/* * Software License Agreement (BSD License) * * Copyright (c) 2009, Willow Garage, Inc. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials provided * with the distribution. * * Neither the name of Willow Garage, Inc. nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. * */ #include "test_precomp.hpp" #include "opencv2/sfm/robust.hpp" namespace opencv_test { namespace { TEST(Sfm_robust, fundamentalFromCorrespondences8PointRobust) { double tolerance = 1e-8; const int n = 16; Mat_ x1(2,n); x1 << 0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4, 5, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 5; Mat_ x2 = x1.clone(); for (int i = 0; i < n; ++i) { x2(0,i) += i % 2; // Multiple horizontal disparities. } x2(0,n - 1) = 10; x2(1,n - 1) = 10; // The outlier has vertical disparity. Matx33d F; vector inliers; fundamentalFromCorrespondences8PointRobust(x1, x2, 0.1, F, inliers); // F should be 0, 0, 0, // 0, 0, -1, // 0, 1, 0 EXPECT_NEAR(0.0, F(0,0), tolerance); EXPECT_NEAR(0.0, F(0,1), tolerance); EXPECT_NEAR(0.0, F(0,2), tolerance); EXPECT_NEAR(0.0, F(1,0), tolerance); EXPECT_NEAR(0.0, F(1,1), tolerance); EXPECT_NEAR(0.0, F(2,0), tolerance); EXPECT_NEAR(0.0, F(2,2), tolerance); EXPECT_NEAR(F(1,2), -F(2,1), tolerance); EXPECT_EQ(n - 1, inliers.size()); } TEST(Sfm_robust, fundamentalFromCorrespondences8PointRealisticNoOutliers) { double tolerance = 1e-8; TwoViewDataSet d; generateTwoViewRandomScene(d); Matx33d F_estimated; vector inliers; fundamentalFromCorrespondences8PointRobust(d.x1, d.x2, 3.0, F_estimated, inliers); EXPECT_EQ(d.x1.cols, inliers.size()); // Normalize. Matx33d F_gt_norm, F_estimated_norm; normalizeFundamental(d.F, F_gt_norm); normalizeFundamental(F_estimated, F_estimated_norm); EXPECT_MATRIX_NEAR(F_gt_norm, F_estimated_norm, tolerance); // Check fundamental properties. expectFundamentalProperties( F_estimated, d.x1, d.x2, tolerance); } TEST(Sfm_robust, fundamentalFromCorrespondences7PointRobust) { double tolerance = 1e-8; const int n = 16; Mat_ x1(2,n); x1 << 0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4, 5, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 5; Mat_ x2 = x1.clone(); for (int i = 0; i < n; ++i) { x2(0,i) += i % 2; // Multiple horizontal disparities. } x2(0,n - 1) = 10; x2(1,n - 1) = 10; // The outlier has vertical disparity. Matx33d F; vector inliers; fundamentalFromCorrespondences7PointRobust(x1, x2, 0.1, F, inliers); // F should be 0, 0, 0, // 0, 0, -1, // 0, 1, 0 EXPECT_NEAR(0.0, F(0,0), tolerance); EXPECT_NEAR(0.0, F(0,1), tolerance); EXPECT_NEAR(0.0, F(0,2), tolerance); EXPECT_NEAR(0.0, F(1,0), tolerance); EXPECT_NEAR(0.0, F(1,1), tolerance); EXPECT_NEAR(0.0, F(2,0), tolerance); EXPECT_NEAR(0.0, F(2,2), tolerance); EXPECT_NEAR(F(1,2), -F(2,1), tolerance); EXPECT_EQ(n - 1, inliers.size()); } TEST(Sfm_robust, fundamentalFromCorrespondences7PointRealisticNoOutliers) { double tolerance = 1e-8; TwoViewDataSet d; generateTwoViewRandomScene(d); Matx33d F_estimated; vector inliers; fundamentalFromCorrespondences7PointRobust(d.x1, d.x2, 3.0, F_estimated, inliers); EXPECT_EQ(d.x1.cols, inliers.size()); // Normalize. Matx33d F_gt_norm, F_estimated_norm; normalizeFundamental(d.F, F_gt_norm); normalizeFundamental(F_estimated, F_estimated_norm); EXPECT_MATRIX_NEAR(F_gt_norm, F_estimated_norm, tolerance); // Check fundamental properties. expectFundamentalProperties( F_estimated, d.x1, d.x2, tolerance); } }} // namespace