factors.push_back(interp_factor1);
boost::shared_ptr<Cameras> cameraRig(new Cameras());
cameraRig->push_back(Camera(Pose3::identity(), sharedK));
cameraRig->push_back(Camera(Pose3::Identity(), sharedK));
SmartFactorRS::shared_ptr smartFactor1(
new SmartFactorRS(model, cameraRig, params));
@ -1261,7 +1261,7 @@ TEST(SmartProjectionPoseFactorRollingShutter,
interp_factors.at(0)); // we readd the first interp factor
boost::shared_ptr<Cameras> cameraRig(new Cameras());
cameraRig->push_back(Camera(Pose3::identity(), sharedK));
cameraRig->push_back(Camera(Pose3::Identity(), sharedK));
SmartFactorRS::shared_ptr smartFactor1(
new SmartFactorRS(model, cameraRig, params));
@ -1331,11 +1331,11 @@ TEST(SmartProjectionPoseFactorRollingShutter, timing) {
gtsam::HESSIAN,
gtsam::ZERO_ON_DEGENERACY); // only config that works with RS factors
Rot3 R = Rot3::identity();
Rot3 R = Rot3::Identity();
Pose3 pose1 = Pose3(R, Point3(0, 0, 0));
Pose3 pose2 = Pose3(R, Point3(1, 0, 0));
Camera cam1(pose1, sharedKSimple), cam2(pose2, sharedKSimple);
Pose3 body_P_sensorId = Pose3::identity();
Pose3 body_P_sensorId = Pose3::Identity();
// one landmarks 1m in front of camera
Point3 landmark1(0, 0, 10);
@ -1431,7 +1431,7 @@ TEST(SmartProjectionPoseFactorRollingShutter,
params.setRankTolerance(0.1);
boost::shared_ptr<Cameras> cameraRig(new Cameras());
cameraRig->push_back(Camera(Pose3::identity(), emptyK));
cameraRig->push_back(Camera(Pose3::Identity(), emptyK));
SmartFactorRS_spherical::shared_ptr smartFactor1(
new SmartFactorRS_spherical(model, cameraRig, params));

View File

@ -198,10 +198,10 @@ TEST(testISAM2SmartFactor, Stereo_Batch) {
// prior, for the first keyframe:
if (kf_id == 0) {
batch_graph.addPrior(X(kf_id), Pose3::identity(), priorPoseNoise);
batch_graph.addPrior(X(kf_id), Pose3::Identity(), priorPoseNoise);
}
batch_values.insert(X(kf_id), Pose3::identity());
batch_values.insert(X(kf_id), Pose3::Identity());
}
LevenbergMarquardtParams parameters;
@ -267,7 +267,7 @@ TEST(testISAM2SmartFactor, Stereo_iSAM2) {
// Storage of smart factors:
std::map<lm_id_t, SmartStereoProjectionPoseFactor::shared_ptr> smartFactors;
Pose3 lastKeyframePose = Pose3::identity();
Pose3 lastKeyframePose = Pose3::Identity();
// Run one timestep at once:
for (const auto &entries : dataset) {
@ -307,7 +307,7 @@ TEST(testISAM2SmartFactor, Stereo_iSAM2) {
// prior, for the first keyframe:
if (kf_id == 0) {
newFactors.addPrior(X(kf_id), Pose3::identity(), priorPoseNoise);
newFactors.addPrior(X(kf_id), Pose3::Identity(), priorPoseNoise);
}
// 2) Run iSAM2:

