#include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "use-ikfom.hpp" #include "preprocess.h" /// *************Preconfiguration #define MAX_INI_COUNT (10) const bool time_list(PointType &x, PointType &y) {return (x.curvature < y.curvature);}; /// *************IMU Process and undistortion class ImuProcess { public: EIGEN_MAKE_ALIGNED_OPERATOR_NEW ImuProcess(); ~ImuProcess(); void Reset(); void Reset(double start_timestamp, const sensor_msgs::ImuConstPtr &lastimu); void set_extrinsic(const V3D &transl, const M3D &rot); void set_extrinsic(const V3D &transl); void set_extrinsic(const MD(4,4) &T); void set_gyr_cov(const V3D &scaler); void set_acc_cov(const V3D &scaler); void set_gyr_bias_cov(const V3D &b_g); void set_acc_bias_cov(const V3D &b_a); Eigen::Matrix Q; void Process(const MeasureGroup &meas, esekfom::esekf &kf_state, PointCloudXYZI::Ptr pcl_un_); ofstream fout_imu; V3D cov_acc; V3D cov_gyr; V3D cov_acc_scale; V3D cov_gyr_scale; V3D cov_bias_gyr; V3D cov_bias_acc; double first_lidar_time; int lidar_type; private: void IMU_init(const MeasureGroup &meas, esekfom::esekf &kf_state, int &N); void UndistortPcl(const MeasureGroup &meas, esekfom::esekf &kf_state, PointCloudXYZI &pcl_in_out); PointCloudXYZI::Ptr cur_pcl_un_; sensor_msgs::ImuConstPtr last_imu_; deque v_imu_; vector IMUpose; vector v_rot_pcl_; M3D Lidar_R_wrt_IMU; V3D Lidar_T_wrt_IMU; V3D mean_acc; V3D mean_gyr; V3D angvel_last; V3D acc_s_last; double start_timestamp_; double last_lidar_end_time_; int init_iter_num = 1; bool b_first_frame_ = true; bool imu_need_init_ = true; }; ImuProcess::ImuProcess() : b_first_frame_(true), imu_need_init_(true), start_timestamp_(-1) { init_iter_num = 1; Q = process_noise_cov(); cov_acc = V3D(0.1, 0.1, 0.1); cov_gyr = V3D(0.1, 0.1, 0.1); cov_bias_gyr = V3D(0.0001, 0.0001, 0.0001); cov_bias_acc = V3D(0.0001, 0.0001, 0.0001); mean_acc = V3D(0, 0, -1.0); mean_gyr = V3D(0, 0, 0); angvel_last = Zero3d; Lidar_T_wrt_IMU = Zero3d; Lidar_R_wrt_IMU = Eye3d; last_imu_.reset(new sensor_msgs::Imu()); } ImuProcess::~ImuProcess() {} void ImuProcess::Reset() { // ROS_WARN("Reset ImuProcess"); mean_acc = V3D(0, 0, -1.0); mean_gyr = V3D(0, 0, 0); angvel_last = Zero3d; imu_need_init_ = true; start_timestamp_ = -1; init_iter_num = 1; v_imu_.clear(); IMUpose.clear(); last_imu_.reset(new sensor_msgs::Imu()); cur_pcl_un_.reset(new PointCloudXYZI()); } void ImuProcess::set_extrinsic(const MD(4,4) &T) { Lidar_T_wrt_IMU = T.block<3,1>(0,3); Lidar_R_wrt_IMU = T.block<3,3>(0,0); } void ImuProcess::set_extrinsic(const V3D &transl) { Lidar_T_wrt_IMU = transl; Lidar_R_wrt_IMU.setIdentity(); } void ImuProcess::set_extrinsic(const V3D &transl, const M3D &rot) { Lidar_T_wrt_IMU = transl; Lidar_R_wrt_IMU = rot; } void ImuProcess::set_gyr_cov(const V3D &scaler) { cov_gyr_scale = scaler; } void ImuProcess::set_acc_cov(const V3D &scaler) { cov_acc_scale = scaler; } void ImuProcess::set_gyr_bias_cov(const V3D &b_g) { cov_bias_gyr = b_g; } void ImuProcess::set_acc_bias_cov(const V3D &b_a) { cov_bias_acc = b_a; } void ImuProcess::IMU_init(const MeasureGroup &meas, esekfom::esekf &kf_state, int &N) { /** 1. initializing the gravity, gyro bias, acc and gyro covariance ** 2. normalize the acceleration measurenments to unit gravity **/ V3D cur_acc, cur_gyr; if (b_first_frame_) { Reset(); N = 1; b_first_frame_ = false; const auto &imu_acc = meas.imu.front()->linear_acceleration; const auto &gyr_acc = meas.imu.front()->angular_velocity; mean_acc << imu_acc.x, imu_acc.y, imu_acc.z; mean_gyr << gyr_acc.x, gyr_acc.y, gyr_acc.z; first_lidar_time = meas.lidar_beg_time; } for (const auto &imu : meas.imu) { const auto &imu_acc = imu->linear_acceleration; const auto &gyr_acc = imu->angular_velocity; cur_acc << imu_acc.x, imu_acc.y, imu_acc.z; cur_gyr << gyr_acc.x, gyr_acc.y, gyr_acc.z; mean_acc += (cur_acc - mean_acc) / N; mean_gyr += (cur_gyr - mean_gyr) / N; cov_acc = cov_acc * (N - 1.0) / N + (cur_acc - mean_acc).cwiseProduct(cur_acc - mean_acc) * (N - 1.0) / (N * N); cov_gyr = cov_gyr * (N - 1.0) / N + (cur_gyr - mean_gyr).cwiseProduct(cur_gyr - mean_gyr) * (N - 1.0) / (N * N); // cout<<"acc norm: "<::cov init_P = kf_state.get_P(); init_P.setIdentity(); init_P(6,6) = init_P(7,7) = init_P(8,8) = 0.00001; init_P(9,9) = init_P(10,10) = init_P(11,11) = 0.00001; init_P(15,15) = init_P(16,16) = init_P(17,17) = 0.0001; init_P(18,18) = init_P(19,19) = init_P(20,20) = 0.001; init_P(21,21) = init_P(22,22) = 0.00001; kf_state.change_P(init_P); last_imu_ = meas.imu.back(); } /** * @brief 去畸变点云数据 * * @param meas 当前处理的激光雷达和IMU数据 * @param kf_state 扩展卡尔曼滤波器状态 * @param pcl_out 输出的去畸变点云 */ void ImuProcess::UndistortPcl(const MeasureGroup &meas, esekfom::esekf &kf_state, PointCloudXYZI &pcl_out) { /*** add the imu of the last frame-tail to the of current frame-head ***/ // 将上一帧的IMU数据添加到当前帧的IMU数据前面 auto v_imu = meas.imu; v_imu.push_front(last_imu_); const double &imu_beg_time = v_imu.front()->header.stamp.toSec(); // 获取IMU数据的开始时间 const double &imu_end_time = v_imu.back()->header.stamp.toSec(); // 获取IMU数据的结束时间 double pcl_beg_time = meas.lidar_beg_time; // 获取激光雷达数据的开始时间 double pcl_end_time = meas.lidar_end_time; // 获取激光雷达数据的结束时间 if (lidar_type == MARSIM) { pcl_beg_time = last_lidar_end_time_; // 如果激光雷达类型为MARSIM,设置激光雷达开始时间为上一帧的结束时间 pcl_end_time = meas.lidar_beg_time; // 设置激光雷达结束时间为当前帧的开始时间 } /*** sort point clouds by offset time ***/ // 按偏移时间对点云进行排序 pcl_out = *(meas.lidar); sort(pcl_out.points.begin(), pcl_out.points.end(), time_list); // cout<<"[ IMU Process ]: Process lidar from "<header.stamp.toSec() < last_lidar_end_time_) continue; // 如果IMU时间小于上一帧激光雷达结束时间,跳过 angvel_avr<<0.5 * (head->angular_velocity.x + tail->angular_velocity.x), 0.5 * (head->angular_velocity.y + tail->angular_velocity.y), 0.5 * (head->angular_velocity.z + tail->angular_velocity.z); acc_avr <<0.5 * (head->linear_acceleration.x + tail->linear_acceleration.x), 0.5 * (head->linear_acceleration.y + tail->linear_acceleration.y), 0.5 * (head->linear_acceleration.z + tail->linear_acceleration.z); // fout_imu << setw(10) << head->header.stamp.toSec() - first_lidar_time << " " << angvel_avr.transpose() << " " << acc_avr.transpose() << endl; acc_avr = acc_avr * G_m_s2 / mean_acc.norm(); // - state_inout.ba; // 归一化加速度 if(head->header.stamp.toSec() < last_lidar_end_time_) { dt = tail->header.stamp.toSec() - last_lidar_end_time_; // 计算时间差 // dt = tail->header.stamp.toSec() - pcl_beg_time; } else { dt = tail->header.stamp.toSec() - head->header.stamp.toSec(); // 计算时间差 } in.acc = acc_avr; in.gyro = angvel_avr; Q.block<3, 3>(0, 0).diagonal() = cov_gyr; Q.block<3, 3>(3, 3).diagonal() = cov_acc; Q.block<3, 3>(6, 6).diagonal() = cov_bias_gyr; Q.block<3, 3>(9, 9).diagonal() = cov_bias_acc; kf_state.predict(dt, Q, in); // 预测状态 /* save the poses at each IMU measurements */ // 保存每个IMU测量的位姿 imu_state = kf_state.get_x(); angvel_last = angvel_avr - imu_state.bg; acc_s_last = imu_state.rot * (acc_avr - imu_state.ba); for(int i=0; i<3; i++) { acc_s_last[i] += imu_state.grav[i]; } double &&offs_t = tail->header.stamp.toSec() - pcl_beg_time; IMUpose.push_back(set_pose6d(offs_t, acc_s_last, angvel_last, imu_state.vel, imu_state.pos, imu_state.rot.toRotationMatrix())); } /*** calculated the pos and attitude prediction at the frame-end ***/ // 计算帧末端的位姿和姿态预测 double note = pcl_end_time > imu_end_time ? 