Fast-Lio/src/IMU_Processing.hpp

408 lines
14 KiB
C++
Raw Blame History

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

#include <cmath>
#include <math.h>
#include <deque>
#include <mutex>
#include <thread>
#include <fstream>
#include <csignal>
#include <ros/ros.h>
#include <so3_math.h>
#include <Eigen/Eigen>
#include <common_lib.h>
#include <pcl/common/io.h>
#include <pcl/point_cloud.h>
#include <pcl/point_types.h>
#include <condition_variable>
#include <nav_msgs/Odometry.h>
#include <pcl/common/transforms.h>
#include <pcl/kdtree/kdtree_flann.h>
#include <tf/transform_broadcaster.h>
#include <eigen_conversions/eigen_msg.h>
#include <pcl_conversions/pcl_conversions.h>
#include <sensor_msgs/Imu.h>
#include <sensor_msgs/PointCloud2.h>
#include <geometry_msgs/Vector3.h>
#include "use-ikfom.hpp"
#include "preprocess.h"
/// *************Preconfiguration
#define MAX_INI_COUNT (10)
const bool time_list(PointType &x, PointType &y) {return (x.curvature < y.curvature);};
/// *************IMU Process and undistortion
class ImuProcess
{
public:
EIGEN_MAKE_ALIGNED_OPERATOR_NEW
ImuProcess();
~ImuProcess();
void Reset();
void Reset(double start_timestamp, const sensor_msgs::ImuConstPtr &lastimu);
void set_extrinsic(const V3D &transl, const M3D &rot);
void set_extrinsic(const V3D &transl);
void set_extrinsic(const MD(4,4) &T);
void set_gyr_cov(const V3D &scaler);
void set_acc_cov(const V3D &scaler);
void set_gyr_bias_cov(const V3D &b_g);
void set_acc_bias_cov(const V3D &b_a);
Eigen::Matrix<double, 12, 12> Q;
void Process(const MeasureGroup &meas, esekfom::esekf<state_ikfom, 12, input_ikfom> &kf_state, PointCloudXYZI::Ptr pcl_un_);
ofstream fout_imu;
V3D cov_acc;
V3D cov_gyr;
V3D cov_acc_scale;
V3D cov_gyr_scale;
V3D cov_bias_gyr;
V3D cov_bias_acc;
double first_lidar_time;
int lidar_type;
private:
void IMU_init(const MeasureGroup &meas, esekfom::esekf<state_ikfom, 12, input_ikfom> &kf_state, int &N);
void UndistortPcl(const MeasureGroup &meas, esekfom::esekf<state_ikfom, 12, input_ikfom> &kf_state, PointCloudXYZI &pcl_in_out);
PointCloudXYZI::Ptr cur_pcl_un_;
sensor_msgs::ImuConstPtr last_imu_;
deque<sensor_msgs::ImuConstPtr> v_imu_;
vector<Pose6D> IMUpose;
vector<M3D> v_rot_pcl_;
M3D Lidar_R_wrt_IMU;
V3D Lidar_T_wrt_IMU;
V3D mean_acc;
V3D mean_gyr;
V3D angvel_last;
V3D acc_s_last;
double start_timestamp_;
double last_lidar_end_time_;
int init_iter_num = 1;
bool b_first_frame_ = true;
bool imu_need_init_ = true;
};
ImuProcess::ImuProcess()
: b_first_frame_(true), imu_need_init_(true), start_timestamp_(-1)
{
init_iter_num = 1;
Q = process_noise_cov();
cov_acc = V3D(0.1, 0.1, 0.1);
cov_gyr = V3D(0.1, 0.1, 0.1);
cov_bias_gyr = V3D(0.0001, 0.0001, 0.0001);
cov_bias_acc = V3D(0.0001, 0.0001, 0.0001);
mean_acc = V3D(0, 0, -1.0);
mean_gyr = V3D(0, 0, 0);
angvel_last = Zero3d;
Lidar_T_wrt_IMU = Zero3d;
Lidar_R_wrt_IMU = Eye3d;
last_imu_.reset(new sensor_msgs::Imu());
}
ImuProcess::~ImuProcess() {}
void ImuProcess::Reset()
{
// ROS_WARN("Reset ImuProcess");
mean_acc = V3D(0, 0, -1.0);
mean_gyr = V3D(0, 0, 0);
angvel_last = Zero3d;
imu_need_init_ = true;
start_timestamp_ = -1;
