cartographer/cartographer/mapping_3d/hybrid_grid.h

547 lines
18 KiB
C++

/*
* Copyright 2016 The Cartographer Authors
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef CARTOGRAPHER_MAPPING_3D_HYBRID_GRID_H_
#define CARTOGRAPHER_MAPPING_3D_HYBRID_GRID_H_
#include <array>
#include <cmath>
#include <limits>
#include <utility>
#include <vector>
#include "Eigen/Core"
#include "cartographer/common/make_unique.h"
#include "cartographer/common/math.h"
#include "cartographer/common/port.h"
#include "cartographer/mapping/probability_values.h"
#include "cartographer/mapping_3d/proto/hybrid_grid.pb.h"
#include "cartographer/transform/transform.h"
#include "glog/logging.h"
namespace cartographer {
namespace mapping_3d {
// Converts an 'index' with each dimension from 0 to 2^'bits' - 1 to a flat
// z-major index.
inline int ToFlatIndex(const Eigen::Array3i& index, const int bits) {
DCHECK((index >= 0).all() && (index < (1 << bits)).all()) << index;
return (((index.z() << bits) + index.y()) << bits) + index.x();
}
// Converts a flat z-major 'index' to a 3-dimensional index with each dimension
// from 0 to 2^'bits' - 1.
inline Eigen::Array3i To3DIndex(const int index, const int bits) {
DCHECK_LT(index, 1 << (3 * bits));
const int mask = (1 << bits) - 1;
return Eigen::Array3i(index & mask, (index >> bits) & mask,
(index >> bits) >> bits);
}
// A function to compare value to the default value. (Allows specializations).
template <typename TValueType>
bool IsDefaultValue(const TValueType& v) {
return v == TValueType();
}
// Specialization to compare a std::vector to the default value.
template <typename TElementType>
bool IsDefaultValue(const std::vector<TElementType>& v) {
return v.empty();
}
// A flat grid of '2^kBits' x '2^kBits' x '2^kBits' voxels storing values of
// type 'ValueType' in contiguous memory. Indices in each dimension are 0-based.
template <typename TValueType, int kBits>
class FlatGrid {
public:
using ValueType = TValueType;
// Creates a new flat grid with all values being default constructed.
FlatGrid() {
for (ValueType& value : cells_) {
value = ValueType();
}
}
FlatGrid(const FlatGrid&) = delete;
FlatGrid& operator=(const FlatGrid&) = delete;
// Returns the number of voxels per dimension.
static int grid_size() { return 1 << kBits; }
// Returns the value stored at 'index', each dimension of 'index' being
// between 0 and grid_size() - 1.
ValueType value(const Eigen::Array3i& index) const {
return cells_[ToFlatIndex(index, kBits)];
}
// Returns a pointer to a value to allow changing it.
ValueType* mutable_value(const Eigen::Array3i& index) {
return &cells_[ToFlatIndex(index, kBits)];
}
// An iterator for iterating over all values not comparing equal to the
// default constructed value.
class Iterator {
public:
Iterator() : current_(nullptr), end_(nullptr) {}
explicit Iterator(const FlatGrid& flat_grid)
: current_(flat_grid.cells_.data()),
end_(flat_grid.cells_.data() + flat_grid.cells_.size()) {
while (!Done() && IsDefaultValue(*current_)) {
++current_;
}
}
void Next() {
DCHECK(!Done());
do {
++current_;
} while (!Done() && IsDefaultValue(*current_));
}
bool Done() const { return current_ == end_; }
Eigen::Array3i GetCellIndex() const {
DCHECK(!Done());
const int index = (1 << (3 * kBits)) - (end_ - current_);
return To3DIndex(index, kBits);
}
const ValueType& GetValue() const {
DCHECK(!Done());
return *current_;
}
private:
const ValueType* current_;
const ValueType* end_;
};
private:
std::array<ValueType, 1 << (3 * kBits)> cells_;
};
// A grid consisting of '2^kBits' x '2^kBits' x '2^kBits' grids of type
// 'WrappedGrid'. Wrapped grids are constructed on first access via
// 'mutable_value()'.
template <typename WrappedGrid, int kBits>
class NestedGrid {
public:
using ValueType = typename WrappedGrid::ValueType;
// Returns the number of voxels per dimension.
static int grid_size() { return WrappedGrid::grid_size() << kBits; }
// Returns the value stored at 'index', each dimension of 'index' being
// between 0 and grid_size() - 1.
