1682 lines
43 KiB
C
1682 lines
43 KiB
C
/*
|
|
* Copyright (c) 2009-2012 Nick Mathewson and Niels Provos
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. The name of the author may not be used to endorse or promote products
|
|
* derived from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
|
|
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
|
|
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
|
|
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
|
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
|
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
|
|
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
/** For event_debug() usage/coverage */
|
|
#define EVENT_VISIBILITY_WANT_DLLIMPORT
|
|
|
|
#include "../util-internal.h"
|
|
|
|
#ifdef _WIN32
|
|
#include <winsock2.h>
|
|
#include <windows.h>
|
|
#include <ws2tcpip.h>
|
|
#endif
|
|
|
|
#include "event2/event-config.h"
|
|
|
|
#include <sys/types.h>
|
|
|
|
#ifndef _WIN32
|
|
#include <sys/socket.h>
|
|
#include <netinet/in.h>
|
|
#include <arpa/inet.h>
|
|
#include <unistd.h>
|
|
#endif
|
|
#ifdef EVENT__HAVE_NETINET_IN6_H
|
|
#include <netinet/in6.h>
|
|
#endif
|
|
#ifdef EVENT__HAVE_SYS_WAIT_H
|
|
#include <sys/wait.h>
|
|
#endif
|
|
#include <signal.h>
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
|
|
#include "event2/event.h"
|
|
#include "event2/util.h"
|
|
#include "../ipv6-internal.h"
|
|
#include "../log-internal.h"
|
|
#include "../strlcpy-internal.h"
|
|
#include "../mm-internal.h"
|
|
#include "../time-internal.h"
|
|
|
|
#include "regress.h"
|
|
|
|
enum entry_status { NORMAL, CANONICAL, BAD };
|
|
|
|
/* This is a big table of results we expect from generating and parsing */
|
|
static struct ipv4_entry {
|
|
const char *addr;
|
|
ev_uint32_t res;
|
|
enum entry_status status;
|
|
} ipv4_entries[] = {
|
|
{ "1.2.3.4", 0x01020304u, CANONICAL },
|
|
{ "255.255.255.255", 0xffffffffu, CANONICAL },
|
|
{ "256.0.0.0", 0, BAD },
|
|
{ "ABC", 0, BAD },
|
|
{ "1.2.3.4.5", 0, BAD },
|
|
{ "176.192.208.244", 0xb0c0d0f4, CANONICAL },
|
|
{ NULL, 0, BAD },
|
|
};
|
|
|
|
static struct ipv6_entry {
|
|
const char *addr;
|
|
ev_uint32_t res[4];
|
|
enum entry_status status;
|
|
} ipv6_entries[] = {
|
|
{ "::", { 0, 0, 0, 0, }, CANONICAL },
|
|
{ "0:0:0:0:0:0:0:0", { 0, 0, 0, 0, }, NORMAL },
|
|
{ "::1", { 0, 0, 0, 1, }, CANONICAL },
|
|
{ "::1.2.3.4", { 0, 0, 0, 0x01020304, }, CANONICAL },
|
|
{ "ffff:1::", { 0xffff0001u, 0, 0, 0, }, CANONICAL },
|
|
{ "ffff:0000::", { 0xffff0000u, 0, 0, 0, }, NORMAL },
|
|
{ "ffff::1234", { 0xffff0000u, 0, 0, 0x1234, }, CANONICAL },
|
|
{ "0102::1.2.3.4", {0x01020000u, 0, 0, 0x01020304u }, NORMAL },
|
|
{ "::9:c0a8:1:1", { 0, 0, 0x0009c0a8u, 0x00010001u }, CANONICAL },
|
|
{ "::ffff:1.2.3.4", { 0, 0, 0x000ffffu, 0x01020304u }, CANONICAL },
|
|
{ "FFFF::", { 0xffff0000u, 0, 0, 0 }, NORMAL },
|
|
{ "foobar.", { 0, 0, 0, 0 }, BAD },
|
|
{ "foobar", { 0, 0, 0, 0 }, BAD },
|
|
{ "fo:obar", { 0, 0, 0, 0 }, BAD },
|
|
{ "ffff", { 0, 0, 0, 0 }, BAD },
|
|
{ "fffff::", { 0, 0, 0, 0 }, BAD },
|
|
{ "fffff::", { 0, 0, 0, 0 }, BAD },
|
|
{ "::1.0.1.1000", { 0, 0, 0, 0 }, BAD },
|
|
{ "1:2:33333:4::", { 0, 0, 0, 0 }, BAD },
|
|
{ "1:2:3:4:5:6:7:8:9", { 0, 0, 0, 0 }, BAD },
|
|
{ "1::2::3", { 0, 0, 0, 0 }, BAD },
|
|
{ ":::1", { 0, 0, 0, 0 }, BAD },
|
|
{ NULL, { 0, 0, 0, 0, }, BAD },
|
|
};
|
|
|
|
static void
|
|
regress_ipv4_parse(void *ptr)
|
|
{
|
|
int i;
|
|
for (i = 0; ipv4_entries[i].addr; ++i) {
|
|
char written[128];
|
|
struct ipv4_entry *ent = &ipv4_entries[i];
|
|
struct in_addr in;
|
|
int r;
|
|
r = evutil_inet_pton(AF_INET, ent->addr, &in);
|
|
if (r == 0) {
|
|
if (ent->status != BAD) {
|
|
TT_FAIL(("%s did not parse, but it's a good address!",
|
|
ent->addr));
|
|
}
|
|
continue;
|
|
}
|
|
if (ent->status == BAD) {
|
|
TT_FAIL(("%s parsed, but we expected an error", ent->addr));
|
|
continue;
|
|
}
|
|
if (ntohl(in.s_addr) != ent->res) {
|
|
TT_FAIL(("%s parsed to %lx, but we expected %lx", ent->addr,
|
|
(unsigned long)ntohl(in.s_addr),
|
|
(unsigned long)ent->res));
|
|
continue;
|
|
}
|
|
if (ent->status == CANONICAL) {
|
|
const char *w = evutil_inet_ntop(AF_INET, &in, written,
|
|
sizeof(written));
|
|
if (!w) {
|
|
TT_FAIL(("Tried to write out %s; got NULL.", ent->addr));
|
|
continue;
|
|
}
|
|
if (strcmp(written, ent->addr)) {
|
|
TT_FAIL(("Tried to write out %s; got %s",
|
|
ent->addr, written));
|
|
continue;
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
static void
|
|
regress_ipv6_parse(void *ptr)
|
|
{
|
|
#ifdef AF_INET6
|
|
int i, j;
|
|
|
|
for (i = 0; ipv6_entries[i].addr; ++i) {
|
|
char written[128];
|
|
struct ipv6_entry *ent = &ipv6_entries[i];
|
|
struct in6_addr in6;
|
|
int r;
|
|
r = evutil_inet_pton(AF_INET6, ent->addr, &in6);
|
|
if (r == 0) {
|
|
if (ent->status != BAD)
|
|
TT_FAIL(("%s did not parse, but it's a good address!",
|
|
ent->addr));
|
|
continue;
|
|
}
|
|
if (ent->status == BAD) {
|
|
TT_FAIL(("%s parsed, but we expected an error", ent->addr));
|
|
continue;
|
|
}
|
|
for (j = 0; j < 4; ++j) {
|
|
/* Can't use s6_addr32 here; some don't have it. */
|
|
ev_uint32_t u =
|
|
((ev_uint32_t)in6.s6_addr[j*4 ] << 24) |
|
|
((ev_uint32_t)in6.s6_addr[j*4+1] << 16) |
|
|
((ev_uint32_t)in6.s6_addr[j*4+2] << 8) |
|
|
((ev_uint32_t)in6.s6_addr[j*4+3]);
|
|
if (u != ent->res[j]) {
|
|
TT_FAIL(("%s did not parse as expected.", ent->addr));
|
|
continue;
|
|
}
|
|
}
|
|
if (ent->status == CANONICAL) {
|
|
const char *w = evutil_inet_ntop(AF_INET6, &in6, written,
|
|
sizeof(written));
|
|
if (!w) {
|
|
TT_FAIL(("Tried to write out %s; got NULL.", ent->addr));
|
|
continue;
|
|
}
|
|
if (strcmp(written, ent->addr)) {
|
|
TT_FAIL(("Tried to write out %s; got %s", ent->addr, written));
|
|
continue;
|
|
}
|
|
}
|
|
|
|
}
|
|
#else
|
|
TT_BLATHER(("Skipping IPv6 address parsing."));
|
|
#endif
|
|
}
|
|
|
|
static struct ipv6_entry_scope {