init_iter_num = 1;
v_imu_.clear();
IMUpose.clear();
last_imu_.reset(new sensor_msgs::Imu());
cur_pcl_un_.reset(new PointCloudXYZI());
}
void ImuProcess::set_extrinsic(const MD(4,4) &T)
{
Lidar_T_wrt_IMU = T.block<3,1>(0,3);
Lidar_R_wrt_IMU = T.block<3,3>(0,0);
}
void ImuProcess::set_extrinsic(const V3D &transl)
{
Lidar_T_wrt_IMU = transl;
Lidar_R_wrt_IMU.setIdentity();
}
void ImuProcess::set_extrinsic(const V3D &transl, const M3D &rot)
{
Lidar_T_wrt_IMU = transl;
Lidar_R_wrt_IMU = rot;
}
void ImuProcess::set_gyr_cov(const V3D &scaler)
{
cov_gyr_scale = scaler;
}
void ImuProcess::set_acc_cov(const V3D &scaler)
{
cov_acc_scale = scaler;
}
void ImuProcess::set_gyr_bias_cov(const V3D &b_g)
{
cov_bias_gyr = b_g;
}
void ImuProcess::set_acc_bias_cov(const V3D &b_a)
{
cov_bias_acc = b_a;
}
void ImuProcess::IMU_init(const MeasureGroup &meas, esekfom::esekf<state_ikfom, 12, input_ikfom> &kf_state, int &N)
{
/** 1. initializing the gravity, gyro bias, acc and gyro covariance
** 2. normalize the acceleration measurenments to unit gravity **/
V3D cur_acc, cur_gyr;
if (b_first_frame_)
{
Reset();
N = 1;
b_first_frame_ = false;
const auto &imu_acc = meas.imu.front()->linear_acceleration;
const auto &gyr_acc = meas.imu.front()->angular_velocity;
mean_acc << imu_acc.x, imu_acc.y, imu_acc.z;
mean_gyr << gyr_acc.x, gyr_acc.y, gyr_acc.z;
first_lidar_time = meas.lidar_beg_time;
}
for (const auto &imu : meas.imu)
{
const auto &imu_acc = imu->linear_acceleration;
const auto &gyr_acc = imu->angular_velocity;
cur_acc << imu_acc.x, imu_acc.y, imu_acc.z;
cur_gyr << gyr_acc.x, gyr_acc.y, gyr_acc.z;
mean_acc += (cur_acc - mean_acc) / N;
mean_gyr += (cur_gyr - mean_gyr) / N;
cov_acc = cov_acc * (N - 1.0) / N + (cur_acc - mean_acc).cwiseProduct(cur_acc - mean_acc) * (N - 1.0) / (N * N);
cov_gyr = cov_gyr * (N - 1.0) / N + (cur_gyr - mean_gyr).cwiseProduct(cur_gyr - mean_gyr) * (N - 1.0) / (N * N);
// cout<<"acc norm: "<<cur_acc.norm()<<" "<<mean_acc.norm()<<endl;
N ++;
}
state_ikfom init_state = kf_state.get_x();
init_state.grav = S2(- mean_acc / mean_acc.norm() * G_m_s2);
//state_inout.rot = Eye3d; // Exp(mean_acc.cross(V3D(0, 0, -1 / scale_gravity)));
init_state.bg = mean_gyr;
init_state.offset_T_L_I = Lidar_T_wrt_IMU;
init_state.offset_R_L_I = Lidar_R_wrt_IMU;
kf_state.change_x(init_state);
esekfom::esekf<state_ikfom, 12, input_ikfom>::cov init_P = kf_state.get_P();
init_P.setIdentity();
init_P(6,6) = init_P(7,7) = init_P(8,8) = 0.00001;
init_P(9,9) = init_P(10,10) = init_P(11,11) = 0.00001;
init_P(15,15) = init_P(16,16) = init_P(17,17) = 0.0001;
init_P(18,18) = init_P(19,19) = init_P(20,20) = 0.001;
init_P(21,21) = init_P(22,22) = 0.00001;
kf_state.change_P(init_P);
last_imu_ = meas.imu.back();
}
/**
* @brief 去畸变点云数据
*
* @param meas 当前处理的激光雷达和IMU数据
* @param kf_state 扩展卡尔曼滤波器状态
* @param pcl_out 输出的去畸变点云
*/
void ImuProcess::UndistortPcl(const MeasureGroup &meas, esekfom::esekf<state_ikfom, 12, input_ikfom> &kf_state, PointCloudXYZI &pcl_out)
{
/*** add the imu of the last frame-tail to the of current frame-head ***/
// 将上一帧的IMU数据添加到当前帧的IMU数据前面
auto v_imu = meas.imu;
v_imu.push_front(last_imu_);