ValueType value(const Eigen::Array3i& index) const {
const Eigen::Array3i meta_index = GetMetaIndex(index);
const WrappedGrid* const meta_cell =
meta_cells_[ToFlatIndex(meta_index, kBits)].get();
if (meta_cell == nullptr) {
return ValueType();
}
const Eigen::Array3i inner_index =
index - meta_index * WrappedGrid::grid_size();
return meta_cell->value(inner_index);
}
// Returns a pointer to the value at 'index' to allow changing it. If
// necessary a new wrapped grid is constructed to contain that value.
ValueType* mutable_value(const Eigen::Array3i& index) {
const Eigen::Array3i meta_index = GetMetaIndex(index);
std::unique_ptr<WrappedGrid>& meta_cell =
meta_cells_[ToFlatIndex(meta_index, kBits)];
if (meta_cell == nullptr) {
meta_cell = common::make_unique<WrappedGrid>();
}
const Eigen::Array3i inner_index =
index - meta_index * WrappedGrid::grid_size();
return meta_cell->mutable_value(inner_index);
}
// An iterator for iterating over all values not comparing equal to the
// default constructed value.
class Iterator {
public:
Iterator() : current_(nullptr), end_(nullptr), nested_iterator_() {}
explicit Iterator(const NestedGrid& nested_grid)
: current_(nested_grid.meta_cells_.data()),
end_(nested_grid.meta_cells_.data() + nested_grid.meta_cells_.size()),
nested_iterator_() {
AdvanceToValidNestedIterator();
}
void Next() {
DCHECK(!Done());
nested_iterator_.Next();
if (!nested_iterator_.Done()) {
return;
}
++current_;
AdvanceToValidNestedIterator();
}
bool Done() const { return current_ == end_; }
Eigen::Array3i GetCellIndex() const {
DCHECK(!Done());
const int index = (1 << (3 * kBits)) - (end_ - current_);
return To3DIndex(index, kBits) * WrappedGrid::grid_size() +
nested_iterator_.GetCellIndex();
}
const ValueType& GetValue() const {
DCHECK(!Done());
return nested_iterator_.GetValue();
}
private:
void AdvanceToValidNestedIterator() {
for (; !Done(); ++current_) {
if (*current_ != nullptr) {
nested_iterator_ = typename WrappedGrid::Iterator(**current_);
if (!nested_iterator_.Done()) {
break;
}
}
}
}
const std::unique_ptr<WrappedGrid>* current_;
const std::unique_ptr<WrappedGrid>* end_;
typename WrappedGrid::Iterator nested_iterator_;
};
private:
// Returns the Eigen::Array3i (meta) index of the meta cell containing
// 'index'.
Eigen::Array3i GetMetaIndex(const Eigen::Array3i& index) const {
DCHECK((index >= 0).all()) << index;
const Eigen::Array3i meta_index = index / WrappedGrid::grid_size();
DCHECK((meta_index < (1 << kBits)).all()) << index;
return meta_index;
}
std::array<std::unique_ptr<WrappedGrid>, 1 << (3 * kBits)> meta_cells_;
};
// A grid consisting of 2x2x2 grids of type 'WrappedGrid' initially. Wrapped
// grids are constructed on first access via 'mutable_value()'. If necessary,
// the grid grows to twice the size in each dimension. The range of indices is
// (almost) symmetric around the origin, i.e. negative indices are allowed.
template <typename WrappedGrid>
class DynamicGrid {
public:
using ValueType = typename WrappedGrid::ValueType;
DynamicGrid() : bits_(1), meta_cells_(8) {}
DynamicGrid(DynamicGrid&&) = default;
DynamicGrid& operator=(DynamicGrid&&) = default;
// Returns the current number of voxels per dimension.
int grid_size() const { return WrappedGrid::grid_size() << bits_; }
// Returns the value stored at 'index'.
ValueType value(const Eigen::Array3i& index) const {
const Eigen::Array3i shifted_index = index + (grid_size() >> 1);
// The cast to unsigned is for performance to check with 3 comparisons
// shifted_index.[xyz] >= 0 and shifted_index.[xyz] < grid_size.
if ((shifted_index.cast<unsigned int>() >= grid_size()).any()) {
return ValueType();
}
const Eigen::Array3i meta_index = GetMetaIndex(shifted_index);
const WrappedGrid* const meta_cell =
meta_cells_[ToFlatIndex(meta_index, bits_)].get();
if (meta_cell == nullptr) {
return ValueType();
}
const Eigen::Array3i inner_index =
shifted_index - meta_index * WrappedGrid::grid_size();
return meta_cell->value(inner_index);
}
// Returns a pointer to the value at 'index' to allow changing it, dynamically
// growing the DynamicGrid and constructing new WrappedGrids as needed.