|
|
const char *addr;
|
|
ev_uint32_t res[4];
|
|
unsigned scope;
|
|
enum entry_status status;
|
|
} ipv6_entries_scope[] = {
|
|
{ "2001:DB8::", { 0x20010db8, 0, 0 }, 0, NORMAL },
|
|
{ "2001:DB8::%0", { 0x20010db8, 0, 0, 0 }, 0, NORMAL },
|
|
{ "2001:DB8::%1", { 0x20010db8, 0, 0, 0 }, 1, NORMAL },
|
|
{ "foobar.", { 0, 0, 0, 0 }, 0, BAD },
|
|
{ "2001:DB8::%does-not-exist", { 0, 0, 0, 0 }, 0, BAD },
|
|
{ NULL, { 0, 0, 0, 0, }, 0, BAD },
|
|
};
|
|
static void
|
|
regress_ipv6_parse_scope(void *ptr)
|
|
{
|
|
#ifdef AF_INET6
|
|
int i, j;
|
|
unsigned if_scope;
|
|
|
|
for (i = 0; ipv6_entries_scope[i].addr; ++i) {
|
|
struct ipv6_entry_scope *ent = &ipv6_entries_scope[i];
|
|
struct in6_addr in6;
|
|
int r;
|
|
r = evutil_inet_pton_scope(AF_INET6, ent->addr, &in6,
|
|
&if_scope);
|
|
if (r == 0) {
|
|
if (ent->status != BAD)
|
|
TT_FAIL(("%s did not parse, but it's a good address!",
|
|
ent->addr));
|
|
continue;
|
|
}
|
|
if (ent->status == BAD) {
|
|
TT_FAIL(("%s parsed, but we expected an error", ent->addr));
|
|
continue;
|
|
}
|
|
for (j = 0; j < 4; ++j) {
|
|
/* Can't use s6_addr32 here; some don't have it. */
|
|
ev_uint32_t u =
|
|
((ev_uint32_t)in6.s6_addr[j*4 ] << 24) |
|
|
((ev_uint32_t)in6.s6_addr[j*4+1] << 16) |
|
|
((ev_uint32_t)in6.s6_addr[j*4+2] << 8) |
|
|
((ev_uint32_t)in6.s6_addr[j*4+3]);
|
|
if (u != ent->res[j]) {
|
|
TT_FAIL(("%s did not parse as expected.", ent->addr));
|
|
continue;
|
|
}
|
|
}
|
|
if (if_scope != ent->scope) {
|
|
TT_FAIL(("%s did not parse as expected.", ent->addr));
|
|
continue;
|
|
}
|
|
}
|
|
#else
|
|
TT_BLATHER(("Skipping IPv6 address parsing."));
|
|
#endif
|
|
}
|
|
|
|
|
|
static struct sa_port_ent {
|
|
const char *parse;
|
|
int safamily;
|
|
const char *addr;
|
|
int port;
|
|
} sa_port_ents[] = {
|
|
{ "[ffff::1]:1000", AF_INET6, "ffff::1", 1000 },
|
|
{ "[ffff::1]", AF_INET6, "ffff::1", 0 },
|
|
{ "[ffff::1", 0, NULL, 0 },
|
|
{ "[ffff::1]:65599", 0, NULL, 0 },
|
|
{ "[ffff::1]:0", 0, NULL, 0 },
|
|
{ "[ffff::1]:-1", 0, NULL, 0 },
|
|
{ "::1", AF_INET6, "::1", 0 },
|
|
{ "1:2::1", AF_INET6, "1:2::1", 0 },
|
|
{ "192.168.0.1:50", AF_INET, "192.168.0.1", 50 },
|
|
{ "1.2.3.4", AF_INET, "1.2.3.4", 0 },
|
|
{ NULL, 0, NULL, 0 },
|
|
};
|
|
|
|
static void
|
|
regress_sockaddr_port_parse(void *ptr)
|
|
{
|
|
struct sockaddr_storage ss;
|
|
int i, r;
|
|
|
|
for (i = 0; sa_port_ents[i].parse; ++i) {
|
|
struct sa_port_ent *ent = &sa_port_ents[i];
|
|
int len = sizeof(ss);
|
|
memset(&ss, 0, sizeof(ss));
|
|
r = evutil_parse_sockaddr_port(ent->parse, (struct sockaddr*)&ss, &len);
|
|
if (r < 0) {
|
|
if (ent->safamily)
|
|
TT_FAIL(("Couldn't parse %s!", ent->parse));
|
|
continue;
|
|
} else if (! ent->safamily) {
|
|
TT_FAIL(("Shouldn't have been able to parse %s!", ent->parse));
|
|
continue;
|
|
}
|
|
if (ent->safamily == AF_INET) {
|
|
struct sockaddr_in sin;
|
|
memset(&sin, 0, sizeof(sin));
|
|
#ifdef EVENT__HAVE_STRUCT_SOCKADDR_IN_SIN_LEN
|
|
sin.sin_len = sizeof(sin);
|
|
#endif
|
|
sin.sin_family = AF_INET;
|
|
sin.sin_port = htons(ent->port);
|
|
r = evutil_inet_pton(AF_INET, ent->addr, &sin.sin_addr);
|
|
if (1 != r) {
|
|
TT_FAIL(("Couldn't parse ipv4 target %s.", ent->addr));
|
|
} else if (memcmp(&sin, &ss, sizeof(sin))) {
|
|
TT_FAIL(("Parse for %s was not as expected.", ent->parse));
|
|
} else if (len != sizeof(sin)) {
|
|
TT_FAIL(("Length for %s not as expected.",ent->parse));
|
|
}
|
|
} else {
|
|
struct sockaddr_in6 sin6;
|
|
memset(&sin6, 0, sizeof(sin6));
|
|
#ifdef EVENT__HAVE_STRUCT_SOCKADDR_IN6_SIN6_LEN
|
|
sin6.sin6_len = sizeof(sin6);
|
|
#endif
|
|
sin6.sin6_family = AF_INET6;
|
|
sin6.sin6_port = htons(ent->port);
|
|
r = evutil_inet_pton(AF_INET6, ent->addr, &sin6.sin6_addr);
|
|
if (1 != r) {
|
|
TT_FAIL(("Couldn't parse ipv6 target %s.", ent->addr));
|
|
} else if (memcmp(&sin6, &ss, sizeof(sin6))) {
|
|
TT_FAIL(("Parse for %s was not as expected.", ent->parse));
|
|
} else if (len != sizeof(sin6)) {
|
|
TT_FAIL(("Length for %s not as expected.",ent->parse));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
static void
|
|
regress_sockaddr_port_format(void *ptr)
|
|
{
|
|
struct sockaddr_storage ss;
|
|
int len;
|
|
const char *cp;
|
|
char cbuf[128];
|
|
int r;
|
|
|
|
len = sizeof(ss);
|
|
r = evutil_parse_sockaddr_port("192.168.1.1:80",
|
|
(struct sockaddr*)&ss, &len);
|
|
tt_int_op(r,==,0);
|
|
cp = evutil_format_sockaddr_port_(
|
|
(struct sockaddr*)&ss, cbuf, sizeof(cbuf));
|
|
tt_ptr_op(cp,==,cbuf);
|
|
tt_str_op(cp,==,"192.168.1.1:80");
|
|
|
|
len = sizeof(ss);
|
|
r = evutil_parse_sockaddr_port("[ff00::8010]:999",
|
|
(struct sockaddr*)&ss, &len);
|
|
tt_int_op(r,==,0);
|
|
cp = evutil_format_sockaddr_port_(
|
|
(struct sockaddr*)&ss, cbuf, sizeof(cbuf));
|
|
tt_ptr_op(cp,==,cbuf);
|
|
tt_str_op(cp,==,"[ff00::8010]:999");
|
|
|
|
ss.ss_family=99;
|
|
cp = evutil_format_sockaddr_port_(
|
|
(struct sockaddr*)&ss, cbuf, sizeof(cbuf));
|
|
tt_ptr_op(cp,==,cbuf);
|
|
tt_str_op(cp,==,"<addr with socktype 99>");
|
|
end:
|
|
;
|
|
}
|
|
|
|
static struct sa_pred_ent {
|
|
const char *parse;
|
|
|
|
int is_loopback;
|
|
} sa_pred_entries[] = {
|
|
{ "127.0.0.1", 1 },
|
|
{ "127.0.3.2", 1 },
|
|
{ "128.1.2.3", 0 },
|
|
{ "18.0.0.1", 0 },
|
|
{ "129.168.1.1", 0 },
|
|
|
|
{ "::1", 1 },
|
|
{ "::0", 0 },
|
|
{ "f::1", 0 },
|
|
{ "::501", 0 },
|
|
{ NULL, 0 },
|
|
|
|
};
|
|
|
|
static void
|
|
test_evutil_sockaddr_predicates(void *ptr)
|
|
{
|
|
struct sockaddr_storage ss;
|
|
int r, i;
|
|
|
|
for (i=0; sa_pred_entries[i].parse; ++i) {
|
|
struct sa_pred_ent *ent = &sa_pred_entries[i];
|
|
int len = sizeof(ss);
|
|
|
|
r = evutil_parse_sockaddr_port(ent->parse, (struct sockaddr*)&ss, &len);
|
|
|
|
if (r<0) {
|
|
TT_FAIL(("Couldn't parse %s!", ent->parse));
|
|
continue;
|
|
}
|
|
|
|
/* sockaddr_is_loopback */
|
|
if (ent->is_loopback != evutil_sockaddr_is_loopback_((struct sockaddr*)&ss)) {