const double &imu_beg_time = v_imu.front()->header.stamp.toSec(); // 获取IMU数据的开始时间
const double &imu_end_time = v_imu.back()->header.stamp.toSec(); // 获取IMU数据的结束时间
double pcl_beg_time = meas.lidar_beg_time; // 获取激光雷达数据的开始时间
double pcl_end_time = meas.lidar_end_time; // 获取激光雷达数据的结束时间
if (lidar_type == MARSIM) {
pcl_beg_time = last_lidar_end_time_; // 如果激光雷达类型为MARSIM设置激光雷达开始时间为上一帧的结束时间
pcl_end_time = meas.lidar_beg_time; // 设置激光雷达结束时间为当前帧的开始时间
}
/*** sort point clouds by offset time ***/
// 按偏移时间对点云进行排序
pcl_out = *(meas.lidar);
sort(pcl_out.points.begin(), pcl_out.points.end(), time_list);
// cout<<"[ IMU Process ]: Process lidar from "<<pcl_beg_time<<" to "<<pcl_end_time<<", " \
// <<meas.imu.size()<<" imu msgs from "<<imu_beg_time<<" to "<<imu_end_time<<endl;
/*** Initialize IMU pose ***/
// 初始化IMU位姿
state_ikfom imu_state = kf_state.get_x();
IMUpose.clear();
IMUpose.push_back(set_pose6d(0.0, acc_s_last, angvel_last, imu_state.vel, imu_state.pos, imu_state.rot.toRotationMatrix()));
/*** forward propagation at each imu point ***/
// 在每个IMU点进行前向传播
V3D angvel_avr, acc_avr, acc_imu, vel_imu, pos_imu;
M3D R_imu;
double dt = 0;
input_ikfom in;
for (auto it_imu = v_imu.begin(); it_imu < (v_imu.end() - 1); it_imu++)
{
auto &&head = *(it_imu);
auto &&tail = *(it_imu + 1);
if (tail->header.stamp.toSec() < last_lidar_end_time_) continue; // 如果IMU时间小于上一帧激光雷达结束时间跳过
angvel_avr<<0.5 * (head->angular_velocity.x + tail->angular_velocity.x),
0.5 * (head->angular_velocity.y + tail->angular_velocity.y),
0.5 * (head->angular_velocity.z + tail->angular_velocity.z);
acc_avr <<0.5 * (head->linear_acceleration.x + tail->linear_acceleration.x),
0.5 * (head->linear_acceleration.y + tail->linear_acceleration.y),
0.5 * (head->linear_acceleration.z + tail->linear_acceleration.z);
// fout_imu << setw(10) << head->header.stamp.toSec() - first_lidar_time << " " << angvel_avr.transpose() << " " << acc_avr.transpose() << endl;
acc_avr = acc_avr * G_m_s2 / mean_acc.norm(); // - state_inout.ba; // 归一化加速度
if(head->header.stamp.toSec() < last_lidar_end_time_)
{
dt = tail->header.stamp.toSec() - last_lidar_end_time_; // 计算时间差
// dt = tail->header.stamp.toSec() - pcl_beg_time;
}
else
{
dt = tail->header.stamp.toSec() - head->header.stamp.toSec(); // 计算时间差
}
in.acc = acc_avr;
in.gyro = angvel_avr;
Q.block<3, 3>(0, 0).diagonal() = cov_gyr;
Q.block<3, 3>(3, 3).diagonal() = cov_acc;
Q.block<3, 3>(6, 6).diagonal() = cov_bias_gyr;
Q.block<3, 3>(9, 9).diagonal() = cov_bias_acc;
kf_state.predict(dt, Q, in); // 预测状态
/* save the poses at each IMU measurements */
// 保存每个IMU测量的位姿
imu_state = kf_state.get_x();
angvel_last = angvel_avr - imu_state.bg;
acc_s_last = imu_state.rot * (acc_avr - imu_state.ba);
for(int i=0; i<3; i++)
{
acc_s_last[i] += imu_state.grav[i];
}
double &&offs_t = tail->header.stamp.toSec() - pcl_beg_time;
IMUpose.push_back(set_pose6d(offs_t, acc_s_last, angvel_last, imu_state.vel, imu_state.pos, imu_state.rot.toRotationMatrix()));
}
/*** calculated the pos and attitude prediction at the frame-end ***/
// 计算帧末端的位姿和姿态预测
double note = pcl_end_time > imu_end_time ? 1.0 : -1.0;
dt = note * (pcl_end_time - imu_end_time);
