diff --git a/MPC.py b/MPC.py index 4113962..b7cb144 100644 --- a/MPC.py +++ b/MPC.py @@ -2,6 +2,7 @@ import numpy as np import osqp from scipy import sparse import matplotlib.pyplot as plt +from time import time # Colors PREDICTION = '#BA4A00' @@ -145,6 +146,12 @@ class MPC: # Number of state variables nx = self.model.n_states + # Update current waypoint + self.model.get_current_waypoint() + + # Update spatial state + self.model.spatial_state = self.model.t2s() + # Initialize optimization problem self._init_problem(v) @@ -198,17 +205,18 @@ class MPC: x_pred, y_pred = [], [] # get current waypoint ID - print('#########################') + #print('#########################') for n in range(2, self.N): associated_waypoint = self.model.reference_path.waypoints[self.model.wp_id+n] predicted_temporal_state = self.model.s2t(associated_waypoint, spatial_state_prediction[n, :]) - print('delta: ', u) - print('e_y: ', spatial_state_prediction[n, 0]) - print('e_psi: ', spatial_state_prediction[n, 1]) - print('t: ', spatial_state_prediction[n, 2]) - print('+++++++++++++++++++++++') + + #print('delta: ', u) + #print('e_y: ', spatial_state_prediction[n, 0]) + #print('e_psi: ', spatial_state_prediction[n, 1]) + #print('t: ', spatial_state_prediction[n, 2]) + #print('+++++++++++++++++++++++') x_pred.append(predicted_temporal_state.x) y_pred.append(predicted_temporal_state.y)