|
|
TT_FAIL(("evutil_sockaddr_loopback(%s) not as expected",
|
|
ent->parse));
|
|
}
|
|
}
|
|
}
|
|
|
|
static void
|
|
test_evutil_strtoll(void *ptr)
|
|
{
|
|
const char *s;
|
|
char *endptr;
|
|
|
|
tt_want(evutil_strtoll("5000000000", NULL, 10) ==
|
|
((ev_int64_t)5000000)*1000);
|
|
tt_want(evutil_strtoll("-5000000000", NULL, 10) ==
|
|
((ev_int64_t)5000000)*-1000);
|
|
s = " 99999stuff";
|
|
tt_want(evutil_strtoll(s, &endptr, 10) == (ev_int64_t)99999);
|
|
tt_want(endptr == s+6);
|
|
tt_want(evutil_strtoll("foo", NULL, 10) == 0);
|
|
}
|
|
|
|
static void
|
|
test_evutil_snprintf(void *ptr)
|
|
{
|
|
char buf[16];
|
|
int r;
|
|
ev_uint64_t u64 = ((ev_uint64_t)1000000000)*200;
|
|
ev_int64_t i64 = -1 * (ev_int64_t) u64;
|
|
size_t size = 8000;
|
|
ev_ssize_t ssize = -9000;
|
|
|
|
r = evutil_snprintf(buf, sizeof(buf), "%d %d", 50, 100);
|
|
tt_str_op(buf, ==, "50 100");
|
|
tt_int_op(r, ==, 6);
|
|
|
|
r = evutil_snprintf(buf, sizeof(buf), "longish %d", 1234567890);
|
|
tt_str_op(buf, ==, "longish 1234567");
|
|
tt_int_op(r, ==, 18);
|
|
|
|
r = evutil_snprintf(buf, sizeof(buf), EV_U64_FMT, EV_U64_ARG(u64));
|
|
tt_str_op(buf, ==, "200000000000");
|
|
tt_int_op(r, ==, 12);
|
|
|
|
r = evutil_snprintf(buf, sizeof(buf), EV_I64_FMT, EV_I64_ARG(i64));
|
|
tt_str_op(buf, ==, "-200000000000");
|
|
tt_int_op(r, ==, 13);
|
|
|
|
r = evutil_snprintf(buf, sizeof(buf), EV_SIZE_FMT" "EV_SSIZE_FMT,
|
|
EV_SIZE_ARG(size), EV_SSIZE_ARG(ssize));
|
|
tt_str_op(buf, ==, "8000 -9000");
|
|
tt_int_op(r, ==, 10);
|
|
|
|
end:
|
|
;
|
|
}
|
|
|
|
static void
|
|
test_evutil_casecmp(void *ptr)
|
|
{
|
|
tt_int_op(evutil_ascii_strcasecmp("ABC", "ABC"), ==, 0);
|
|
tt_int_op(evutil_ascii_strcasecmp("ABC", "abc"), ==, 0);
|
|
tt_int_op(evutil_ascii_strcasecmp("ABC", "abcd"), <, 0);
|
|
tt_int_op(evutil_ascii_strcasecmp("ABC", "abb"), >, 0);
|
|
tt_int_op(evutil_ascii_strcasecmp("ABCd", "abc"), >, 0);
|
|
|
|
tt_int_op(evutil_ascii_strncasecmp("Libevent", "LibEvEnT", 100), ==, 0);
|
|
tt_int_op(evutil_ascii_strncasecmp("Libevent", "LibEvEnT", 4), ==, 0);
|
|
tt_int_op(evutil_ascii_strncasecmp("Libevent", "LibEXXXX", 4), ==, 0);
|
|
tt_int_op(evutil_ascii_strncasecmp("Libevent", "LibE", 4), ==, 0);
|
|
tt_int_op(evutil_ascii_strncasecmp("Libe", "LibEvEnT", 4), ==, 0);
|
|
tt_int_op(evutil_ascii_strncasecmp("Lib", "LibEvEnT", 4), <, 0);
|
|
tt_int_op(evutil_ascii_strncasecmp("abc", "def", 99), <, 0);
|
|
tt_int_op(evutil_ascii_strncasecmp("Z", "qrst", 1), >, 0);
|
|
end:
|
|
;
|
|
}
|
|
|
|
static void
|
|
test_evutil_rtrim(void *ptr)
|
|
{
|
|
#define TEST_TRIM(s, result) \
|
|
do { \
|
|
if (cp) mm_free(cp); \
|
|
cp = mm_strdup(s); \
|
|
tt_assert(cp); \
|
|
evutil_rtrim_lws_(cp); \
|
|
tt_str_op(cp, ==, result); \
|
|
} while(0)
|
|
|
|
char *cp = NULL;
|
|
(void) ptr;
|
|
|
|
TEST_TRIM("", "");
|
|
TEST_TRIM("a", "a");
|
|
TEST_TRIM("abcdef ghi", "abcdef ghi");
|
|
|
|
TEST_TRIM(" ", "");
|
|
TEST_TRIM(" ", "");
|
|
TEST_TRIM("a ", "a");
|
|
TEST_TRIM("abcdef gH ", "abcdef gH");
|
|
|
|
TEST_TRIM("\t\t", "");
|
|
TEST_TRIM(" \t", "");
|
|
TEST_TRIM("\t", "");
|
|
TEST_TRIM("a \t", "a");
|
|
TEST_TRIM("a\t ", "a");
|
|
TEST_TRIM("a\t", "a");
|
|
TEST_TRIM("abcdef gH \t ", "abcdef gH");
|
|
|
|
end:
|
|
if (cp)
|
|
mm_free(cp);
|
|
}
|
|
|
|
static int logsev = 0;
|
|
static char *logmsg = NULL;
|
|
|
|
static void
|
|
logfn(int severity, const char *msg)
|
|
{
|
|
logsev = severity;
|
|
tt_want(msg);
|
|
if (msg) {
|
|
if (logmsg)
|
|
free(logmsg);
|
|
logmsg = strdup(msg);
|
|
}
|
|
}
|
|
|
|
static int fatal_want_severity = 0;
|
|
static const char *fatal_want_message = NULL;
|
|
static void
|
|
fatalfn(int exitcode)
|
|
{
|
|
if (logsev != fatal_want_severity ||
|
|
!logmsg ||
|
|
strcmp(logmsg, fatal_want_message))
|
|
exit(0);
|
|
else
|
|
exit(exitcode);
|
|
}
|
|
|
|
#ifndef _WIN32
|
|
#define CAN_CHECK_ERR
|
|
static void
|
|
check_error_logging(void (*fn)(void), int wantexitcode,
|
|
int wantseverity, const char *wantmsg)
|
|
{
|
|
pid_t pid;
|
|
int status = 0, exitcode;
|
|
fatal_want_severity = wantseverity;
|
|
fatal_want_message = wantmsg;
|
|
if ((pid = regress_fork()) == 0) {
|
|
/* child process */
|
|
fn();
|
|
exit(0); /* should be unreachable. */
|
|
} else {
|
|
wait(&status);
|
|
exitcode = WEXITSTATUS(status);
|
|
tt_int_op(wantexitcode, ==, exitcode);
|
|
}
|
|
end:
|
|
;
|
|
}
|
|
|
|
static void
|
|
errx_fn(void)
|
|
{
|
|
event_errx(2, "Fatal error; too many kumquats (%d)", 5);
|
|
}
|
|
|
|
static void
|
|
err_fn(void)
|
|
{
|
|
errno = ENOENT;
|
|
event_err(5,"Couldn't open %s", "/very/bad/file");
|
|
}
|
|
|
|
static void
|
|
sock_err_fn(void)
|
|
{
|
|
evutil_socket_t fd = socket(AF_INET, SOCK_STREAM, 0);
|
|
#ifdef _WIN32
|
|
EVUTIL_SET_SOCKET_ERROR(WSAEWOULDBLOCK);
|
|
#else
|
|
errno = EAGAIN;
|
|
#endif
|
|
event_sock_err(20, fd, "Unhappy socket");
|
|
}
|
|
#endif
|
|
|
|
static void
|
|
test_evutil_log(void *ptr)
|
|
{
|
|
evutil_socket_t fd = -1;
|
|
char buf[128];
|
|
|
|
event_set_log_callback(logfn);
|
|
event_set_fatal_callback(fatalfn);
|
|
#define RESET() do { \
|
|
logsev = 0; \
|
|
if (logmsg) free(logmsg); \
|
|
logmsg = NULL; \
|
|
} while (0)
|
|
#define LOGEQ(sev,msg) do { \
|
|
tt_int_op(logsev,==,sev); \
|
|
tt_assert(logmsg != NULL); \
|
|
tt_str_op(logmsg,==,msg); \
|
|
} while (0)
|
|
|
|
#ifdef CAN_CHECK_ERR
|
|
/* We need to disable these tests for now. Previously, the logging
|
|
* module didn't enforce the requirement that a fatal callback
|
|
* actually exit. Now, it exits no matter what, so if we wan to
|
|
* reinstate these tests, we'll need to fork for each one. */
|
|
check_error_logging(errx_fn, 2, EVENT_LOG_ERR,
|
|
"Fatal error; too many kumquats (5)");
|
|
RESET();
|
|
#endif
|
|
|
|
event_warnx("Far too many %s (%d)", "wombats", 99);
|
|
LOGEQ(EVENT_LOG_WARN, "Far too many wombats (99)");
|
|
RESET();
|
|
|
|
event_msgx("Connecting lime to coconut");