ValueType* mutable_value(const Eigen::Array3i& index) {
const Eigen::Array3i shifted_index = index + (grid_size() >> 1);
// The cast to unsigned is for performance to check with 3 comparisons
// shifted_index.[xyz] >= 0 and shifted_index.[xyz] < grid_size.
if ((shifted_index.cast<unsigned int>() >= grid_size()).any()) {
Grow();
return mutable_value(index);
}
const Eigen::Array3i meta_index = GetMetaIndex(shifted_index);
std::unique_ptr<WrappedGrid>& meta_cell =
meta_cells_[ToFlatIndex(meta_index, bits_)];
if (meta_cell == nullptr) {
meta_cell = common::make_unique<WrappedGrid>();
}
const Eigen::Array3i inner_index =
shifted_index - meta_index * WrappedGrid::grid_size();
return meta_cell->mutable_value(inner_index);
}
// An iterator for iterating over all values not comparing equal to the
// default constructed value.
class Iterator {
public:
explicit Iterator(const DynamicGrid& dynamic_grid)
: bits_(dynamic_grid.bits_),
current_(dynamic_grid.meta_cells_.data()),
end_(dynamic_grid.meta_cells_.data() +
dynamic_grid.meta_cells_.size()),
nested_iterator_() {
AdvanceToValidNestedIterator();
}
void Next() {
DCHECK(!Done());
nested_iterator_.Next();
if (!nested_iterator_.Done()) {
return;
}
++current_;
AdvanceToValidNestedIterator();
}
bool Done() const { return current_ == end_; }
Eigen::Array3i GetCellIndex() const {
DCHECK(!Done());
const int outer_index = (1 << (3 * bits_)) - (end_ - current_);
const Eigen::Array3i shifted_index =
To3DIndex(outer_index, bits_) * WrappedGrid::grid_size() +
nested_iterator_.GetCellIndex();
return shifted_index - ((1 << (bits_ - 1)) * WrappedGrid::grid_size());
}
const ValueType& GetValue() const {
DCHECK(!Done());
return nested_iterator_.GetValue();
}
void AdvanceToEnd() { current_ = end_; }
const std::pair<Eigen::Array3i, ValueType> operator*() const {
return std::pair<Eigen::Array3i, ValueType>(GetCellIndex(), GetValue());
}
Iterator& operator++() {
Next();
return *this;
}
bool operator!=(const Iterator& it) const {
return it.current_ != current_;
}
private:
void AdvanceToValidNestedIterator() {
for (; !Done(); ++current_) {
if (*current_ != nullptr) {
nested_iterator_ = typename WrappedGrid::Iterator(**current_);
if (!nested_iterator_.Done()) {
break;
}
}
}
}
int bits_;
const std::unique_ptr<WrappedGrid>* current_;
const std::unique_ptr<WrappedGrid>* const end_;
typename WrappedGrid::Iterator nested_iterator_;
};
private:
// Returns the Eigen::Array3i (meta) index of the meta cell containing
// 'index'.
Eigen::Array3i GetMetaIndex(const Eigen::Array3i& index) const {
DCHECK((index >= 0).all()) << index;
const Eigen::Array3i meta_index = index / WrappedGrid::grid_size();
DCHECK((meta_index < (1 << bits_)).all()) << index;
return meta_index;
}
// Grows this grid by a factor of 2 in each of the 3 dimensions.
void Grow() {
const int new_bits = bits_ + 1;
CHECK_LE(new_bits, 8);
std::vector<std::unique_ptr<WrappedGrid>> new_meta_cells_(
8 * meta_cells_.size());
for (int z = 0; z != (1 << bits_); ++z) {
for (int y = 0; y != (1 << bits_); ++y) {
for (int x = 0; x != (1 << bits_); ++x) {
const Eigen::Array3i original_meta_index(x, y, z);
const Eigen::Array3i new_meta_index =
original_meta_index + (1 << (bits_ - 1));
new_meta_cells_[ToFlatIndex(new_meta_index, new_bits)] =
std::move(meta_cells_[ToFlatIndex(original_meta_index, bits_)]);
}
}
}
meta_cells_ = std::move(new_meta_cells_);
bits_ = new_bits;
}
int bits_;
std::vector<std::unique_ptr<WrappedGrid>> meta_cells_;
};
template <typename ValueType>
using Grid = DynamicGrid<NestedGrid<FlatGrid<ValueType, 3>, 3>>;
// Represents a 3D grid as a wide, shallow tree.
template <typename ValueType>
class HybridGridBase : public Grid<ValueType> {
public:
using Iterator = typename Grid<ValueType>::Iterator;
// Creates a new tree-based probability grid with voxels having edge length
// 'resolution' around the origin which becomes the center of the cell at
// index (0, 0, 0).
explicit HybridGridBase(const float resolution) : resolution_(resolution) {}
float resolution() const { return resolution_; }
// Returns the index of the cell containing the 'point'. Indices are integer
// vectors identifying cells, for this the coordinates are rounded to the next
// multiple of the resolution.
