/* * Copyright (c) 2009-2012 Nick Mathewson and Niels Provos * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. The name of the author may not be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ /** For event_debug() usage/coverage */ #define EVENT_VISIBILITY_WANT_DLLIMPORT #include "../util-internal.h" #ifdef _WIN32 #include #include #include #endif #include "event2/event-config.h" #include #ifndef _WIN32 #include #include #include #include #endif #ifdef EVENT__HAVE_NETINET_IN6_H #include #endif #ifdef EVENT__HAVE_SYS_WAIT_H #include #endif #include #include #include #include #include "event2/event.h" #include "event2/util.h" #include "../ipv6-internal.h" #include "../log-internal.h" #include "../strlcpy-internal.h" #include "../mm-internal.h" #include "../time-internal.h" #include "regress.h" enum entry_status { NORMAL, CANONICAL, BAD }; /* This is a big table of results we expect from generating and parsing */ static struct ipv4_entry { const char *addr; ev_uint32_t res; enum entry_status status; } ipv4_entries[] = { { "1.2.3.4", 0x01020304u, CANONICAL }, { "255.255.255.255", 0xffffffffu, CANONICAL }, { "256.0.0.0", 0, BAD }, { "ABC", 0, BAD }, { "1.2.3.4.5", 0, BAD }, { "176.192.208.244", 0xb0c0d0f4, CANONICAL }, { NULL, 0, BAD }, }; static struct ipv6_entry { const char *addr; ev_uint32_t res[4]; enum entry_status status; } ipv6_entries[] = { { "::", { 0, 0, 0, 0, }, CANONICAL }, { "0:0:0:0:0:0:0:0", { 0, 0, 0, 0, }, NORMAL }, { "::1", { 0, 0, 0, 1, }, CANONICAL }, { "::1.2.3.4", { 0, 0, 0, 0x01020304, }, CANONICAL }, { "ffff:1::", { 0xffff0001u, 0, 0, 0, }, CANONICAL }, { "ffff:0000::", { 0xffff0000u, 0, 0, 0, }, NORMAL }, { "ffff::1234", { 0xffff0000u, 0, 0, 0x1234, }, CANONICAL }, { "0102::1.2.3.4", {0x01020000u, 0, 0, 0x01020304u }, NORMAL }, { "::9:c0a8:1:1", { 0, 0, 0x0009c0a8u, 0x00010001u }, CANONICAL }, { "::ffff:1.2.3.4", { 0, 0, 0x000ffffu, 0x01020304u }, CANONICAL }, { "FFFF::", { 0xffff0000u, 0, 0, 0 }, NORMAL }, { "foobar.", { 0, 0, 0, 0 }, BAD }, { "foobar", { 0, 0, 0, 0 }, BAD }, { "fo:obar", { 0, 0, 0, 0 }, BAD }, { "ffff", { 0, 0, 0, 0 }, BAD }, { "fffff::", { 0, 0, 0, 0 }, BAD }, { "fffff::", { 0, 0, 0, 0 }, BAD }, { "::1.0.1.1000", { 0, 0, 0, 0 }, BAD }, { "1:2:33333:4::", { 0, 0, 0, 0 }, BAD }, { "1:2:3:4:5:6:7:8:9", { 0, 0, 0, 0 }, BAD }, { "1::2::3", { 0, 0, 0, 0 }, BAD }, { ":::1", { 0, 0, 0, 0 }, BAD }, { NULL, { 0, 0, 0, 0, }, BAD }, }; static void regress_ipv4_parse(void *ptr) { int i; for (i = 0; ipv4_entries[i].addr; ++i) { char written[128]; struct ipv4_entry *ent = &ipv4_entries[i]; struct in_addr in; int r; r = evutil_inet_pton(AF_INET, ent->addr, &in); if (r == 0) { if (ent->status != BAD) { TT_FAIL(("%s did not parse, but it's a good address!", ent->addr)); } continue; } if (ent->status == BAD) { TT_FAIL(("%s parsed, but we expected an error", ent->addr)); continue; } if (ntohl(in.s_addr) != ent->res) { TT_FAIL(("%s parsed to %lx, but we expected %lx", ent->addr, (unsigned long)ntohl(in.s_addr), (unsigned long)ent->res)); continue; } if (ent->status == CANONICAL) { const char *w = evutil_inet_ntop(AF_INET, &in, written, sizeof(written)); if (!w) { TT_FAIL(("Tried to write out %s; got NULL.", ent->addr)); continue; } if (strcmp(written, ent->addr)) { TT_FAIL(("Tried to write out %s; got %s", ent->addr, written)); continue; } } } } static void regress_ipv6_parse(void *ptr) { #ifdef AF_INET6 int i, j; for (i = 0; ipv6_entries[i].addr; ++i) { char written[128]; struct ipv6_entry *ent = &ipv6_entries[i]; struct in6_addr in6; int r; r = evutil_inet_pton(AF_INET6, ent->addr, &in6); if (r == 0) { if (ent->status != BAD) TT_FAIL(("%s did not parse, but it's a good address!", ent->addr)); continue; } if (ent->status == BAD) { TT_FAIL(("%s parsed, but we expected an error", ent->addr)); continue; } for (j = 0; j < 4; ++j) { /* Can't use s6_addr32 here; some don't have it. */ ev_uint32_t u = ((ev_uint32_t)in6.s6_addr[j*4 ] << 24) | ((ev_uint32_t)in6.s6_addr[j*4+1] << 16) | ((ev_uint32_t)in6.s6_addr[j*4+2] << 8) | ((ev_uint32_t)in6.s6_addr[j*4+3]); if (u != ent->res[j]) { TT_FAIL(("%s did not parse as expected.", ent->addr)); continue; } } if (ent->status == CANONICAL) { const char *w = evutil_inet_ntop(AF_INET6, &in6, written, sizeof(written)); if (!w) { TT_FAIL(("Tried to write out %s; got NULL.", ent->addr)); continue; } if (strcmp(written, ent->addr)) { TT_FAIL(("Tried to write out %s; got %s", ent->addr, written)); continue; } } } #else TT_BLATHER(("Skipping IPv6 address parsing.")); #endif } static struct ipv6_entry_scope { const char *addr; ev_uint32_t res[4]; unsigned scope; enum entry_status status; } ipv6_entries_scope[] = { { "2001:DB8::", { 0x20010db8, 0, 0 }, 0, NORMAL }, { "2001:DB8::%0", { 0x20010db8, 0, 0, 0 }, 0, NORMAL }, { "2001:DB8::%1", { 0x20010db8, 0, 0, 0 }, 1, NORMAL }, { "foobar.", { 0, 0, 0, 0 }, 0, BAD }, { "2001:DB8::%does-not-exist", { 0, 0, 0, 0 }, 0, BAD }, { NULL, { 0, 0, 0, 0, }, 0, BAD }, }; static void regress_ipv6_parse_scope(void *ptr) { #ifdef AF_INET6 int i, j; unsigned if_scope; for (i = 0; ipv6_entries_scope[i].addr; ++i) { struct ipv6_entry_scope *ent = &ipv6_entries_scope[i]; struct in6_addr in6; int r; r = evutil_inet_pton_scope(AF_INET6, ent->addr, &in6, &if_scope); if (r == 0) { if (ent->status != BAD) TT_FAIL(("%s did not parse, but it's a good address!", ent->addr)); continue; } if (ent->status == BAD) { TT_FAIL(("%s parsed, but we expected an error", ent->addr)); continue; } for (j = 0; j < 4; ++j) { /* Can't use s6_addr32 here; some don't have it. */ ev_uint32_t u = ((ev_uint32_t)in6.s6_addr[j*4 ] << 24) | ((ev_uint32_t)in6.s6_addr[j*4+1] << 16) | ((ev_uint32_t)in6.s6_addr[j*4+2] << 8) | ((ev_uint32_t)in6.s6_addr[j*4+3]); if (u != ent->res[j]) { TT_FAIL(("%s did not parse as expected.", ent->addr)); continue; } } if (if_scope != ent->scope) { TT_FAIL(("%s did not parse as expected.", ent->addr)); continue; } } #else TT_BLATHER(("Skipping IPv6 address parsing.")); #endif } static struct sa_port_ent { const char *parse; int safamily; const char *addr; int port; } sa_port_ents[] = { { "[ffff::1]:1000", AF_INET6, "ffff::1", 1000 }, { "[ffff::1]", AF_INET6, "ffff::1", 0 }, { "[ffff::1", 0, NULL, 0 }, { "[ffff::1]:65599", 0, NULL, 0 }, { "[ffff::1]:0", 0, NULL, 0 }, { "[ffff::1]:-1", 0, NULL, 0 }, { "::1", AF_INET6, "::1", 0 }, { "1:2::1", AF_INET6, "1:2::1", 0 }, { "192.168.0.1:50", AF_INET, "192.168.0.1", 50 }, { "1.2.3.4", AF_INET, "1.2.3.4", 0 }, { NULL, 0, NULL, 0 }, }; static void regress_sockaddr_port_parse(void *ptr) { struct sockaddr_storage ss; int i, r; for (i = 0; sa_port_ents[i].parse; ++i) { struct sa_port_ent *ent = &sa_port_ents[i]; int len = sizeof(ss); memset(&ss, 0, sizeof(ss)); r = evutil_parse_sockaddr_port(ent->parse, (struct sockaddr*)&ss, &len); if (r < 0) { if (ent->safamily) TT_FAIL(("Couldn't parse %s!", ent->parse)); continue; } else if (! ent->safamily) { TT_FAIL(("Shouldn't have been able to parse %s!", ent->parse)); continue; } if (ent->safamily == AF_INET) { struct sockaddr_in sin; memset(&sin, 0, sizeof(sin)); #ifdef EVENT__HAVE_STRUCT_SOCKADDR_IN_SIN_LEN sin.sin_len = sizeof(sin); #endif sin.sin_family = AF_INET; sin.sin_port = htons(ent->port); r = evutil_inet_pton(AF_INET, ent->addr, &sin.sin_addr); if (1 != r) { TT_FAIL(("Couldn't parse ipv4 target %s.", ent->addr)); } else if (memcmp(&sin, &ss, sizeof(sin))) { TT_FAIL(("Parse for %s was not as expected.", ent->parse)); } else if (len != sizeof(sin)) { TT_FAIL(("Length for %s not as expected.",ent->parse)); } } else { struct sockaddr_in6 sin6; memset(&sin6, 0, sizeof(sin6)); #ifdef EVENT__HAVE_STRUCT_SOCKADDR_IN6_SIN6_LEN