View File

@ -181,8 +181,8 @@ TEST_UNSAFE( SmartStereoProjectionFactorPP, noiseless_error_identityExtrinsics )
Values values;
values.insert(x1, w_Pose_cam1);
values.insert(x2, w_Pose_cam2);
values.insert(body_P_cam1_key, Pose3::identity());
values.insert(body_P_cam2_key, Pose3::identity());
values.insert(body_P_cam1_key, Pose3::Identity());
values.insert(body_P_cam2_key, Pose3::Identity());
SmartStereoProjectionFactorPP factor1(model);
factor1.add(cam1_uv, x1, body_P_cam1_key, K2);
@ -426,7 +426,7 @@ TEST( SmartStereoProjectionFactorPP, 3poses_optimization_multipleExtrinsics ) {
// Values
Pose3 body_Pose_cam1 = Pose3(Rot3::Ypr(-M_PI, 1., 0.1),Point3(0, 1, 0));
Pose3 body_Pose_cam2 = Pose3(Rot3::Ypr(-M_PI / 4, 0.1, 1.0),Point3(1, 1, 1));
Pose3 body_Pose_cam3 = Pose3::identity();
Pose3 body_Pose_cam3 = Pose3::Identity();
Pose3 w_Pose_body1 = w_Pose_cam1.compose(body_Pose_cam1.inverse());
Pose3 w_Pose_body2 = w_Pose_cam2.compose(body_Pose_cam2.inverse());
Pose3 w_Pose_body3 = w_Pose_cam3.compose(body_Pose_cam3.inverse());
@ -1147,7 +1147,7 @@ TEST( SmartStereoProjectionFactorPP, landmarkDistance ) {
graph.push_back(smartFactor3);
graph.addPrior(x1, pose1, noisePrior);
graph.addPrior(x2, pose2, noisePrior);
graph.addPrior(body_P_cam_key, Pose3::identity(), noisePrior);
graph.addPrior(body_P_cam_key, Pose3::Identity(), noisePrior);
// Pose3 noise_pose = Pose3(Rot3::Ypr(-M_PI/10, 0., -M_PI/10), Point3(0.5,0.1,0.3)); // noise from regular projection factor test below
Pose3 noise_pose = Pose3(Rot3::Ypr(-M_PI / 100, 0., -M_PI / 100),
@ -1156,7 +1156,7 @@ TEST( SmartStereoProjectionFactorPP, landmarkDistance ) {
values.insert(x1, pose1);
values.insert(x2, pose2);
values.insert(x3, pose3 * noise_pose);
values.insert(body_P_cam_key, Pose3::identity());
values.insert(body_P_cam_key, Pose3::Identity());
// All smart factors are disabled and pose should remain where it is
Values result;
@ -1245,7 +1245,7 @@ TEST( SmartStereoProjectionFactorPP, dynamicOutlierRejection ) {
values.insert(x1, pose1);
values.insert(x2, pose2);
values.insert(x3, pose3);
values.insert(body_P_cam_key, Pose3::identity());
values.insert(body_P_cam_key, Pose3::Identity());
EXPECT_DOUBLES_EQUAL(0, smartFactor1->error(values), 1e-9);
EXPECT_DOUBLES_EQUAL(0, smartFactor2->error(values), 1e-9);
@ -1267,7 +1267,7 @@ TEST( SmartStereoProjectionFactorPP, dynamicOutlierRejection ) {
Values result;
LevenbergMarquardtOptimizer optimizer(graph, values, lm_params);
result = optimizer.optimize();
EXPECT(assert_equal(Pose3::identity(), result.at<Pose3>(body_P_cam_key)));
EXPECT(assert_equal(Pose3::Identity(), result.at<Pose3>(body_P_cam_key)));
}
/* ************************************************************************* */

View File

@ -382,7 +382,7 @@ TEST(ExpressionFactor, compose2) {
TEST(ExpressionFactor, compose3) {
// Create expression
Rot3_ R1(Rot3::identity()), R2(3);
Rot3_ R1(Rot3::Identity()), R2(3);
Rot3_ R3 = R1 * R2;
// Create factor

View File

@ -139,7 +139,7 @@ TEST(Manifold, DefaultChart) {
Vector v3(3);
v3 << 1, 1, 1;
Rot3 I = Rot3::identity();
Rot3 I = Rot3::Identity();
Rot3 R = I.retract(v3);
//DefaultChart<Rot3> chart5;
EXPECT(assert_equal(v3, traits<Rot3>::Local(I, R)));

View File

@ -62,9 +62,9 @@ int main(int argc, char* argv[]) {
// Build graph
NonlinearFactorGraph graph;
// graph.add(NonlinearEquality<SOn>(0, SOn::identity(4)));
// graph.add(NonlinearEquality<SOn>(0, SOn::Identity(4)));
auto priorModel = noiseModel::Isotropic::Sigma(6, 10000);
graph.add(PriorFactor<SOn>(0, SOn::identity(4), priorModel));
graph.add(PriorFactor<SOn>(0, SOn::Identity(4), priorModel));
auto G = boost::make_shared<Matrix>(SOn::VectorizedGenerators(4));
for (const auto &m : measurements) {
const auto &keys = m.keys();
@ -92,7 +92,7 @@ int main(int argc, char* argv[]) {
for (size_t i = 0; i < 100; i++) {
gttic_(optimize);
Values initial;
initial.insert(0, SOn::identity(4));
initial.insert(0, SOn::Identity(4));
for (size_t j = 1; j < poses.size(); j++) {
initial.insert(j, SOn::Random(rng, 4));
}