Eigen::Array3i GetCellIndex(const Eigen::Vector3f& point) const {
Eigen::Array3f index = point.array() / resolution_;
return Eigen::Array3i(common::RoundToInt(index.x()),
common::RoundToInt(index.y()),
common::RoundToInt(index.z()));
}
// Returns one of the octants, (0, 0, 0), (1, 0, 0), ..., (1, 1, 1).
static Eigen::Array3i GetOctant(const int i) {
DCHECK_GE(i, 0);
DCHECK_LT(i, 8);
return Eigen::Array3i(static_cast<bool>(i & 1), static_cast<bool>(i & 2),
static_cast<bool>(i & 4));
}
// Returns the center of the cell at 'index'.
Eigen::Vector3f GetCenterOfCell(const Eigen::Array3i& index) const {
return index.matrix().cast<float>() * resolution_;
}
// Iterator functions for range-based for loops.
Iterator begin() const { return Iterator(*this); }
Iterator end() const {
Iterator it(*this);
it.AdvanceToEnd();
return it;
}
private:
// Edge length of each voxel.
const float resolution_;
};
// A grid containing probability values stored using 15 bits, and an update
// marker per voxel.
class HybridGrid : public HybridGridBase<uint16> {
public:
explicit HybridGrid(const float resolution)
: HybridGridBase<uint16>(resolution) {}
explicit HybridGrid(const proto::HybridGrid& proto)
: HybridGrid(proto.resolution()) {
CHECK_EQ(proto.values_size(), proto.x_indices_size());
CHECK_EQ(proto.values_size(), proto.y_indices_size());
CHECK_EQ(proto.values_size(), proto.z_indices_size());
for (int i = 0; i < proto.values_size(); ++i) {
// SetProbability does some error checking for us.
SetProbability(Eigen::Vector3i(proto.x_indices(i), proto.y_indices(i),
proto.z_indices(i)),
mapping::ValueToProbability(proto.values(i)));
}
}
// Sets the probability of the cell at 'index' to the given 'probability'.
void SetProbability(const Eigen::Array3i& index, const float probability) {
*mutable_value(index) = mapping::ProbabilityToValue(probability);
}
// Finishes the update sequence.
void FinishUpdate() {
while (!update_indices_.empty()) {
DCHECK_GE(*update_indices_.back(), mapping::kUpdateMarker);
*update_indices_.back() -= mapping::kUpdateMarker;
update_indices_.pop_back();
}
}
// Applies the 'odds' specified when calling ComputeLookupTableToApplyOdds()
// to the probability of the cell at 'index' if the cell has not already been
// updated. Multiple updates of the same cell will be ignored until
// FinishUpdate() is called. Returns true if the cell was updated.
//
// If this is the first call to ApplyOdds() for the specified cell, its value
// will be set to probability corresponding to 'odds'.
bool ApplyLookupTable(const Eigen::Array3i& index,
const std::vector<uint16>& table) {
DCHECK_EQ(table.size(), mapping::kUpdateMarker);
uint16* const cell = mutable_value(index);
if (*cell >= mapping::kUpdateMarker) {
return false;
}
update_indices_.push_back(cell);
*cell = table[*cell];
DCHECK_GE(*cell, mapping::kUpdateMarker);
return true;
}
// Returns the probability of the cell with 'index'.
float GetProbability(const Eigen::Array3i& index) const {
return mapping::ValueToProbability(value(index));
}
// Returns true if the probability at the specified 'index' is known.
bool IsKnown(const Eigen::Array3i& index) const { return value(index) != 0; }
proto::HybridGrid ToProto() const {
CHECK(update_indices_.empty()) << "Serializing a grid during an update is "
"not supported. Finish the update first.";
proto::HybridGrid result;
result.set_resolution(resolution());
for (const auto it : *this) {
result.add_x_indices(it.first.x());
result.add_y_indices(it.first.y());
result.add_z_indices(it.first.z());
result.add_values(it.second);
}
return result;
}
private:
// Markers at changed cells.
std::vector<ValueType*> update_indices_;
};
} // namespace mapping_3d
} // namespace cartographer
#endif // CARTOGRAPHER_MAPPING_3D_HYBRID_GRID_H_