sin6.sin6_len = sizeof(sin6); #endif sin6.sin6_family = AF_INET6; sin6.sin6_port = htons(ent->port); r = evutil_inet_pton(AF_INET6, ent->addr, &sin6.sin6_addr); if (1 != r) { TT_FAIL(("Couldn't parse ipv6 target %s.", ent->addr)); } else if (memcmp(&sin6, &ss, sizeof(sin6))) { TT_FAIL(("Parse for %s was not as expected.", ent->parse)); } else if (len != sizeof(sin6)) { TT_FAIL(("Length for %s not as expected.",ent->parse)); } } } } static void regress_sockaddr_port_format(void *ptr) { struct sockaddr_storage ss; int len; const char *cp; char cbuf[128]; int r; len = sizeof(ss); r = evutil_parse_sockaddr_port("192.168.1.1:80", (struct sockaddr*)&ss, &len); tt_int_op(r,==,0); cp = evutil_format_sockaddr_port_( (struct sockaddr*)&ss, cbuf, sizeof(cbuf)); tt_ptr_op(cp,==,cbuf); tt_str_op(cp,==,"192.168.1.1:80"); len = sizeof(ss); r = evutil_parse_sockaddr_port("[ff00::8010]:999", (struct sockaddr*)&ss, &len); tt_int_op(r,==,0); cp = evutil_format_sockaddr_port_( (struct sockaddr*)&ss, cbuf, sizeof(cbuf)); tt_ptr_op(cp,==,cbuf); tt_str_op(cp,==,"[ff00::8010]:999"); ss.ss_family=99; cp = evutil_format_sockaddr_port_( (struct sockaddr*)&ss, cbuf, sizeof(cbuf)); tt_ptr_op(cp,==,cbuf); tt_str_op(cp,==,""); end: ; } static struct sa_pred_ent { const char *parse; int is_loopback; } sa_pred_entries[] = { { "127.0.0.1", 1 }, { "127.0.3.2", 1 }, { "128.1.2.3", 0 }, { "18.0.0.1", 0 }, { "129.168.1.1", 0 }, { "::1", 1 }, { "::0", 0 }, { "f::1", 0 }, { "::501", 0 }, { NULL, 0 }, }; static void test_evutil_sockaddr_predicates(void *ptr) { struct sockaddr_storage ss; int r, i; for (i=0; sa_pred_entries[i].parse; ++i) { struct sa_pred_ent *ent = &sa_pred_entries[i]; int len = sizeof(ss); r = evutil_parse_sockaddr_port(ent->parse, (struct sockaddr*)&ss, &len); if (r<0) { TT_FAIL(("Couldn't parse %s!", ent->parse)); continue; } /* sockaddr_is_loopback */ if (ent->is_loopback != evutil_sockaddr_is_loopback_((struct sockaddr*)&ss)) { TT_FAIL(("evutil_sockaddr_loopback(%s) not as expected", ent->parse)); } } } static void test_evutil_strtoll(void *ptr) { const char *s; char *endptr; tt_want(evutil_strtoll("5000000000", NULL, 10) == ((ev_int64_t)5000000)*1000); tt_want(evutil_strtoll("-5000000000", NULL, 10) == ((ev_int64_t)5000000)*-1000); s = " 99999stuff"; tt_want(evutil_strtoll(s, &endptr, 10) == (ev_int64_t)99999); tt_want(endptr == s+6); tt_want(evutil_strtoll("foo", NULL, 10) == 0); } static void test_evutil_snprintf(void *ptr) { char buf[16]; int r; ev_uint64_t u64 = ((ev_uint64_t)1000000000)*200; ev_int64_t i64 = -1 * (ev_int64_t) u64; size_t size = 8000; ev_ssize_t ssize = -9000; r = evutil_snprintf(buf, sizeof(buf), "%d %d", 50, 100); tt_str_op(buf, ==, "50 100"); tt_int_op(r, ==, 6); r = evutil_snprintf(buf, sizeof(buf), "longish %d", 1234567890); tt_str_op(buf, ==, "longish 1234567"); tt_int_op(r, ==, 18); r = evutil_snprintf(buf, sizeof(buf), EV_U64_FMT, EV_U64_ARG(u64)); tt_str_op(buf, ==, "200000000000"); tt_int_op(r, ==, 12); r = evutil_snprintf(buf, sizeof(buf), EV_I64_FMT, EV_I64_ARG(i64)); tt_str_op(buf, ==, "-200000000000"); tt_int_op(r, ==, 13); r = evutil_snprintf(buf, sizeof(buf), EV_SIZE_FMT" "EV_SSIZE_FMT, EV_SIZE_ARG(size), EV_SSIZE_ARG(ssize)); tt_str_op(buf, ==, "8000 -9000"); tt_int_op(r, ==, 10); end: ; } static void test_evutil_casecmp(void *ptr) { tt_int_op(evutil_ascii_strcasecmp("ABC", "ABC"), ==, 0); tt_int_op(evutil_ascii_strcasecmp("ABC", "abc"), ==, 0); tt_int_op(evutil_ascii_strcasecmp("ABC", "abcd"), <, 0); tt_int_op(evutil_ascii_strcasecmp("ABC", "abb"), >, 0); tt_int_op(evutil_ascii_strcasecmp("ABCd", "abc"), >, 0); tt_int_op(evutil_ascii_strncasecmp("Libevent", "LibEvEnT", 100), ==, 0); tt_int_op(evutil_ascii_strncasecmp("Libevent", "LibEvEnT", 4), ==, 0); tt_int_op(evutil_ascii_strncasecmp("Libevent", "LibEXXXX", 