|
|
LOGEQ(EVENT_LOG_MSG, "Connecting lime to coconut");
|
|
RESET();
|
|
|
|
event_debug(("A millisecond passed! We should log that!"));
|
|
#ifdef USE_DEBUG
|
|
LOGEQ(EVENT_LOG_DEBUG, "A millisecond passed! We should log that!");
|
|
#else
|
|
tt_int_op(logsev,==,0);
|
|
tt_ptr_op(logmsg,==,NULL);
|
|
#endif
|
|
RESET();
|
|
|
|
/* Try with an errno. */
|
|
errno = ENOENT;
|
|
event_warn("Couldn't open %s", "/bad/file");
|
|
evutil_snprintf(buf, sizeof(buf),
|
|
"Couldn't open /bad/file: %s",strerror(ENOENT));
|
|
LOGEQ(EVENT_LOG_WARN,buf);
|
|
RESET();
|
|
|
|
#ifdef CAN_CHECK_ERR
|
|
evutil_snprintf(buf, sizeof(buf),
|
|
"Couldn't open /very/bad/file: %s",strerror(ENOENT));
|
|
check_error_logging(err_fn, 5, EVENT_LOG_ERR, buf);
|
|
RESET();
|
|
#endif
|
|
|
|
/* Try with a socket errno. */
|
|
fd = socket(AF_INET, SOCK_STREAM, 0);
|
|
#ifdef _WIN32
|
|
evutil_snprintf(buf, sizeof(buf),
|
|
"Unhappy socket: %s",
|
|
evutil_socket_error_to_string(WSAEWOULDBLOCK));
|
|
EVUTIL_SET_SOCKET_ERROR(WSAEWOULDBLOCK);
|
|
#else
|
|
evutil_snprintf(buf, sizeof(buf),
|
|
"Unhappy socket: %s", strerror(EAGAIN));
|
|
errno = EAGAIN;
|
|
#endif
|
|
event_sock_warn(fd, "Unhappy socket");
|
|
LOGEQ(EVENT_LOG_WARN, buf);
|
|
RESET();
|
|
|
|
#ifdef CAN_CHECK_ERR
|
|
check_error_logging(sock_err_fn, 20, EVENT_LOG_ERR, buf);
|
|
RESET();
|
|
#endif
|
|
|
|
#undef RESET
|
|
#undef LOGEQ
|
|
end:
|
|
if (logmsg)
|
|
free(logmsg);
|
|
if (fd >= 0)
|
|
evutil_closesocket(fd);
|
|
}
|
|
|
|
static void
|
|
test_evutil_strlcpy(void *arg)
|
|
{
|
|
char buf[8];
|
|
|
|
/* Successful case. */
|
|
tt_int_op(5, ==, strlcpy(buf, "Hello", sizeof(buf)));
|
|
tt_str_op(buf, ==, "Hello");
|
|
|
|
/* Overflow by a lot. */
|
|
tt_int_op(13, ==, strlcpy(buf, "pentasyllabic", sizeof(buf)));
|
|
tt_str_op(buf, ==, "pentasy");
|
|
|
|
/* Overflow by exactly one. */
|
|
tt_int_op(8, ==, strlcpy(buf, "overlong", sizeof(buf)));
|
|
tt_str_op(buf, ==, "overlon");
|
|
end:
|
|
;
|
|
}
|
|
|
|
struct example_struct {
|
|
const char *a;
|
|
const char *b;
|
|
long c;
|
|
};
|
|
|
|
static void
|
|
test_evutil_upcast(void *arg)
|
|
{
|
|
struct example_struct es1;
|
|
const char **cp;
|
|
es1.a = "World";
|
|
es1.b = "Hello";
|
|
es1.c = -99;
|
|
|
|
tt_int_op(evutil_offsetof(struct example_struct, b), ==, sizeof(char*));
|
|
|
|
cp = &es1.b;
|
|
tt_ptr_op(EVUTIL_UPCAST(cp, struct example_struct, b), ==, &es1);
|
|
|
|
end:
|
|
;
|
|
}
|
|
|
|
static void
|
|
test_evutil_integers(void *arg)
|
|
{
|
|
ev_int64_t i64;
|
|
ev_uint64_t u64;
|
|
ev_int32_t i32;
|
|
ev_uint32_t u32;
|
|
ev_int16_t i16;
|
|
ev_uint16_t u16;
|
|
ev_int8_t i8;
|
|
ev_uint8_t u8;
|
|
|
|
void *ptr;
|
|
ev_intptr_t iptr;
|
|
ev_uintptr_t uptr;
|
|
|
|
ev_ssize_t ssize;
|
|
|
|
tt_int_op(sizeof(u64), ==, 8);
|
|
tt_int_op(sizeof(i64), ==, 8);
|
|
tt_int_op(sizeof(u32), ==, 4);
|
|
tt_int_op(sizeof(i32), ==, 4);
|
|
tt_int_op(sizeof(u16), ==, 2);
|
|
tt_int_op(sizeof(i16), ==, 2);
|
|
tt_int_op(sizeof(u8), ==, 1);
|
|
tt_int_op(sizeof(i8), ==, 1);
|
|
|
|
tt_int_op(sizeof(ev_ssize_t), ==, sizeof(size_t));
|
|
tt_int_op(sizeof(ev_intptr_t), >=, sizeof(void *));
|
|
tt_int_op(sizeof(ev_uintptr_t), ==, sizeof(intptr_t));
|
|
|
|
u64 = 1000000000;
|
|
u64 *= 1000000000;
|
|
tt_assert(u64 / 1000000000 == 1000000000);
|
|
i64 = -1000000000;
|
|
i64 *= 1000000000;
|
|
tt_assert(i64 / 1000000000 == -1000000000);
|
|
|
|
u64 = EV_UINT64_MAX;
|
|
i64 = EV_INT64_MAX;
|
|
tt_assert(u64 > 0);
|
|
tt_assert(i64 > 0);
|
|
u64++;
|
|
/* i64++; */
|
|
tt_assert(u64 == 0);
|
|
/* tt_assert(i64 == EV_INT64_MIN); */
|
|
/* tt_assert(i64 < 0); */
|
|
|
|
u32 = EV_UINT32_MAX;
|
|
i32 = EV_INT32_MAX;
|
|
tt_assert(u32 > 0);
|
|
tt_assert(i32 > 0);
|
|
u32++;
|
|
/* i32++; */
|
|
tt_assert(u32 == 0);
|
|
/* tt_assert(i32 == EV_INT32_MIN); */
|
|
/* tt_assert(i32 < 0); */
|
|
|
|
u16 = EV_UINT16_MAX;
|
|
i16 = EV_INT16_MAX;
|
|
tt_assert(u16 > 0);
|
|
tt_assert(i16 > 0);
|
|
u16++;
|
|
/* i16++; */
|
|
tt_assert(u16 == 0);
|
|
/* tt_assert(i16 == EV_INT16_MIN); */
|
|
/* tt_assert(i16 < 0); */
|
|
|
|
u8 = EV_UINT8_MAX;
|
|
i8 = EV_INT8_MAX;
|
|
tt_assert(u8 > 0);
|
|
tt_assert(i8 > 0);
|
|
u8++;
|
|
/* i8++;*/
|
|
tt_assert(u8 == 0);
|
|
/* tt_assert(i8 == EV_INT8_MIN); */
|
|
/* tt_assert(i8 < 0); */
|
|
|
|
/*
|
|
ssize = EV_SSIZE_MAX;
|
|
tt_assert(ssize > 0);
|
|
ssize++;
|
|
tt_assert(ssize < 0);
|
|
tt_assert(ssize == EV_SSIZE_MIN);
|
|
*/
|
|
|
|
ptr = &ssize;
|
|
iptr = (ev_intptr_t)ptr;
|
|
uptr = (ev_uintptr_t)ptr;
|
|
ptr = (void *)iptr;
|
|
tt_assert(ptr == &ssize);
|
|
ptr = (void *)uptr;
|
|
tt_assert(ptr == &ssize);
|
|
|
|
iptr = -1;
|
|
tt_assert(iptr < 0);
|
|
end:
|
|
;
|
|
}
|
|
|
|
struct evutil_addrinfo *
|
|
ai_find_by_family(struct evutil_addrinfo *ai, int family)
|
|
{
|
|
while (ai) {
|
|
if (ai->ai_family == family)
|
|
return ai;
|
|
ai = ai->ai_next;
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
struct evutil_addrinfo *
|
|
ai_find_by_protocol(struct evutil_addrinfo *ai, int protocol)
|
|
{
|
|
while (ai) {
|
|
if (ai->ai_protocol == protocol)
|
|
return ai;
|
|
ai = ai->ai_next;
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
|
|
int
|
|
test_ai_eq_(const struct evutil_addrinfo *ai, const char *sockaddr_port,
|
|
int socktype, int protocol, int line)
|
|
{
|
|
struct sockaddr_storage ss;
|
|
int slen = sizeof(ss);
|
|
int gotport;
|
|
char buf[128];
|
|
memset(&ss, 0, sizeof(ss));
|
|
if (socktype > 0)
|
|
tt_int_op(ai->ai_socktype, ==, socktype);
|
|
if (protocol > 0)
|
|
tt_int_op(ai->ai_protocol, ==, protocol);
|
|
|
|
if (evutil_parse_sockaddr_port(
|
|
sockaddr_port, (struct sockaddr*)&ss, &slen)<0) {
|
|
TT_FAIL(("Couldn't parse expected address %s on line %d",
|
|
sockaddr_port, line));
|
|
return -1;
|
|
}
|
|
if (ai->ai_family != ss.ss_family) {
|
|
TT_FAIL(("Address family %d did not match %d on line %d",
|
|
ai->ai_family, ss.ss_family, line));
