159 lines
5.1 KiB
C++
159 lines
5.1 KiB
C++
/*
|
|
* Software License Agreement (BSD License)
|
|
*
|
|
* Copyright (c) 2009, Willow Garage, Inc.
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
*
|
|
* * Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* * Redistributions in binary form must reproduce the above
|
|
* copyright notice, this list of conditions and the following
|
|
* disclaimer in the documentation and/or other materials provided
|
|
* with the distribution.
|
|
* * Neither the name of Willow Garage, Inc. nor the names of its
|
|
* contributors may be used to endorse or promote products derived
|
|
* from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
|
|
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
|
|
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
|
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
|
|
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
|
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
|
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
|
|
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
* POSSIBILITY OF SUCH DAMAGE.
|
|
*
|
|
*/
|
|
|
|
#include "test_precomp.hpp"
|
|
#include "opencv2/sfm/robust.hpp"
|
|
|
|
namespace opencv_test { namespace {
|
|
|
|
TEST(Sfm_robust, fundamentalFromCorrespondences8PointRobust)
|
|
{
|
|
double tolerance = 1e-8;
|
|
const int n = 16;
|
|
Mat_<double> x1(2,n);
|
|
x1 << 0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4, 5,
|
|
0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 5;
|
|
|
|
Mat_<double> x2 = x1.clone();
|
|
for (int i = 0; i < n; ++i)
|
|
{
|
|
x2(0,i) += i % 2; // Multiple horizontal disparities.
|
|
}
|
|
x2(0,n - 1) = 10;
|
|
x2(1,n - 1) = 10; // The outlier has vertical disparity.
|
|
|
|
Matx33d F;
|
|
vector<int> inliers;
|
|
fundamentalFromCorrespondences8PointRobust(x1, x2, 0.1, F, inliers);
|
|
|
|
// F should be 0, 0, 0,
|
|
// 0, 0, -1,
|
|
// 0, 1, 0
|
|
EXPECT_NEAR(0.0, F(0,0), tolerance);
|
|
EXPECT_NEAR(0.0, F(0,1), tolerance);
|
|
EXPECT_NEAR(0.0, F(0,2), tolerance);
|
|
EXPECT_NEAR(0.0, F(1,0), tolerance);
|
|
EXPECT_NEAR(0.0, F(1,1), tolerance);
|
|
EXPECT_NEAR(0.0, F(2,0), tolerance);
|
|
EXPECT_NEAR(0.0, F(2,2), tolerance);
|
|
EXPECT_NEAR(F(1,2), -F(2,1), tolerance);
|
|
|
|
EXPECT_EQ(n - 1, inliers.size());
|
|
}
|
|
|
|
|
|
TEST(Sfm_robust, fundamentalFromCorrespondences8PointRealisticNoOutliers)
|
|
{
|
|
double tolerance = 1e-8;
|
|
TwoViewDataSet d;
|
|
generateTwoViewRandomScene(d);
|
|
|
|
Matx33d F_estimated;
|
|
|
|
vector<int> inliers;
|
|
fundamentalFromCorrespondences8PointRobust(d.x1, d.x2, 3.0, F_estimated, inliers);
|
|
EXPECT_EQ(d.x1.cols, inliers.size());
|
|
|
|
// Normalize.
|
|
Matx33d F_gt_norm, F_estimated_norm;
|
|
normalizeFundamental(d.F, F_gt_norm);
|
|
normalizeFundamental(F_estimated, F_estimated_norm);
|
|
EXPECT_MATRIX_NEAR(F_gt_norm, F_estimated_norm, tolerance);
|
|
|
|
// Check fundamental properties.
|
|
expectFundamentalProperties( F_estimated, d.x1, d.x2, tolerance);
|
|
}
|
|
|
|
|
|
TEST(Sfm_robust, fundamentalFromCorrespondences7PointRobust)
|
|
{
|
|
double tolerance = 1e-8;
|
|
const int n = 16;
|
|
Mat_<double> x1(2,n);
|
|
x1 << 0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4, 5,
|
|
0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 5;
|
|
|
|
Mat_<double> x2 = x1.clone();
|
|
for (int i = 0; i < n; ++i)
|
|
{
|
|
x2(0,i) += i % 2; // Multiple horizontal disparities.
|
|
}
|
|
x2(0,n - 1) = 10;
|
|
x2(1,n - 1) = 10; // The outlier has vertical disparity.
|
|
|
|
Matx33d F;
|
|
vector<int> inliers;
|
|
fundamentalFromCorrespondences7PointRobust(x1, x2, 0.1, F, inliers);
|
|
|
|
// F should be 0, 0, 0,
|
|
// 0, 0, -1,
|
|
// 0, 1, 0
|
|
EXPECT_NEAR(0.0, F(0,0), tolerance);
|
|
EXPECT_NEAR(0.0, F(0,1), tolerance);
|
|
EXPECT_NEAR(0.0, F(0,2), tolerance);
|
|
EXPECT_NEAR(0.0, F(1,0), tolerance);
|
|
EXPECT_NEAR(0.0, F(1,1), tolerance);
|
|
EXPECT_NEAR(0.0, F(2,0), tolerance);
|
|
EXPECT_NEAR(0.0, F(2,2), tolerance);
|
|
EXPECT_NEAR(F(1,2), -F(2,1), tolerance);
|
|
|
|
EXPECT_EQ(n - 1, inliers.size());
|
|
}
|
|
|
|
|
|
TEST(Sfm_robust, fundamentalFromCorrespondences7PointRealisticNoOutliers)
|
|
{
|
|
double tolerance = 1e-8;
|
|
TwoViewDataSet d;
|
|
generateTwoViewRandomScene(d);
|
|
|
|
Matx33d F_estimated;
|
|
|
|
vector<int> inliers;
|
|
fundamentalFromCorrespondences7PointRobust(d.x1, d.x2, 3.0, F_estimated, inliers);
|
|
EXPECT_EQ(d.x1.cols, inliers.size());
|
|
|
|
// Normalize.
|
|
Matx33d F_gt_norm, F_estimated_norm;
|
|
normalizeFundamental(d.F, F_gt_norm);
|
|
normalizeFundamental(F_estimated, F_estimated_norm);
|
|
EXPECT_MATRIX_NEAR(F_gt_norm, F_estimated_norm, tolerance);
|
|
|
|
// Check fundamental properties.
|
|
expectFundamentalProperties( F_estimated, d.x1, d.x2, tolerance);
|
|
}
|
|
|
|
}} // namespace
|