4), ==, 0); tt_int_op(evutil_ascii_strncasecmp("Libevent", "LibE", 4), ==, 0); tt_int_op(evutil_ascii_strncasecmp("Libe", "LibEvEnT", 4), ==, 0); tt_int_op(evutil_ascii_strncasecmp("Lib", "LibEvEnT", 4), <, 0); tt_int_op(evutil_ascii_strncasecmp("abc", "def", 99), <, 0); tt_int_op(evutil_ascii_strncasecmp("Z", "qrst", 1), >, 0); end: ; } static void test_evutil_rtrim(void *ptr) { #define TEST_TRIM(s, result) \ do { \ if (cp) mm_free(cp); \ cp = mm_strdup(s); \ tt_assert(cp); \ evutil_rtrim_lws_(cp); \ tt_str_op(cp, ==, result); \ } while(0) char *cp = NULL; (void) ptr; TEST_TRIM("", ""); TEST_TRIM("a", "a"); TEST_TRIM("abcdef ghi", "abcdef ghi"); TEST_TRIM(" ", ""); TEST_TRIM(" ", ""); TEST_TRIM("a ", "a"); TEST_TRIM("abcdef gH ", "abcdef gH"); TEST_TRIM("\t\t", ""); TEST_TRIM(" \t", ""); TEST_TRIM("\t", ""); TEST_TRIM("a \t", "a"); TEST_TRIM("a\t ", "a"); TEST_TRIM("a\t", "a"); TEST_TRIM("abcdef gH \t ", "abcdef gH"); end: if (cp) mm_free(cp); } static int logsev = 0; static char *logmsg = NULL; static void logfn(int severity, const char *msg) { logsev = severity; tt_want(msg); if (msg) { if (logmsg) free(logmsg); logmsg = strdup(msg); } } static int fatal_want_severity = 0; static const char *fatal_want_message = NULL; static void fatalfn(int exitcode) { if (logsev != fatal_want_severity || !logmsg || strcmp(logmsg, fatal_want_message)) exit(0); else exit(exitcode); } #ifndef _WIN32 #define CAN_CHECK_ERR static void check_error_logging(void (*fn)(void), int wantexitcode, int wantseverity, const char *wantmsg) { pid_t pid; int status = 0, exitcode; fatal_want_severity = wantseverity; fatal_want_message = wantmsg; if ((pid = regress_fork()) == 0) { /* child process */ fn(); exit(0); /* should be unreachable. */ } else { wait(&status); exitcode = WEXITSTATUS(status); tt_int_op(wantexitcode, ==, exitcode); } end: ; } static void errx_fn(void) { event_errx(2, "Fatal error; too many kumquats (%d)", 5); } static void err_fn(void) { errno = ENOENT; event_err(5,"Couldn't open %s", "/very/bad/file"); } static void sock_err_fn(void) { evutil_socket_t fd = socket(AF_INET, SOCK_STREAM, 0); #ifdef _WIN32 EVUTIL_SET_SOCKET_ERROR(WSAEWOULDBLOCK); #else errno = EAGAIN; #endif event_sock_err(20, fd, "Unhappy socket"); } #endif static void test_evutil_log(void *ptr) { evutil_socket_t fd = -1; char buf[128]; event_set_log_callback(logfn); event_set_fatal_callback(fatalfn); #define RESET() do { \ logsev = 0; \ if (logmsg) free(logmsg); \ logmsg = NULL; \ } while (0) #define LOGEQ(sev,msg) do { \ tt_int_op(logsev,==,sev); \ tt_assert(logmsg != NULL); \ tt_str_op(logmsg,==,msg); \ } while (0) #ifdef CAN_CHECK_ERR /* We need to disable these tests for now. Previously, the logging * module didn't enforce the requirement that a fatal callback * actually exit. Now, it exits no matter what, so if we wan to * reinstate these tests, we'll need to fork for each one. */ check_error_logging(errx_fn, 2, EVENT_LOG_ERR, "Fatal error; too many kumquats (5)"); RESET(); #endif event_warnx("Far too many %s (%d)", "wombats", 99); LOGEQ(EVENT_LOG_WARN, "Far too many wombats (99)"); RESET(); event_msgx("Connecting lime to coconut"); LOGEQ(EVENT_LOG_MSG, "Connecting lime to coconut"); RESET(); event_debug(("A millisecond passed! We should log that!")); #ifdef USE_DEBUG LOGEQ(EVENT_LOG_DEBUG, "A millisecond passed! We should log that!"); #else tt_int_op(logsev,==,0); tt_ptr_op(logmsg,==,NULL); #endif RESET(); /* Try with an errno. */ errno = ENOENT; event_warn("Couldn't open %s", "/bad/file"); evutil_snprintf(buf, sizeof(buf), "Couldn't open /bad/file: %s",strerror(ENOENT)); LOGEQ(EVENT_LOG_WARN,buf); RESET(); #ifdef CAN_CHECK_ERR evutil_snprintf(buf, sizeof(buf), "Couldn't open /very/bad/file: %s",strerror(ENOENT)); check_error_logging(err_fn, 5, EVENT_LOG_ERR, buf); RESET(); #endif /* Try with a socket errno. */ fd = socket(AF_INET, SOCK_STREAM, 0); #ifdef _WIN32 evutil_snprintf(buf, sizeof(buf), "Unhappy socket: %s", evutil_socket_error_to_string(WSAEWOULDBLOCK)); EVUTIL_SET_SOCKET_ERROR(WSAEWOULDBLOCK); #else evutil_snprintf(buf, sizeof(buf), "Unhappy socket: %s", strerror(EAGAIN)); errno = EAGAIN; #endif event_sock_warn(fd, "Unhappy socket"); LOGEQ(EVENT_LOG_WARN, buf); RESET(); #ifdef CAN_CHECK_ERR check_error_logging(sock_err_fn, 20, EVENT_LOG_ERR, buf); RESET(); #endif #undef RESET #undef LOGEQ end: if (logmsg) free(logmsg); if (fd >= 0) evutil_closesocket(fd); } static void test_evutil_strlcpy(void *arg) { char buf[8]; /* Successful case. */ tt_int_op(5, ==, strlcpy(buf, "Hello", sizeof(buf))); tt_str_op(buf, ==, "Hello"); /* Overflow by a lot. */ tt_int_op(13, ==, strlcpy(buf, "pentasyllabic", sizeof(buf))); tt_str_op(buf, ==, "pentasy"); /* Overflow by exactly one. */ tt_int_op(8, ==, strlcpy(buf, "overlong", sizeof(buf))); tt_str_op(buf, ==, "overlon"); end: ; } struct example_struct { const char *a; const char *b; long c; }; static void test_evutil_upcast(void *arg) { struct example_struct es1; const char **cp; es1.a = "World"; es1.b = "Hello"; es1.c = -99; tt_int_op(evutil_offsetof(struct example_struct, b), ==, sizeof(char*)); cp = &es1.b; tt_ptr_op(EVUTIL_UPCAST(cp, struct example_struct, b), ==, &es1); end: ; } static void test_evutil_integers(void *arg) { ev_int64_t i64; ev_uint64_t u64; ev_int32_t i32; ev_uint32_t u32; ev_int16_t i16; ev_uint16_t u16; ev_int8_t i8; ev_uint8_t u8; void *ptr; ev_intptr_t iptr; ev_uintptr_t uptr; ev_ssize_t ssize; tt_int_op(sizeof(u64), ==, 8); tt_int_op(sizeof(i64), ==, 8); tt_int_op(sizeof(u32), ==, 4); tt_int_op(sizeof(i32), ==, 4); tt_int_op(sizeof(u16), ==, 2); tt_int_op(sizeof(i16), ==, 2); tt_int_op(sizeof(u8), ==, 1); tt_int_op(sizeof(i8), ==, 1); tt_int_op(sizeof(ev_ssize_t), ==, sizeof(size_t)); tt_int_op(sizeof(ev_intptr_t), >=, sizeof(void *)); tt_int_op(sizeof(ev_uintptr_t), ==, sizeof(intptr_t)); u64 = 1000000000; u64 *= 1000000000; tt_assert(u64 / 1000000000 == 1000000000); i64 = -1000000000; i64 *= 1000000000; tt_assert(i64 / 1000000000 == -1000000000); u64 = EV_UINT64_MAX; i64 = EV_INT64_MAX; tt_assert(u64 > 0); tt_assert(i64 > 0); u64++; /* i64++; */ tt_assert(u64 == 0); /* tt_assert(i64 == EV_INT64_MIN); */ /* tt_assert(i64 < 0); */ u32 = EV_UINT32_MAX; i32 = EV_INT32_MAX; tt_assert(u32 > 0); tt_assert(i32 > 0); u32++; /* i32++; */ tt_assert(u32 == 0); /* tt_assert(i32 == EV_INT32_MIN); */ /* tt_assert(i32 < 0); */ u16 = EV_UINT16_MAX; i16 = EV_INT16_MAX; tt_assert(u16 > 0); tt_assert(i16 > 0); u16++; /* i16++; */ tt_assert(u16 == 0); /* tt_assert(i16 == EV_INT16_MIN); */ /* tt_assert(i16 < 0); */ u8 = EV_UINT8_MAX; i8 = EV_INT8_MAX; tt_assert(u8 > 0); tt_assert(i8 > 0); u8++; /* i8++;*/ tt_assert(u8 == 0); /* tt_assert(i8 == EV_INT8_MIN); */ /* tt_assert(i8 < 0); */ /* ssize = EV_SSIZE_MAX; tt_assert(ssize > 0); ssize++; tt_assert(ssize < 0); tt_assert(ssize == EV_SSIZE_MIN); */ ptr = &ssize; iptr = (ev_intptr_t)ptr; uptr = (ev_uintptr_t)ptr; ptr = (void *)iptr; tt_assert(ptr == &ssize); ptr = (void *)uptr; tt_assert(ptr == &ssize); iptr = -1; tt_assert(iptr < 0); end: ; } struct evutil_addrinfo * ai_find_by_family(struct evutil_addrinfo *ai, int family) { while (ai) { if (ai->ai_family == family) return ai; ai = ai->ai_next; } return NULL; } struct evutil_addrinfo * ai_find_by_protocol(struct evutil_addrinfo *ai, int protocol) { while (ai) { if (ai->ai_protocol == protocol) return ai; ai = ai->ai_next; } return NULL; } int test_ai_eq_(const struct evutil_addrinfo *ai, const char *sockaddr_port, int socktype, int protocol, int line) { struct sockaddr_storage ss; int slen = sizeof(ss); int gotport; char buf[128]; memset(&ss, 0, sizeof(ss)); if (socktype > 0) tt_int_op(ai->ai_socktype, ==, socktype); if (protocol > 0) tt_int_op(ai->ai_protocol, ==, protocol); if (evutil_parse_sockaddr_port( sockaddr_port, (struct sockaddr*)&ss, &slen)<0) { TT_FAIL(("Couldn't parse expected address %s on line %d", sockaddr_port, line)); return -1; } if (ai->ai_family != ss.ss_family) { TT_FAIL(("Address family %d did not match %d on line %d", ai->ai_family, ss.ss_family, line)); return -1; } if (ai->ai_addr->sa_family == AF_INET) { struct sockaddr_in *sin = (struct sockaddr_in*)ai->ai_addr; evutil_inet_ntop(AF_INET, &sin->sin_addr, buf, sizeof(buf)); gotport = ntohs(sin->sin_port); if (ai->ai_addrlen != sizeof(struct sockaddr_in)) { TT_FAIL(("Addr size mismatch on line %d", line)); return -1; } } else { struct sockaddr_in6 *sin6 = (struct sockaddr_in6*)ai->ai_addr; evutil_inet_ntop(AF_INET6, &sin6->sin6_addr, buf, sizeof(buf)); gotport = ntohs(sin6->sin6_port); if (ai->ai_addrlen != sizeof(struct sockaddr_in6)) { TT_FAIL(("Addr size mismatch on line %d", line)); return -1; } } if (evutil_sockaddr_cmp(ai->ai_addr, (struct sockaddr*)&ss, 1)) { TT_FAIL(("Wanted %s, got %s:%d on line %d", sockaddr_port, buf, gotport, line)); return -1; } else { TT_BLATHER(("Wanted %s, got %s:%d on line %d", sockaddr_port, buf, gotport, line)); } return 0; end: TT_FAIL(("Test failed on line %d", line)); return -1; } static void test_evutil_rand(void *arg) { char buf1[32]; char buf2[32]; int counts[256]; int i, j, k, n=0; struct evutil_weakrand_state seed = { 12346789U }; memset(buf2, 0, sizeof(buf2)); memset(counts, 0, sizeof(counts)); for (k=0;k<32;++k) { /* Try a few different start and end points; try to catch * the various misaligned cases of arc4random_buf */ int startpoint = evutil_weakrand_(&seed) % 4; int endpoint = 32 - (evutil_weakrand_(&seed) % 4); memset(buf2, 0, sizeof(buf2)); /* Do 6 runs over buf1, or-ing the result into buf2 each * time, to make sure we're setting each byte that we mean * to set. */ for (i=0;i<8;++i) { memset(buf1, 0, sizeof(buf1)); evutil_secure_rng_get_bytes(buf1 + startpoint, endpoint-startpoint); n += endpoint - startpoint; for (j=0; j<32; ++j) { if (j >= startpoint && j < endpoint) { buf2[j] |= buf1[j]; ++counts[(unsigned char)buf1[j]]; } else { tt_assert(buf1[j] == 0); tt_int_op(buf1[j], ==, 0); } } } /* This will give a false positive with P=(256**8)==(2**64) * for each character. */ for (j=startpoint;jai_next, ==, NULL); /* no ambiguity */ test_ai_eq(ai, "1.2.3.4:8080", SOCK_STREAM, IPPROTO_TCP); evutil_freeaddrinfo(ai); ai = NULL; memset(&hints, 0, sizeof(hints)); hints.ai_family = PF_UNSPEC; hints.ai_protocol = IPPROTO_UDP; r = evutil_getaddrinfo("1001:b0b::f00f", "4321", &hints, &ai); tt_int_op(r, ==, 0); tt_assert(ai); tt_ptr_op(ai->ai_next, ==, NULL); /* no ambiguity */ test_ai_eq(ai, "[1001:b0b::f00f]:4321", SOCK_DGRAM, IPPROTO_UDP); evutil_freeaddrinfo(ai); ai = NULL; /* Try out the behavior of nodename=NULL */ memset(&hints, 0, sizeof(hints)); hints.ai_family = PF_INET; hints.ai_protocol = IPPROTO_TCP; hints.ai_flags = EVUTIL_AI_PASSIVE; /* as if for bind */ r = evutil_getaddrinfo(NULL, "9999", &hints, &ai); tt_int_op(r,==,0); tt_assert(ai); tt_ptr_op(ai->ai_next, ==, NULL); test_ai_eq(ai, "0.0.0.0:9999", SOCK_STREAM, IPPROTO_TCP); evutil_freeaddrinfo(ai); ai = NULL; hints.ai_flags = 0; /* as if for connect */ r = evutil_getaddrinfo(NULL, "9998", &hints, &ai); tt_assert(ai); tt_int_op(r,==,0); test_ai_eq(ai, "127.0.0.1:9998", SOCK_STREAM, IPPROTO_TCP); tt_ptr_op(ai->ai_next, ==, NULL); evutil_freeaddrinfo(ai); ai = NULL; hints.ai_flags = 0; /* as if for connect */ hints.ai_family = PF_INET6; r = evutil_getaddrinfo(NULL, "9997", &hints, &ai); tt_assert(ai); tt_int_op(r,==,0); tt_ptr_op(ai->ai_next, ==, NULL); test_ai_eq(ai, "[::1]:9997", SOCK_STREAM, IPPROTO_TCP); evutil_freeaddrinfo(ai); ai = NULL; hints.ai_flags = EVUTIL_AI_PASSIVE; /* as if for bind. */ hints.ai_family = PF_INET6; r = evutil_getaddrinfo(NULL, "9996", &hints, &ai); tt_assert(ai); tt_int_op(r,==,0); tt_ptr_op(ai->ai_next, ==, NULL); test_ai_eq(ai, "[::]:9996", SOCK_STREAM, IPPROTO_TCP); evutil_freeaddrinfo(ai); ai = NULL; /* Now try an unspec one. We should get a v6 and a v4. */ hints.ai_family = PF_UNSPEC; r = evutil_getaddrinfo(NULL, "9996", &hints, &ai); tt_assert(ai); tt_int_op(r,==,0); a = ai_find_by_family(ai, PF_INET6); tt_assert(a); test_ai_eq(a, "[::]:9996", SOCK_STREAM, IPPROTO_TCP); a = ai_find_by_family(ai, PF_INET); tt_assert(a); test_ai_eq(a, "0.0.0.0:9996", SOCK_STREAM, IPPROTO_TCP); evutil_freeaddrinfo(ai); ai = NULL; /* Try out AI_NUMERICHOST: successful case. Also try * multiprotocol. */ memset(&hints, 0, sizeof(hints)); hints.ai_family = PF_UNSPEC; hints.ai_flags = EVUTIL_AI_NUMERICHOST; r = evutil_getaddrinfo("1.2.3.4", NULL, &hints, &ai); tt_int_op(r, ==, 0); a = ai_find_by_protocol(ai, IPPROTO_TCP); tt_assert(a); test_ai_eq(a, "1.2.3.4", SOCK_STREAM, IPPROTO_TCP); a = ai_find_by_protocol(ai, IPPROTO_UDP); tt_assert(a); test_ai_eq(a, "1.2.3.4", SOCK_DGRAM, IPPROTO_UDP); evutil_freeaddrinfo(ai); ai = NULL; /* Try the failing case of AI_NUMERICHOST */ memset(&hints, 0, sizeof(hints)); hints.ai_family = PF_UNSPEC; hints.ai_flags = EVUTIL_AI_NUMERICHOST; r = evutil_getaddrinfo("www.google.com", "80", &hints, &ai); tt_int_op(r, ==, EVUTIL_EAI_NONAME); tt_ptr_op(ai, ==, NULL); /* Try symbolic service names wit AI_NUMERICSERV */ memset(&hints, 0, sizeof(hints)); hints.ai_family = PF_UNSPEC; hints.ai_socktype = SOCK_STREAM; hints.ai_flags = EVUTIL_AI_NUMERICSERV; r = evutil_getaddrinfo("1.2.3.4", "http", &hints, &ai); tt_int_op(r,==,EVUTIL_EAI_NONAME); /* Try symbolic service names */ memset(&hints, 0, sizeof(hints)); hints.ai_family = PF_UNSPEC; hints.ai_socktype = SOCK_STREAM; r = evutil_getaddrinfo("1.2.3.4", "http", &hints, &ai); if (r!=0) { TT_DECLARE("SKIP", ("Symbolic service names seem broken.")); } else { tt_assert(ai); test_ai_eq(ai, "1.2.3.4:80", SOCK_STREAM, IPPROTO_TCP); evutil_freeaddrinfo(ai); ai = NULL; } end: if (ai) evutil_freeaddrinfo(ai); } static void test_evutil_getaddrinfo_live(void *arg) { struct evutil_addrinfo *ai = NULL; struct evutil_addrinfo hints; struct sockaddr_in6 *sin6; struct sockaddr_in *sin; char buf[128]; const char *cp; int r; /* Now do some actual lookups. */ memset(&hints, 0, sizeof(hints)); hints.ai_family = PF_INET; hints.ai_protocol = IPPROTO_TCP; hints.ai_socktype = SOCK_STREAM; r = evutil_getaddrinfo("www.google.com", "80", &hints, &ai); if (r != 0) { TT_DECLARE("SKIP", ("Couldn't resolve www.google.com")); } else { tt_assert(ai); tt_int_op(ai->ai_family, ==, PF_INET); tt_int_op(ai->ai_protocol, ==, IPPROTO_TCP); tt_int_op(ai->ai_socktype, ==, SOCK_STREAM); tt_int_op(ai->ai_addrlen, ==, sizeof(struct sockaddr_in)); sin = (struct sockaddr_in*)ai->ai_addr; tt_int_op(sin->sin_family, ==, AF_INET); tt_int_op(sin->sin_port, ==, htons(80)); tt_int_op(sin->sin_addr.s_addr, !=, 0xffffffff); cp = evutil_inet_ntop(AF_INET, &sin->sin_addr, buf, sizeof(buf)); TT_BLATHER(("www.google.com resolved to %s", cp?cp:"")); evutil_freeaddrinfo(ai); ai = NULL; } hints.ai_family = PF_INET6; r = evutil_getaddrinfo("ipv6.google.com", "80", &hints, &ai); if (r != 0) { TT_BLATHER(("Couldn't do an ipv6 lookup for ipv6.google.com")); } else { tt_assert(ai); tt_int_op(ai->ai_family, ==, PF_INET6); tt_int_op(ai->ai_addrlen, ==, sizeof(struct sockaddr_in6)); sin6 = (struct sockaddr_in6*)ai->ai_addr; tt_int_op(sin6->sin6_port, ==, htons(80)); cp = evutil_inet_ntop(AF_INET6, &sin6->sin6_addr, buf, sizeof(buf)); TT_BLATHER(("ipv6.google.com resolved to %s", cp?cp:"")); } end: if (ai) evutil_freeaddrinfo(ai); } static