|
|
return -1;
|
|
}
|
|
if (ai->ai_addr->sa_family == AF_INET) {
|
|
struct sockaddr_in *sin = (struct sockaddr_in*)ai->ai_addr;
|
|
evutil_inet_ntop(AF_INET, &sin->sin_addr, buf, sizeof(buf));
|
|
gotport = ntohs(sin->sin_port);
|
|
if (ai->ai_addrlen != sizeof(struct sockaddr_in)) {
|
|
TT_FAIL(("Addr size mismatch on line %d", line));
|
|
return -1;
|
|
}
|
|
} else {
|
|
struct sockaddr_in6 *sin6 = (struct sockaddr_in6*)ai->ai_addr;
|
|
evutil_inet_ntop(AF_INET6, &sin6->sin6_addr, buf, sizeof(buf));
|
|
gotport = ntohs(sin6->sin6_port);
|
|
if (ai->ai_addrlen != sizeof(struct sockaddr_in6)) {
|
|
TT_FAIL(("Addr size mismatch on line %d", line));
|
|
return -1;
|
|
}
|
|
}
|
|
if (evutil_sockaddr_cmp(ai->ai_addr, (struct sockaddr*)&ss, 1)) {
|
|
TT_FAIL(("Wanted %s, got %s:%d on line %d", sockaddr_port,
|
|
buf, gotport, line));
|
|
return -1;
|
|
} else {
|
|
TT_BLATHER(("Wanted %s, got %s:%d on line %d", sockaddr_port,
|
|
buf, gotport, line));
|
|
}
|
|
return 0;
|
|
end:
|
|
TT_FAIL(("Test failed on line %d", line));
|
|
return -1;
|
|
}
|
|
|
|
static void
|
|
test_evutil_rand(void *arg)
|
|
{
|
|
char buf1[32];
|
|
char buf2[32];
|
|
int counts[256];
|
|
int i, j, k, n=0;
|
|
struct evutil_weakrand_state seed = { 12346789U };
|
|
|
|
memset(buf2, 0, sizeof(buf2));
|
|
memset(counts, 0, sizeof(counts));
|
|
|
|
for (k=0;k<32;++k) {
|
|
/* Try a few different start and end points; try to catch
|
|
* the various misaligned cases of arc4random_buf */
|
|
int startpoint = evutil_weakrand_(&seed) % 4;
|
|
int endpoint = 32 - (evutil_weakrand_(&seed) % 4);
|
|
|
|
memset(buf2, 0, sizeof(buf2));
|
|
|
|
/* Do 6 runs over buf1, or-ing the result into buf2 each
|
|
* time, to make sure we're setting each byte that we mean
|
|
* to set. */
|
|
for (i=0;i<8;++i) {
|
|
memset(buf1, 0, sizeof(buf1));
|
|
evutil_secure_rng_get_bytes(buf1 + startpoint,
|
|
endpoint-startpoint);
|
|
n += endpoint - startpoint;
|
|
for (j=0; j<32; ++j) {
|
|
if (j >= startpoint && j < endpoint) {
|
|
buf2[j] |= buf1[j];
|
|
++counts[(unsigned char)buf1[j]];
|
|
} else {
|
|
tt_assert(buf1[j] == 0);
|
|
tt_int_op(buf1[j], ==, 0);
|
|
|
|
}
|
|
}
|
|
}
|
|
|
|
/* This will give a false positive with P=(256**8)==(2**64)
|
|
* for each character. */
|
|
for (j=startpoint;j<endpoint;++j) {
|
|
tt_int_op(buf2[j], !=, 0);
|
|
}
|
|
}
|
|
|
|
evutil_weakrand_seed_(&seed, 0);
|
|
for (i = 0; i < 10000; ++i) {
|
|
ev_int32_t r = evutil_weakrand_range_(&seed, 9999);
|
|
tt_int_op(0, <=, r);
|
|
tt_int_op(r, <, 9999);
|
|
}
|
|
|
|
/* for (i=0;i<256;++i) { printf("%3d %2d\n", i, counts[i]); } */
|
|
end:
|
|
;
|
|
}
|
|
|
|
static void
|
|
test_EVUTIL_IS_(void *arg)
|
|
{
|
|
tt_int_op(EVUTIL_ISDIGIT_('0'), ==, 1);
|
|
tt_int_op(EVUTIL_ISDIGIT_('a'), ==, 0);
|
|
tt_int_op(EVUTIL_ISDIGIT_('\xff'), ==, 0);
|
|
end:
|
|
;
|
|
}
|
|
|
|
static void
|
|
test_evutil_getaddrinfo(void *arg)
|
|
{
|
|
struct evutil_addrinfo *ai = NULL, *a;
|
|
struct evutil_addrinfo hints;
|
|
int r;
|
|
|
|
/* Try using it as a pton. */
|
|
memset(&hints, 0, sizeof(hints));
|
|
hints.ai_family = PF_UNSPEC;
|
|
hints.ai_socktype = SOCK_STREAM;
|
|
r = evutil_getaddrinfo("1.2.3.4", "8080", &hints, &ai);
|
|
tt_int_op(r, ==, 0);
|
|
tt_assert(ai);
|
|
tt_ptr_op(ai->ai_next, ==, NULL); /* no ambiguity */
|
|
test_ai_eq(ai, "1.2.3.4:8080", SOCK_STREAM, IPPROTO_TCP);
|
|
evutil_freeaddrinfo(ai);
|
|
ai = NULL;
|
|
|
|
memset(&hints, 0, sizeof(hints));
|
|
hints.ai_family = PF_UNSPEC;
|
|
hints.ai_protocol = IPPROTO_UDP;
|
|
r = evutil_getaddrinfo("1001:b0b::f00f", "4321", &hints, &ai);
|
|
tt_int_op(r, ==, 0);
|
|
tt_assert(ai);
|
|
tt_ptr_op(ai->ai_next, ==, NULL); /* no ambiguity */
|
|
test_ai_eq(ai, "[1001:b0b::f00f]:4321", SOCK_DGRAM, IPPROTO_UDP);
|
|
evutil_freeaddrinfo(ai);
|
|
ai = NULL;
|
|
|
|
/* Try out the behavior of nodename=NULL */
|
|
memset(&hints, 0, sizeof(hints));
|
|
hints.ai_family = PF_INET;
|
|
hints.ai_protocol = IPPROTO_TCP;
|
|
hints.ai_flags = EVUTIL_AI_PASSIVE; /* as if for bind */
|
|
r = evutil_getaddrinfo(NULL, "9999", &hints, &ai);
|
|
tt_int_op(r,==,0);
|
|
tt_assert(ai);
|
|
tt_ptr_op(ai->ai_next, ==, NULL);
|
|
test_ai_eq(ai, "0.0.0.0:9999", SOCK_STREAM, IPPROTO_TCP);
|
|
evutil_freeaddrinfo(ai);
|
|
ai = NULL;
|
|
hints.ai_flags = 0; /* as if for connect */
|
|
r = evutil_getaddrinfo(NULL, "9998", &hints, &ai);
|
|
tt_assert(ai);
|
|
tt_int_op(r,==,0);
|
|
test_ai_eq(ai, "127.0.0.1:9998", SOCK_STREAM, IPPROTO_TCP);
|
|
tt_ptr_op(ai->ai_next, ==, NULL);
|
|
evutil_freeaddrinfo(ai);
|
|
ai = NULL;
|
|
|
|
hints.ai_flags = 0; /* as if for connect */
|
|
hints.ai_family = PF_INET6;
|
|
r = evutil_getaddrinfo(NULL, "9997", &hints, &ai);
|
|
tt_assert(ai);
|
|
tt_int_op(r,==,0);
|
|
tt_ptr_op(ai->ai_next, ==, NULL);
|
|
test_ai_eq(ai, "[::1]:9997", SOCK_STREAM, IPPROTO_TCP);
|
|
evutil_freeaddrinfo(ai);
|
|
ai = NULL;
|
|
|
|
hints.ai_flags = EVUTIL_AI_PASSIVE; /* as if for bind. */
|
|
hints.ai_family = PF_INET6;
|
|
r = evutil_getaddrinfo(NULL, "9996", &hints, &ai);
|
|
tt_assert(ai);
|
|
tt_int_op(r,==,0);
|
|
tt_ptr_op(ai->ai_next, ==, NULL);
|
|
test_ai_eq(ai, "[::]:9996", SOCK_STREAM, IPPROTO_TCP);
|
|
evutil_freeaddrinfo(ai);
|
|
ai = NULL;
|
|
|
|
/* Now try an unspec one. We should get a v6 and a v4. */
|
|
hints.ai_family = PF_UNSPEC;
|
|
r = evutil_getaddrinfo(NULL, "9996", &hints, &ai);
|
|
tt_assert(ai);
|
|
tt_int_op(r,==,0);
|
|
a = ai_find_by_family(ai, PF_INET6);
|
|
tt_assert(a);
|
|
test_ai_eq(a, "[::]:9996", SOCK_STREAM, IPPROTO_TCP);
|
|
a = ai_find_by_family(ai, PF_INET);
|
|
tt_assert(a);
|
|
test_ai_eq(a, "0.0.0.0:9996", SOCK_STREAM, IPPROTO_TCP);
|
|
evutil_freeaddrinfo(ai);
|
|
ai = NULL;
|
|
|
|
/* Try out AI_NUMERICHOST: successful case. Also try
|
|
* multiprotocol. */
|
|
memset(&hints, 0, sizeof(hints));
|
|
hints.ai_family = PF_UNSPEC;
|
|
hints.ai_flags = EVUTIL_AI_NUMERICHOST;
