MPC updates current waypoint and transforms temporal state into spatial

state before computing current control signal
master
matssteinweg 2019-12-02 00:12:22 +01:00
parent e6f006e515
commit 447bdf9f41
1 changed files with 14 additions and 6 deletions

20
MPC.py
View File

@ -2,6 +2,7 @@ import numpy as np
import osqp
from scipy import sparse
import matplotlib.pyplot as plt
from time import time
# Colors
PREDICTION = '#BA4A00'
@ -145,6 +146,12 @@ class MPC:
# Number of state variables
nx = self.model.n_states
# Update current waypoint
self.model.get_current_waypoint()
# Update spatial state
self.model.spatial_state = self.model.t2s()
# Initialize optimization problem
self._init_problem(v)
@ -198,17 +205,18 @@ class MPC:
x_pred, y_pred = [], []
# get current waypoint ID
print('#########################')
#print('#########################')
for n in range(2, self.N):
associated_waypoint = self.model.reference_path.waypoints[self.model.wp_id+n]
predicted_temporal_state = self.model.s2t(associated_waypoint,
spatial_state_prediction[n, :])
print('delta: ', u)
print('e_y: ', spatial_state_prediction[n, 0])
print('e_psi: ', spatial_state_prediction[n, 1])
print('t: ', spatial_state_prediction[n, 2])
print('+++++++++++++++++++++++')
#print('delta: ', u)
#print('e_y: ', spatial_state_prediction[n, 0])
#print('e_psi: ', spatial_state_prediction[n, 1])
#print('t: ', spatial_state_prediction[n, 2])
#print('+++++++++++++++++++++++')
x_pred.append(predicted_temporal_state.x)
y_pred.append(predicted_temporal_state.y)