kf_state.predict(dt, Q, in);
imu_state = kf_state.get_x();
last_imu_ = meas.imu.back();
last_lidar_end_time_ = pcl_end_time;
/*** undistort each lidar point (backward propagation) ***/
// 去畸变每个激光雷达点(反向传播)
if (pcl_out.points.begin() == pcl_out.points.end()) return;
if(lidar_type != MARSIM){
auto it_pcl = pcl_out.points.end() - 1;
for (auto it_kp = IMUpose.end() - 1; it_kp != IMUpose.begin(); it_kp--)
{
auto head = it_kp - 1;
auto tail = it_kp;
R_imu<<MAT_FROM_ARRAY(head->rot);
// cout<<"head imu acc: "<<acc_imu.transpose()<<endl;
vel_imu<<VEC_FROM_ARRAY(head->vel);
pos_imu<<VEC_FROM_ARRAY(head->pos);
acc_imu<<VEC_FROM_ARRAY(tail->acc);
angvel_avr<<VEC_FROM_ARRAY(tail->gyr);
// 去畸变每个激光雷达点(反向传播)
for(; it_pcl->curvature / double(1000) > head->offset_time; it_pcl --)
{
dt = it_pcl->curvature / double(1000) - head->offset_time;
/* Transform to the 'end' frame, using only the rotation
* Note: Compensation direction is INVERSE of Frame's moving direction
* So if we want to compensate a point at timestamp-i to the frame-e
* P_compensate = R_imu_e ^ T * (R_i * P_i + T_ei) where T_ei is represented in global frame */
// 将点转换到“结束”帧,仅使用旋转
M3D R_i(R_imu * Exp(angvel_avr, dt));
V3D P_i(it_pcl->x, it_pcl->y, it_pcl->z);
V3D T_ei(pos_imu + vel_imu * dt + 0.5 * acc_imu * dt * dt - imu_state.pos);
V3D P_compensate = imu_state.offset_R_L_I.conjugate() * (imu_state.rot.conjugate() * (R_i * (imu_state.offset_R_L_I * P_i + imu_state.offset_T_L_I) + T_ei) - imu_state.offset_T_L_I);// not accurate!
// save Undistorted points and their rotation
// 保存去畸变后的点和它们的旋转
it_pcl->x = P_compensate(0);
it_pcl->y = P_compensate(1);
it_pcl->z = P_compensate(2);
if (it_pcl == pcl_out.points.begin()) break;
}
}
}
}
void ImuProcess::Process(const MeasureGroup &meas, esekfom::esekf<state_ikfom, 12, input_ikfom> &kf_state, PointCloudXYZI::Ptr cur_pcl_un_)
{
double t1,t2,t3;
t1 = omp_get_wtime(); // 获取当前时间
if(meas.imu.empty()) {return;}; // 如果IMU数据为空直接返回
ROS_ASSERT(meas.lidar != nullptr); // 断言激光雷达数据不为空
if (imu_need_init_)
{
// 如果需要初始化IMU
/// The very first lidar frame
IMU_init(meas, kf_state, init_iter_num); // 初始化IMU
imu_need_init_ = true; // 设置IMU需要初始化标志为真
last_imu_ = meas.imu.back(); // 获取最后一个IMU数据
state_ikfom imu_state = kf_state.get_x(); // 获取当前状态
if (init_iter_num > MAX_INI_COUNT)
{
// 如果初始化迭代次数大于最大初始化次数
cov_acc *= pow(G_m_s2 / mean_acc.norm(), 2); // 调整加速度协方差
imu_need_init_ = false; // 设置IMU需要初始化标志为假
cov_acc = cov_acc_scale; // 设置加速度协方差
cov_gyr = cov_gyr_scale; // 设置陀螺仪协方差
ROS_INFO("IMU Initial Done"); // 打印IMU初始化完成信息
// ROS_INFO("IMU Initial Done: Gravity: %.4f %.4f %.4f %.4f; state.bias_g: %.4f %.4f %.4f; acc covarience: %.8f %.8f %.8f; gry covarience: %.8f %.8f %.8f",\
// imu_state.grav[0], imu_state.grav[1], imu_state.grav[2], mean_acc.norm(), cov_bias_gyr[0], cov_bias_gyr[1], cov_bias_gyr[2], cov_acc[0], cov_acc[1], cov_acc[2], cov_gyr[0], cov_gyr[1], cov_gyr[2]);
fout_imu.open(DEBUG_FILE_DIR("imu.txt"),ios::out); // 打开IMU调试文件
}
return;
}
UndistortPcl(meas, kf_state, *cur_pcl_un_); // 去畸变点云
t2 = omp_get_wtime();
t3 = omp_get_wtime();
// cout<<"[ IMU Process ]: Time: "<<t3 - t1<<endl;
}