|
|
r = evutil_getaddrinfo("1.2.3.4", NULL, &hints, &ai);
|
|
tt_int_op(r, ==, 0);
|
|
a = ai_find_by_protocol(ai, IPPROTO_TCP);
|
|
tt_assert(a);
|
|
test_ai_eq(a, "1.2.3.4", SOCK_STREAM, IPPROTO_TCP);
|
|
a = ai_find_by_protocol(ai, IPPROTO_UDP);
|
|
tt_assert(a);
|
|
test_ai_eq(a, "1.2.3.4", SOCK_DGRAM, IPPROTO_UDP);
|
|
evutil_freeaddrinfo(ai);
|
|
ai = NULL;
|
|
|
|
/* Try the failing case of AI_NUMERICHOST */
|
|
memset(&hints, 0, sizeof(hints));
|
|
hints.ai_family = PF_UNSPEC;
|
|
hints.ai_flags = EVUTIL_AI_NUMERICHOST;
|
|
r = evutil_getaddrinfo("www.google.com", "80", &hints, &ai);
|
|
tt_int_op(r, ==, EVUTIL_EAI_NONAME);
|
|
tt_ptr_op(ai, ==, NULL);
|
|
|
|
/* Try symbolic service names wit AI_NUMERICSERV */
|
|
memset(&hints, 0, sizeof(hints));
|
|
hints.ai_family = PF_UNSPEC;
|
|
hints.ai_socktype = SOCK_STREAM;
|
|
hints.ai_flags = EVUTIL_AI_NUMERICSERV;
|
|
r = evutil_getaddrinfo("1.2.3.4", "http", &hints, &ai);
|
|
tt_int_op(r,==,EVUTIL_EAI_NONAME);
|
|
|
|
/* Try symbolic service names */
|
|
memset(&hints, 0, sizeof(hints));
|
|
hints.ai_family = PF_UNSPEC;
|
|
hints.ai_socktype = SOCK_STREAM;
|
|
r = evutil_getaddrinfo("1.2.3.4", "http", &hints, &ai);
|
|
if (r!=0) {
|
|
TT_DECLARE("SKIP", ("Symbolic service names seem broken."));
|
|
} else {
|
|
tt_assert(ai);
|
|
test_ai_eq(ai, "1.2.3.4:80", SOCK_STREAM, IPPROTO_TCP);
|
|
evutil_freeaddrinfo(ai);
|
|
ai = NULL;
|
|
}
|
|
|
|
end:
|
|
if (ai)
|
|
evutil_freeaddrinfo(ai);
|
|
}
|
|
|
|
static void
|
|
test_evutil_getaddrinfo_live(void *arg)
|
|
{
|
|
struct evutil_addrinfo *ai = NULL;
|
|
struct evutil_addrinfo hints;
|
|
|
|
struct sockaddr_in6 *sin6;
|
|
struct sockaddr_in *sin;
|
|
char buf[128];
|
|
const char *cp;
|
|
int r;
|
|
|
|
/* Now do some actual lookups. */
|
|
memset(&hints, 0, sizeof(hints));
|
|
hints.ai_family = PF_INET;
|
|
hints.ai_protocol = IPPROTO_TCP;
|
|
hints.ai_socktype = SOCK_STREAM;
|
|
r = evutil_getaddrinfo("www.google.com", "80", &hints, &ai);
|
|
if (r != 0) {
|
|
TT_DECLARE("SKIP", ("Couldn't resolve www.google.com"));
|
|
} else {
|
|
tt_assert(ai);
|
|
tt_int_op(ai->ai_family, ==, PF_INET);
|
|
tt_int_op(ai->ai_protocol, ==, IPPROTO_TCP);
|
|
tt_int_op(ai->ai_socktype, ==, SOCK_STREAM);
|
|
tt_int_op(ai->ai_addrlen, ==, sizeof(struct sockaddr_in));
|
|
sin = (struct sockaddr_in*)ai->ai_addr;
|
|
tt_int_op(sin->sin_family, ==, AF_INET);
|
|
tt_int_op(sin->sin_port, ==, htons(80));
|
|
tt_int_op(sin->sin_addr.s_addr, !=, 0xffffffff);
|
|
|
|
cp = evutil_inet_ntop(AF_INET, &sin->sin_addr, buf, sizeof(buf));
|
|
TT_BLATHER(("www.google.com resolved to %s",
|
|
cp?cp:"<unwriteable>"));
|
|
evutil_freeaddrinfo(ai);
|
|
ai = NULL;
|
|
}
|
|
|
|
hints.ai_family = PF_INET6;
|
|
r = evutil_getaddrinfo("ipv6.google.com", "80", &hints, &ai);
|
|
if (r != 0) {
|
|
TT_BLATHER(("Couldn't do an ipv6 lookup for ipv6.google.com"));
|
|
} else {
|
|
tt_assert(ai);
|
|
tt_int_op(ai->ai_family, ==, PF_INET6);
|
|
tt_int_op(ai->ai_addrlen, ==, sizeof(struct sockaddr_in6));
|
|
sin6 = (struct sockaddr_in6*)ai->ai_addr;
|
|
tt_int_op(sin6->sin6_port, ==, htons(80));
|
|
|
|
cp = evutil_inet_ntop(AF_INET6, &sin6->sin6_addr, buf,
|
|
sizeof(buf));
|
|
TT_BLATHER(("ipv6.google.com resolved to %s",
|
|
cp?cp:"<unwriteable>"));
|
|
}
|
|
|
|
end:
|
|
if (ai)
|
|
evutil_freeaddrinfo(ai);
|
|
}
|
|
|
|
static void
|
|
test_evutil_getaddrinfo_AI_ADDRCONFIG(void *arg)
|
|
{
|
|
struct evutil_addrinfo *ai = NULL;
|
|
struct evutil_addrinfo hints;
|
|
int r;
|
|
|
|
memset(&hints, 0, sizeof(hints));
|
|
hints.ai_family = AF_UNSPEC;
|
|
hints.ai_socktype = SOCK_STREAM;
|
|
hints.ai_flags = EVUTIL_AI_PASSIVE|EVUTIL_AI_ADDRCONFIG;
|
|
|
|
/* IPv4 */
|
|
r = evutil_getaddrinfo("127.0.0.1", "80", &hints, &ai);
|
|
tt_int_op(r, ==, 0);
|
|
tt_assert(ai);
|
|
tt_ptr_op(ai->ai_next, ==, NULL);
|
|
test_ai_eq(ai, "127.0.0.1:80", SOCK_STREAM, IPPROTO_TCP);
|
|
evutil_freeaddrinfo(ai);
|
|
ai = NULL;
|
|
|
|
/* IPv6 */
|
|
r = evutil_getaddrinfo("::1", "80", &hints, &ai);
|
|
tt_int_op(r, ==, 0);
|
|
tt_assert(ai);
|
|
tt_ptr_op(ai->ai_next, ==, NULL);
|
|
test_ai_eq(ai, "[::1]:80", SOCK_STREAM, IPPROTO_TCP);
|
|
evutil_freeaddrinfo(ai);
|
|
ai = NULL;
|
|
|
|
end:
|
|
if (ai)
|
|
evutil_freeaddrinfo(ai);
|
|
}
|
|
|
|
#ifdef _WIN32
|
|
static void
|
|
test_evutil_loadsyslib(void *arg)
|
|
{
|
|
HMODULE h=NULL;
|
|
|
|
h = evutil_load_windows_system_library_(TEXT("kernel32.dll"));
|
|
tt_assert(h);
|
|
|
|
end:
|
|
if (h)
|
|
CloseHandle(h);
|
|
|
|
}
|
|
#endif
|
|
|
|
/** Test mm_malloc(). */
|
|
static void
|
|
test_event_malloc(void *arg)
|
|
{
|
|
void *p = NULL;
|
|
(void)arg;
|
|
|
|
/* mm_malloc(0) should simply return NULL. */
|
|
#ifndef EVENT__DISABLE_MM_REPLACEMENT
|
|
errno = 0;
|
|
p = mm_malloc(0);
|
|
tt_assert(p == NULL);
|
|
tt_int_op(errno, ==, 0);
|
|
#endif
|
|
|
|
/* Trivial case. */
|
|
errno = 0;
|
|
p = mm_malloc(8);
|
|
tt_assert(p != NULL);
|
|
tt_int_op(errno, ==, 0);
|
|
mm_free(p);
|
|
|
|
end:
|
|
errno = 0;
|
|
return;
|
|
}
|
|
|
|
static void
|
|
test_event_calloc(void *arg)
|
|
{
|
|
void *p = NULL;
|
|
(void)arg;
|
|
|
|
#ifndef EVENT__DISABLE_MM_REPLACEMENT
|
|
/* mm_calloc() should simply return NULL
|
|
* if either argument is zero. */
|
|
errno = 0;
|
|
p = mm_calloc(0, 0);
|
|
tt_assert(p == NULL);
|
|
tt_int_op(errno, ==, 0);
|
|
errno = 0;
|
|
p = mm_calloc(0, 1);
|
|
tt_assert(p == NULL);
|
|
tt_int_op(errno, ==, 0);
|
|
errno = 0;
|
|
p = mm_calloc(1, 0);
|
|
tt_assert(p == NULL);
|
|
tt_int_op(errno, ==, 0);
|
|
#endif
|
|
|
|
/* Trivial case. */
|
|
errno = 0;
|
|
p = mm_calloc(8, 8);
|
|
tt_assert(p != NULL);
|
|
tt_int_op(errno, ==, 0);
|
|
mm_free(p);
|
|
p = NULL;
|
|
|
|
/* mm_calloc() should set errno = ENOMEM and return NULL
|
|
* in case of potential overflow. */
|
|
errno = 0;
|
|
p = mm_calloc(EV_SIZE_MAX/2, EV_SIZE_MAX/2 + 8);
|
|
tt_assert(p == NULL);
|
|
tt_int_op(errno, ==, ENOMEM);
