cartographer/cartographer/mapping_2d/ray_casting.cc

208 lines
7.1 KiB
C++

/*
* Copyright 2016 The Cartographer Authors
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "cartographer/mapping_2d/ray_casting.h"
namespace cartographer {
namespace mapping_2d {
namespace {
// Factor for subpixel accuracy of start and end point.
constexpr int kSubpixelScale = 1000;
// We divide each pixel in kSubpixelScale x kSubpixelScale subpixels. 'begin'
// and 'end' are coordinates at subpixel precision. We compute all pixels in
// which some part of the line segment connecting 'begin' and 'end' lies.
void CastRay(const Eigen::Array2i& begin, const Eigen::Array2i& end,
const std::vector<uint16>& miss_table,
ProbabilityGrid* const probability_grid) {
// For simplicity, we order 'begin' and 'end' by their x coordinate.
if (begin.x() > end.x()) {
CastRay(end, begin, miss_table, probability_grid);
return;
}
CHECK_GE(begin.x(), 0);
CHECK_GE(begin.y(), 0);
CHECK_GE(end.y(), 0);
// Special case: We have to draw a vertical line in full pixels, as 'begin'
// and 'end' have the same full pixel x coordinate.
if (begin.x() / kSubpixelScale == end.x() / kSubpixelScale) {
Eigen::Array2i current(begin.x() / kSubpixelScale,
std::min(begin.y(), end.y()) / kSubpixelScale);
const int end_y = std::max(begin.y(), end.y()) / kSubpixelScale;
for (; current.y() <= end_y; ++current.y()) {
probability_grid->ApplyLookupTable(current, miss_table);
}
return;
}
const int64 dx = end.x() - begin.x();
const int64 dy = end.y() - begin.y();
const int64 denominator = 2 * kSubpixelScale * dx;
// The current full pixel coordinates. We begin at 'begin'.
Eigen::Array2i current = begin / kSubpixelScale;
// To represent subpixel centers, we use a factor of 2 * 'kSubpixelScale' in
// the denominator.
// +-+-+-+ -- 1 = (2 * kSubpixelScale) / (2 * kSubpixelScale)
// | | | |
// +-+-+-+
// | | | |
// +-+-+-+ -- top edge of first subpixel = 2 / (2 * kSubpixelScale)
// | | | | -- center of first subpixel = 1 / (2 * kSubpixelScale)
// +-+-+-+ -- 0 = 0 / (2 * kSubpixelScale)
// The center of the subpixel part of 'begin.y()' assuming the
// 'denominator', i.e., sub_y / denominator is in (0, 1).
int64 sub_y = (2 * (begin.y() % kSubpixelScale) + 1) * dx;
// The distance from the from 'begin' to the right pixel border, to be divided
// by 2 * 'kSubpixelScale'.
const int first_pixel =
2 * kSubpixelScale - 2 * (begin.x() % kSubpixelScale) - 1;
// The same from the left pixel border to 'end'.
const int last_pixel = 2 * (end.x() % kSubpixelScale) + 1;
// The full pixel x coordinate of 'end'.
const int end_x = std::max(begin.x(), end.x()) / kSubpixelScale;
// Move from 'begin' to the next pixel border to the right.
sub_y += dy * first_pixel;
if (dy > 0) {
while (true) {
probability_grid->ApplyLookupTable(current, miss_table);
while (sub_y > denominator) {
sub_y -= denominator;
++current.y();
probability_grid->ApplyLookupTable(current, miss_table);
}
++current.x();
if (sub_y == denominator) {
sub_y -= denominator;
++current.y();
}
if (current.x() == end_x) {
break;
}
// Move from one pixel border to the next.
sub_y += dy * 2 * kSubpixelScale;
}
// Move from the pixel border on the right to 'end'.
sub_y += dy * last_pixel;
probability_grid->ApplyLookupTable(current, miss_table);
while (sub_y > denominator) {
sub_y -= denominator;
++current.y();
probability_grid->ApplyLookupTable(current, miss_table);
}
CHECK_NE(sub_y, denominator);
CHECK_EQ(current.y(), end.y() / kSubpixelScale);
return;
}
// Same for lines non-ascending in y coordinates.
while (true) {
probability_grid->ApplyLookupTable(current, miss_table);
while (sub_y < 0) {
sub_y += denominator;
--current.y();
probability_grid->ApplyLookupTable(current, miss_table);
}
++current.x();
if (sub_y == 0) {
sub_y += denominator;
--current.y();
}
if (current.x() == end_x) {
break;
}
sub_y += dy * 2 * kSubpixelScale;
}
sub_y += dy * last_pixel;
probability_grid->ApplyLookupTable(current, miss_table);
while (sub_y < 0) {
sub_y += denominator;
--current.y();
probability_grid->ApplyLookupTable(current, miss_table);
}
CHECK_NE(sub_y, 0);
CHECK_EQ(current.y(), end.y() / kSubpixelScale);
}
void GrowAsNeeded(const sensor::RangeData& range_data,
ProbabilityGrid* const probability_grid) {
Eigen::AlignedBox2f bounding_box(range_data.origin.head<2>());
constexpr float kPadding = 1e-6f;
for (const Eigen::Vector3f& hit : range_data.returns) {
bounding_box.extend(hit.head<2>());
}
for (const Eigen::Vector3f& miss : range_data.misses) {
bounding_box.extend(miss.head<2>());
}
probability_grid->GrowLimits(bounding_box.min() -
kPadding * Eigen::Vector2f::Ones());
probability_grid->GrowLimits(bounding_box.max() +
kPadding * Eigen::Vector2f::Ones());
}
} // namespace
void CastRays(const sensor::RangeData& range_data,
const std::vector<uint16>& hit_table,
const std::vector<uint16>& miss_table,
const bool insert_free_space,
ProbabilityGrid* const probability_grid) {
GrowAsNeeded(range_data, probability_grid);
const MapLimits& limits = probability_grid->limits();
const double superscaled_resolution = limits.resolution() / kSubpixelScale;
const MapLimits superscaled_limits(
superscaled_resolution, limits.max(),
CellLimits(limits.cell_limits().num_x_cells * kSubpixelScale,
limits.cell_limits().num_y_cells * kSubpixelScale));
const Eigen::Array2i begin =
superscaled_limits.GetCellIndex(range_data.origin.head<2>());
// Compute and add the end points.
std::vector<Eigen::Array2i> ends;
ends.reserve(range_data.returns.size());
for (const Eigen::Vector3f& hit : range_data.returns) {
ends.push_back(superscaled_limits.GetCellIndex(hit.head<2>()));
probability_grid->ApplyLookupTable(ends.back() / kSubpixelScale, hit_table);
}
if (!insert_free_space) {
return;
}
// Now add the misses.
for (const Eigen::Array2i& end : ends) {
CastRay(begin, end, miss_table, probability_grid);
}
// Finally, compute and add empty rays based on misses in the range data.
for (const Eigen::Vector3f& missing_echo : range_data.misses) {
CastRay(begin, superscaled_limits.GetCellIndex(missing_echo.head<2>()),
miss_table, probability_grid);
}
}
} // namespace mapping_2d
} // namespace cartographer