1.0 : -1.0; dt = note * (pcl_end_time - imu_end_time); kf_state.predict(dt, Q, in); imu_state = kf_state.get_x(); last_imu_ = meas.imu.back(); last_lidar_end_time_ = pcl_end_time; /*** undistort each lidar point (backward propagation) ***/ // 去畸变每个激光雷达点(反向传播) if (pcl_out.points.begin() == pcl_out.points.end()) return; if(lidar_type != MARSIM){ auto it_pcl = pcl_out.points.end() - 1; for (auto it_kp = IMUpose.end() - 1; it_kp != IMUpose.begin(); it_kp--) { auto head = it_kp - 1; auto tail = it_kp; R_imu<rot); // cout<<"head imu acc: "<vel); pos_imu<pos); acc_imu<acc); angvel_avr<gyr); // 去畸变每个激光雷达点(反向传播) for(; it_pcl->curvature / double(1000) > head->offset_time; it_pcl --) { dt = it_pcl->curvature / double(1000) - head->offset_time; /* Transform to the 'end' frame, using only the rotation * Note: Compensation direction is INVERSE of Frame's moving direction * So if we want to compensate a point at timestamp-i to the frame-e * P_compensate = R_imu_e ^ T * (R_i * P_i + T_ei) where T_ei is represented in global frame */ // 将点转换到“结束”帧,仅使用旋转 M3D R_i(R_imu * Exp(angvel_avr, dt)); V3D P_i(it_pcl->x, it_pcl->y, it_pcl->z); V3D T_ei(pos_imu + vel_imu * dt + 0.5 * acc_imu * dt * dt - imu_state.pos); V3D P_compensate = imu_state.offset_R_L_I.conjugate() * (imu_state.rot.conjugate() * (R_i * (imu_state.offset_R_L_I * P_i + imu_state.offset_T_L_I) + T_ei) - imu_state.offset_T_L_I);// not accurate! // save Undistorted points and their rotation // 保存去畸变后的点和它们的旋转 it_pcl->x = P_compensate(0); it_pcl->y = P_compensate(1); it_pcl->z = P_compensate(2); if (it_pcl == pcl_out.points.begin()) break; } } } } void ImuProcess::Process(const MeasureGroup &meas, esekfom::esekf &kf_state, PointCloudXYZI::Ptr cur_pcl_un_) { double t1,t2,t3; t1 = omp_get_wtime(); // 获取当前时间 if(meas.imu.empty()) {return;}; // 如果IMU数据为空,直接返回 ROS_ASSERT(meas.lidar != nullptr); // 断言激光雷达数据不为空 if (imu_need_init_) { // 如果需要初始化IMU /// The very first lidar frame IMU_init(meas, kf_state, init_iter_num); // 初始化IMU imu_need_init_ = true; // 设置IMU需要初始化标志为真 last_imu_ = meas.imu.back(); // 获取最后一个IMU数据 state_ikfom imu_state = kf_state.get_x(); // 获取当前状态 if (init_iter_num > MAX_INI_COUNT) { // 如果初始化迭代次数大于最大初始化次数 cov_acc *= pow(G_m_s2 / mean_acc.norm(), 2); // 调整加速度协方差 imu_need_init_ = false; // 设置IMU需要初始化标志为假 cov_acc = cov_acc_scale; // 设置加速度协方差 cov_gyr = cov_gyr_scale; // 设置陀螺仪协方差 ROS_INFO("IMU Initial Done"); // 打印IMU初始化完成信息 // ROS_INFO("IMU Initial Done: Gravity: %.4f %.4f %.4f %.4f; state.bias_g: %.4f %.4f %.4f; acc covarience: %.8f %.8f %.8f; gry covarience: %.8f %.8f %.8f",\ // imu_state.grav[0], imu_state.grav[1], imu_state.grav[2], mean_acc.norm(), cov_bias_gyr[0], cov_bias_gyr[1], cov_bias_gyr[2], cov_acc[0], cov_acc[1], cov_acc[2], cov_gyr[0], cov_gyr[1], cov_gyr[2]); fout_imu.open(DEBUG_FILE_DIR("imu.txt"),ios::out); // 打开IMU调试文件 } return; } UndistortPcl(meas, kf_state, *cur_pcl_un_); // 去畸变点云 t2 = omp_get_wtime(); t3 = omp_get_wtime(); // cout<<"[ IMU Process ]: Time: "<