|
|
|
|
end:
|
|
errno = 0;
|
|
if (p)
|
|
mm_free(p);
|
|
|
|
return;
|
|
}
|
|
|
|
static void
|
|
test_event_strdup(void *arg)
|
|
{
|
|
void *p = NULL;
|
|
(void)arg;
|
|
|
|
#ifndef EVENT__DISABLE_MM_REPLACEMENT
|
|
/* mm_strdup(NULL) should set errno = EINVAL and return NULL. */
|
|
errno = 0;
|
|
p = mm_strdup(NULL);
|
|
tt_assert(p == NULL);
|
|
tt_int_op(errno, ==, EINVAL);
|
|
#endif
|
|
|
|
/* Trivial cases. */
|
|
|
|
errno = 0;
|
|
p = mm_strdup("");
|
|
tt_assert(p != NULL);
|
|
tt_int_op(errno, ==, 0);
|
|
tt_str_op(p, ==, "");
|
|
mm_free(p);
|
|
|
|
errno = 0;
|
|
p = mm_strdup("foo");
|
|
tt_assert(p != NULL);
|
|
tt_int_op(errno, ==, 0);
|
|
tt_str_op(p, ==, "foo");
|
|
mm_free(p);
|
|
|
|
/* XXX
|
|
* mm_strdup(str) where str is a string of length EV_SIZE_MAX
|
|
* should set errno = ENOMEM and return NULL. */
|
|
|
|
end:
|
|
errno = 0;
|
|
return;
|
|
}
|
|
|
|
static void
|
|
test_evutil_usleep(void *arg)
|
|
{
|
|
struct timeval tv1, tv2, tv3, diff1, diff2;
|
|
const struct timeval quarter_sec = {0, 250*1000};
|
|
const struct timeval tenth_sec = {0, 100*1000};
|
|
long usec1, usec2;
|
|
|
|
evutil_gettimeofday(&tv1, NULL);
|
|
evutil_usleep_(&quarter_sec);
|
|
evutil_gettimeofday(&tv2, NULL);
|
|
evutil_usleep_(&tenth_sec);
|
|
evutil_gettimeofday(&tv3, NULL);
|
|
|
|
evutil_timersub(&tv2, &tv1, &diff1);
|
|
evutil_timersub(&tv3, &tv2, &diff2);
|
|
usec1 = diff1.tv_sec * 1000000 + diff1.tv_usec;
|
|
usec2 = diff2.tv_sec * 1000000 + diff2.tv_usec;
|
|
|
|
tt_int_op(usec1, >, 200000);
|
|
tt_int_op(usec1, <, 300000);
|
|
tt_int_op(usec2, >, 80000);
|
|
tt_int_op(usec2, <, 120000);
|
|
|
|
end:
|
|
;
|
|
}
|
|
|
|
static void
|
|
test_evutil_monotonic_res(void *data_)
|
|
{
|
|
/* Basic santity-test for monotonic timers. What we'd really like
|
|
* to do is make sure that they can't go backwards even when the
|
|
* system clock goes backwards. But we haven't got a good way to
|
|
* move the system clock backwards.
|
|
*/
|
|
struct basic_test_data *data = data_;
|
|
struct evutil_monotonic_timer timer;
|
|
const int precise = strstr(data->setup_data, "precise") != NULL;
|
|
const int fallback = strstr(data->setup_data, "fallback") != NULL;
|
|
struct timeval tv[10], delay;
|
|
int total_diff = 0;
|
|
|
|
int flags = 0, wantres, acceptdiff, i;
|
|
if (precise)
|
|
flags |= EV_MONOT_PRECISE;
|
|
if (fallback)
|
|
flags |= EV_MONOT_FALLBACK;
|
|
if (precise || fallback) {
|
|
#ifdef _WIN32
|
|
wantres = 10*1000;
|
|
acceptdiff = 1000;
|
|
#else
|
|
wantres = 1000;
|
|
acceptdiff = 300;
|
|
#endif
|
|
} else {
|
|
wantres = 40*1000;
|
|
acceptdiff = 20*1000;
|
|
}
|
|
|
|
TT_BLATHER(("Precise = %d", precise));
|
|
TT_BLATHER(("Fallback = %d", fallback));
|
|
|
|
/* First, make sure we match up with usleep. */
|
|
|
|
delay.tv_sec = 0;
|
|
delay.tv_usec = wantres;
|
|
|
|
tt_int_op(evutil_configure_monotonic_time_(&timer, flags), ==, 0);
|
|
|
|
for (i = 0; i < 10; ++i) {
|
|
evutil_gettime_monotonic_(&timer, &tv[i]);
|
|
evutil_usleep_(&delay);
|
|
}
|
|
|
|
for (i = 0; i < 9; ++i) {
|
|
struct timeval diff;
|
|
tt_assert(evutil_timercmp(&tv[i], &tv[i+1], <));
|
|
evutil_timersub(&tv[i+1], &tv[i], &diff);
|
|
tt_int_op(diff.tv_sec, ==, 0);
|
|
total_diff += diff.tv_usec;
|
|
TT_BLATHER(("Difference = %d", (int)diff.tv_usec));
|
|
}
|
|
tt_int_op(abs(total_diff/9 - wantres), <, acceptdiff);
|
|
|
|
end:
|
|
;
|
|
}
|
|
|
|
static void
|
|
test_evutil_monotonic_prc(void *data_)
|
|
{
|
|
struct basic_test_data *data = data_;
|
|
struct evutil_monotonic_timer timer;
|
|
const int precise = strstr(data->setup_data, "precise") != NULL;
|
|
const int fallback = strstr(data->setup_data, "fallback") != NULL;
|
|
struct timeval tv[10];
|
|
int total_diff = 0;
|
|
int i, maxstep = 25*1000,flags=0;
|
|
if (precise)
|
|
maxstep = 500;
|
|
if (precise)
|
|
flags |= EV_MONOT_PRECISE;
|
|
if (fallback)
|
|
flags |= EV_MONOT_FALLBACK;
|
|
tt_int_op(evutil_configure_monotonic_time_(&timer, flags), ==, 0);
|
|
|
|
/* find out what precision we actually see. */
|
|
|
|
evutil_gettime_monotonic_(&timer, &tv[0]);
|
|
for (i = 1; i < 10; ++i) {
|
|
do {
|
|
evutil_gettime_monotonic_(&timer, &tv[i]);
|
|
} while (evutil_timercmp(&tv[i-1], &tv[i], ==));
|
|
}
|
|
|
|
total_diff = 0;
|
|
for (i = 0; i < 9; ++i) {
|
|
struct timeval diff;
|
|
tt_assert(evutil_timercmp(&tv[i], &tv[i+1], <));
|
|
evutil_timersub(&tv[i+1], &tv[i], &diff);
|
|
tt_int_op(diff.tv_sec, ==, 0);
|
|
total_diff += diff.tv_usec;
|
|
TT_BLATHER(("Step difference = %d", (int)diff.tv_usec));
|
|
}
|
|
TT_BLATHER(("Average step difference = %d", total_diff / 9));
|
|
tt_int_op(total_diff/9, <, maxstep);
|
|
|
|
end:
|
|
;
|
|
}
|
|
|
|
static void
|
|
create_tm_from_unix_epoch(struct tm *cur_p, const time_t t)
|
|
{
|
|
#ifdef _WIN32
|
|
struct tm *tmp = gmtime(&t);
|
|
if (!tmp) {
|
|
fprintf(stderr, "gmtime: %s (%i)", strerror(errno), (int)t);
|
|
exit(1);
|
|
}
|
|
*cur_p = *tmp;
|
|
#else
|
|
gmtime_r(&t, cur_p);
|
|
#endif
|
|
}
|
|
|
|
static struct date_rfc1123_case {
|
|
time_t t;
|
|
char date[30];
|
|
} date_rfc1123_cases[] = {
|
|
{ 0, "Thu, 01 Jan 1970 00:00:00 GMT"} /* UNIX time of zero */,
|
|
{ 946684799, "Fri, 31 Dec 1999 23:59:59 GMT"} /* the last moment of the 20th century */,
|
|
{ 946684800, "Sat, 01 Jan 2000 00:00:00 GMT"} /* the first moment of the 21st century */,
|
|
{ 981072000, "Fri, 02 Feb 2001 00:00:00 GMT"},
|
|
{ 1015113600, "Sun, 03 Mar 2002 00:00:00 GMT"},
|
|
{ 1049414400, "Fri, 04 Apr 2003 00:00:00 GMT"},
|
|
{ 1083715200, "Wed, 05 May 2004 00:00:00 GMT"},
|
|
{ 1118016000, "Mon, 06 Jun 2005 00:00:00 GMT"},
|
|
{ 1152230400, "Fri, 07 Jul 2006 00:00:00 GMT"},
|
|
{ 1186531200, "Wed, 08 Aug 2007 00:00:00 GMT"},
|
|
{ 1220918400, "Tue, 09 Sep 2008 00:00:00 GMT"},
|
|
{ 1255132800, "Sat, 10 Oct 2009 00:00:00 GMT"},
|
|
{ 1289433600, "Thu, 11 Nov 2010 00:00:00 GMT"},
|
|
