OpenCV_4.2.0/opencv_contrib-4.2.0/modules/sfm/test/test_robust.cpp

159 lines
5.1 KiB
C++
Raw Normal View History

2024-07-25 16:47:56 +08:00
/*
* Software License Agreement (BSD License)
*
* Copyright (c) 2009, Willow Garage, Inc.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
* * Neither the name of Willow Garage, Inc. nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
*/
#include "test_precomp.hpp"
#include "opencv2/sfm/robust.hpp"
namespace opencv_test { namespace {
TEST(Sfm_robust, fundamentalFromCorrespondences8PointRobust)
{
double tolerance = 1e-8;
const int n = 16;
Mat_<double> x1(2,n);
x1 << 0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4, 5,
0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 5;
Mat_<double> x2 = x1.clone();
for (int i = 0; i < n; ++i)
{
x2(0,i) += i % 2; // Multiple horizontal disparities.
}
x2(0,n - 1) = 10;
x2(1,n - 1) = 10; // The outlier has vertical disparity.
Matx33d F;
vector<int> inliers;
fundamentalFromCorrespondences8PointRobust(x1, x2, 0.1, F, inliers);
// F should be 0, 0, 0,
// 0, 0, -1,
// 0, 1, 0
EXPECT_NEAR(0.0, F(0,0), tolerance);
EXPECT_NEAR(0.0, F(0,1), tolerance);
EXPECT_NEAR(0.0, F(0,2), tolerance);
EXPECT_NEAR(0.0, F(1,0), tolerance);
EXPECT_NEAR(0.0, F(1,1), tolerance);
EXPECT_NEAR(0.0, F(2,0), tolerance);
EXPECT_NEAR(0.0, F(2,2), tolerance);
EXPECT_NEAR(F(1,2), -F(2,1), tolerance);
EXPECT_EQ(n - 1, inliers.size());
}
TEST(Sfm_robust, fundamentalFromCorrespondences8PointRealisticNoOutliers)
{
double tolerance = 1e-8;
TwoViewDataSet d;
generateTwoViewRandomScene(d);
Matx33d F_estimated;
vector<int> inliers;
fundamentalFromCorrespondences8PointRobust(d.x1, d.x2, 3.0, F_estimated, inliers);
EXPECT_EQ(d.x1.cols, inliers.size());
// Normalize.
Matx33d F_gt_norm, F_estimated_norm;
normalizeFundamental(d.F, F_gt_norm);
normalizeFundamental(F_estimated, F_estimated_norm);
EXPECT_MATRIX_NEAR(F_gt_norm, F_estimated_norm, tolerance);
// Check fundamental properties.
expectFundamentalProperties( F_estimated, d.x1, d.x2, tolerance);
}
TEST(Sfm_robust, fundamentalFromCorrespondences7PointRobust)
{
double tolerance = 1e-8;
const int n = 16;
Mat_<double> x1(2,n);
x1 << 0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4, 5,
0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 5;
Mat_<double> x2 = x1.clone();
for (int i = 0; i < n; ++i)
{
x2(0,i) += i % 2; // Multiple horizontal disparities.
}
x2(0,n - 1) = 10;
x2(1,n - 1) = 10; // The outlier has vertical disparity.
Matx33d F;
vector<int> inliers;
fundamentalFromCorrespondences7PointRobust(x1, x2, 0.1, F, inliers);
// F should be 0, 0, 0,
// 0, 0, -1,
// 0, 1, 0
EXPECT_NEAR(0.0, F(0,0), tolerance);
EXPECT_NEAR(0.0, F(0,1), tolerance);
EXPECT_NEAR(0.0, F(0,2), tolerance);
EXPECT_NEAR(0.0, F(1,0), tolerance);
EXPECT_NEAR(0.0, F(1,1), tolerance);
EXPECT_NEAR(0.0, F(2,0), tolerance);
EXPECT_NEAR(0.0, F(2,2), tolerance);
EXPECT_NEAR(F(1,2), -F(2,1), tolerance);
EXPECT_EQ(n - 1, inliers.size());
}
TEST(Sfm_robust, fundamentalFromCorrespondences7PointRealisticNoOutliers)
{
double tolerance = 1e-8;
TwoViewDataSet d;
generateTwoViewRandomScene(d);
Matx33d F_estimated;
vector<int> inliers;
fundamentalFromCorrespondences7PointRobust(d.x1, d.x2, 3.0, F_estimated, inliers);
EXPECT_EQ(d.x1.cols, inliers.size());
// Normalize.
Matx33d F_gt_norm, F_estimated_norm;
normalizeFundamental(d.F, F_gt_norm);
normalizeFundamental(F_estimated, F_estimated_norm);
EXPECT_MATRIX_NEAR(F_gt_norm, F_estimated_norm, tolerance);
// Check fundamental properties.
expectFundamentalProperties( F_estimated, d.x1, d.x2, tolerance);
}
}} // namespace