{ 1323648000, "Mon, 12 Dec 2011 00:00:00 GMT"},
|
|
#ifndef _WIN32
|
|
#if EVENT__SIZEOF_TIME_T > 4
|
|
/** In win32 case we have max "23:59:59 January 18, 2038, UTC" for time32 */
|
|
{ 4294967296, "Sun, 07 Feb 2106 06:28:16 GMT"} /* 2^32 */,
|
|
/** In win32 case we have max "23:59:59, December 31, 3000, UTC" for time64 */
|
|
{253402300799, "Fri, 31 Dec 9999 23:59:59 GMT"} /* long long future no one can imagine */,
|
|
#endif /* time_t != 32bit */
|
|
{ 1456704000, "Mon, 29 Feb 2016 00:00:00 GMT"} /* leap year */,
|
|
#endif
|
|
{ 1435708800, "Wed, 01 Jul 2015 00:00:00 GMT"} /* leap second */,
|
|
{ 1481866376, "Fri, 16 Dec 2016 05:32:56 GMT"} /* the time this test case is generated */,
|
|
{0, ""} /* end of test cases. */
|
|
};
|
|
|
|
static void
|
|
test_evutil_date_rfc1123(void *arg)
|
|
{
|
|
struct tm query;
|
|
char result[30];
|
|
size_t i = 0;
|
|
|
|
/* Checks if too small buffers are safely accepted. */
|
|
{
|
|
create_tm_from_unix_epoch(&query, 0);
|
|
evutil_date_rfc1123(result, 8, &query);
|
|
tt_str_op(result, ==, "Thu, 01");
|
|
}
|
|
|
|
/* Checks for testcases. */
|
|
for (i = 0; ; i++) {
|
|
struct date_rfc1123_case c = date_rfc1123_cases[i];
|
|
|
|
if (strlen(c.date) == 0)
|
|
break;
|
|
|
|
create_tm_from_unix_epoch(&query, c.t);
|
|
evutil_date_rfc1123(result, sizeof(result), &query);
|
|
tt_str_op(result, ==, c.date);
|
|
}
|
|
|
|
end:
|
|
;
|
|
}
|
|
|
|
static void
|
|
test_evutil_v4addr_is_local(void *arg)
|
|
{
|
|
struct sockaddr_in sin;
|
|
sin.sin_family = AF_INET;
|
|
|
|
/* we use evutil_inet_pton() here to fill in network-byte order */
|
|
#define LOCAL(str, yes) do { \
|
|
tt_int_op(evutil_inet_pton(AF_INET, str, &sin.sin_addr), ==, 1); \
|
|
tt_int_op(evutil_v4addr_is_local_(&sin.sin_addr), ==, yes); \
|
|
} while (0)
|
|
|
|
/** any */
|
|
sin.sin_addr.s_addr = INADDR_ANY;
|
|
tt_int_op(evutil_v4addr_is_local_(&sin.sin_addr), ==, 1);
|
|
|
|
/** loopback */
|
|
sin.sin_addr.s_addr = htonl(INADDR_LOOPBACK);
|
|
tt_int_op(evutil_v4addr_is_local_(&sin.sin_addr), ==, 1);
|
|
LOCAL("127.0.0.1", 1);
|
|
LOCAL("127.255.255.255", 1);
|
|
LOCAL("121.0.0.1", 0);
|
|
|
|
/** link-local */
|
|
LOCAL("169.254.0.1", 1);
|
|
LOCAL("169.254.255.255", 1);
|
|
LOCAL("170.0.0.0", 0);
|
|
|
|
/** Multicast */
|
|
LOCAL("224.0.0.0", 1);
|
|
LOCAL("239.255.255.255", 1);
|
|
LOCAL("240.0.0.0", 0);
|
|
end:
|
|
;
|
|
}
|
|
|
|
static void
|
|
test_evutil_v6addr_is_local(void *arg)
|
|
{
|
|
struct sockaddr_in6 sin6;
|
|
struct in6_addr anyaddr = IN6ADDR_ANY_INIT;
|
|
struct in6_addr loopback = IN6ADDR_LOOPBACK_INIT;
|
|
|
|
sin6.sin6_family = AF_INET6;
|
|
#define LOCAL6(str, yes) do { \
|
|
tt_int_op(evutil_inet_pton(AF_INET6, str, &sin6.sin6_addr), ==, 1);\
|
|
tt_int_op(evutil_v6addr_is_local_(&sin6.sin6_addr), ==, yes); \
|
|
} while (0)
|
|
|
|
/** any */
|
|
tt_int_op(evutil_v6addr_is_local_(&anyaddr), ==, 1);
|
|
LOCAL6("::0", 1);
|
|
|
|
/** loopback */
|
|
tt_int_op(evutil_v6addr_is_local_(&loopback), ==, 1);
|
|
LOCAL6("::1", 1);
|
|
|
|
/** IPV4 mapped */
|
|
LOCAL6("::ffff:0:0", 1);
|
|
/** IPv4 translated */
|
|
LOCAL6("::ffff:0:0:0", 1);
|
|
/** IPv4/IPv6 translation */
|
|
LOCAL6("64:ff9b::", 0);
|
|
/** Link-local */
|
|
LOCAL6("fe80::", 1);
|
|
/** Multicast */
|
|
LOCAL6("ff00::", 1);
|
|
/** Unspecified */
|
|
LOCAL6("::", 1);
|
|
|
|
/** Global Internet */
|
|
LOCAL6("2001::", 0);
|
|
LOCAL6("2001:4860:4802:32::1b", 0);
|
|
end:
|
|
;
|
|
}
|
|
|
|
struct testcase_t util_testcases[] = {
|
|
{ "ipv4_parse", regress_ipv4_parse, 0, NULL, NULL },
|
|
{ "ipv6_parse", regress_ipv6_parse, 0, NULL, NULL },
|
|
{ "ipv6_parse_scope", regress_ipv6_parse_scope, 0, NULL, NULL },
|
|
{ "sockaddr_port_parse", regress_sockaddr_port_parse, 0, NULL, NULL },
|
|
{ "sockaddr_port_format", regress_sockaddr_port_format, 0, NULL, NULL },
|
|
{ "sockaddr_predicates", test_evutil_sockaddr_predicates, 0,NULL,NULL },
|
|
{ "evutil_snprintf", test_evutil_snprintf, 0, NULL, NULL },
|
|
{ "evutil_strtoll", test_evutil_strtoll, 0, NULL, NULL },
|
|
{ "evutil_casecmp", test_evutil_casecmp, 0, NULL, NULL },
|
|
{ "evutil_rtrim", test_evutil_rtrim, 0, NULL, NULL },
|
|
{ "strlcpy", test_evutil_strlcpy, 0, NULL, NULL },
|
|
{ "log", test_evutil_log, TT_FORK, NULL, NULL },
|
|
{ "upcast", test_evutil_upcast, 0, NULL, NULL },
|
|
{ "integers", test_evutil_integers, 0, NULL, NULL },
|
|
{ "rand", test_evutil_rand, TT_FORK, NULL, NULL },
|
|
{ "EVUTIL_IS_", test_EVUTIL_IS_, 0, NULL, NULL },
|
|
{ "getaddrinfo", test_evutil_getaddrinfo, TT_FORK, NULL, NULL },
|
|
{ "getaddrinfo_live", test_evutil_getaddrinfo_live, TT_FORK|TT_OFF_BY_DEFAULT, NULL, NULL },
|
|
{ "getaddrinfo_AI_ADDRCONFIG", test_evutil_getaddrinfo_AI_ADDRCONFIG, TT_FORK|TT_OFF_BY_DEFAULT, NULL, NULL },
|
|
#ifdef _WIN32
|
|
{ "loadsyslib", test_evutil_loadsyslib, TT_FORK, NULL, NULL },
|
|
#endif
|
|
{ "mm_malloc", test_event_malloc, 0, NULL, NULL },
|
|
{ "mm_calloc", test_event_calloc, 0, NULL, NULL },
|
|
{ "mm_strdup", test_event_strdup, 0, NULL, NULL },
|
|
{ "usleep", test_evutil_usleep, TT_RETRIABLE, NULL, NULL },
|
|
{ "monotonic_res", test_evutil_monotonic_res, 0, &basic_setup, (void*)"" },
|
|
{ "monotonic_res_precise", test_evutil_monotonic_res, TT_OFF_BY_DEFAULT, &basic_setup, (void*)"precise" },
|
|
{ "monotonic_res_fallback", test_evutil_monotonic_res, TT_OFF_BY_DEFAULT, &basic_setup, (void*)"fallback" },
|
|
{ "monotonic_prc", test_evutil_monotonic_prc, 0, &basic_setup, (void*)"" },
|
|
{ "monotonic_prc_precise", test_evutil_monotonic_prc, TT_RETRIABLE, &basic_setup, (void*)"precise" },
|
|
{ "monotonic_prc_fallback", test_evutil_monotonic_prc, 0, &basic_setup, (void*)"fallback" },
|
|
{ "date_rfc1123", test_evutil_date_rfc1123, 0, NULL, NULL },
|
|
{ "evutil_v4addr_is_local", test_evutil_v4addr_is_local, 0, NULL, NULL },
|
|
{ "evutil_v6addr_is_local", test_evutil_v6addr_is_local, 0, NULL, NULL },
|
|
END_OF_TESTCASES,
|
|
};
|
|
|