void test_evutil_getaddrinfo_AI_ADDRCONFIG(void *arg) { struct evutil_addrinfo *ai = NULL; struct evutil_addrinfo hints; int r; memset(&hints, 0, sizeof(hints)); hints.ai_family = AF_UNSPEC; hints.ai_socktype = SOCK_STREAM; hints.ai_flags = EVUTIL_AI_PASSIVE|EVUTIL_AI_ADDRCONFIG; /* IPv4 */ r = evutil_getaddrinfo("127.0.0.1", "80", &hints, &ai); tt_int_op(r, ==, 0); tt_assert(ai); tt_ptr_op(ai->ai_next, ==, NULL); test_ai_eq(ai, "127.0.0.1:80", SOCK_STREAM, IPPROTO_TCP); evutil_freeaddrinfo(ai); ai = NULL; /* IPv6 */ r = evutil_getaddrinfo("::1", "80", &hints, &ai); tt_int_op(r, ==, 0); tt_assert(ai); tt_ptr_op(ai->ai_next, ==, NULL); test_ai_eq(ai, "[::1]:80", SOCK_STREAM, IPPROTO_TCP); evutil_freeaddrinfo(ai); ai = NULL; end: if (ai) evutil_freeaddrinfo(ai); } #ifdef _WIN32 static void test_evutil_loadsyslib(void *arg) { HMODULE h=NULL; h = evutil_load_windows_system_library_(TEXT("kernel32.dll")); tt_assert(h); end: if (h) CloseHandle(h); } #endif /** Test mm_malloc(). */ static void test_event_malloc(void *arg) { void *p = NULL; (void)arg; /* mm_malloc(0) should simply return NULL. */ #ifndef EVENT__DISABLE_MM_REPLACEMENT errno = 0; p = mm_malloc(0); tt_assert(p == NULL); tt_int_op(errno, ==, 0); #endif /* Trivial case. */ errno = 0; p = mm_malloc(8); tt_assert(p != NULL); tt_int_op(errno, ==, 0); mm_free(p); end: errno = 0; return; } static void test_event_calloc(void *arg) { void *p = NULL; (void)arg; #ifndef EVENT__DISABLE_MM_REPLACEMENT /* mm_calloc() should simply return NULL * if either argument is zero. */ errno = 0; p = mm_calloc(0, 0); tt_assert(p == NULL); tt_int_op(errno, ==, 0); errno = 0; p = mm_calloc(0, 1); tt_assert(p == NULL); tt_int_op(errno, ==, 0); errno = 0; p = mm_calloc(1, 0); tt_assert(p == NULL); tt_int_op(errno, ==, 0); #endif /* Trivial case. */ errno = 0; p = mm_calloc(8, 8); tt_assert(p != NULL); tt_int_op(errno, ==, 0); mm_free(p); p = NULL; /* mm_calloc() should set errno = ENOMEM and return NULL * in case of potential overflow. */ errno = 0; p = mm_calloc(EV_SIZE_MAX/2, EV_SIZE_MAX/2 + 8); tt_assert(p == NULL); tt_int_op(errno, ==, ENOMEM); end: errno = 0; if (p) mm_free(p); return; } static void test_event_strdup(void *arg) { void *p = NULL; (void)arg; #ifndef EVENT__DISABLE_MM_REPLACEMENT /* mm_strdup(NULL) should set errno = EINVAL and return NULL. */ errno = 0; p = mm_strdup(NULL); tt_assert(p == NULL); tt_int_op(errno, ==, EINVAL); #endif /* Trivial cases. */ errno = 0; p = mm_strdup(""); tt_assert(p != NULL); tt_int_op(errno, ==, 0); tt_str_op(p, ==, ""); mm_free(p); errno = 0; p = mm_strdup("foo"); tt_assert(p != NULL); tt_int_op(errno, ==, 0); tt_str_op(p, ==, "foo"); mm_free(p); /* XXX * mm_strdup(str) where str is a string of length EV_SIZE_MAX * should set errno = ENOMEM and return NULL. */ end: errno = 0; return; } static void test_evutil_usleep(void *arg) { struct timeval tv1, tv2, tv3, diff1, diff2; const struct timeval quarter_sec = {0, 250*1000}; const struct timeval tenth_sec = {0, 100*1000}; long usec1, usec2; evutil_gettimeofday(&tv1, NULL); evutil_usleep_(&quarter_sec); evutil_gettimeofday(&tv2, NULL); evutil_usleep_(&tenth_sec); evutil_gettimeofday(&tv3, NULL); evutil_timersub(&tv2, &tv1, &diff1); evutil_timersub(&tv3, &tv2, &diff2); usec1 = diff1.tv_sec * 1000000 + diff1.tv_usec; usec2 = diff2.tv_sec * 1000000 + diff2.tv_usec; tt_int_op(usec1, >, 200000); tt_int_op(usec1, <, 300000); tt_int_op(usec2, >, 80000); tt_int_op(usec2, <, 120000); end: ; } static void test_evutil_monotonic_res(void *data_) { /* Basic santity-test for monotonic timers. What we'd really like * to do is make sure that they can't go backwards even when the * system clock goes backwards. But we haven't got a good way to * move the system clock backwards. */ struct basic_test_data *data = data_; struct evutil_monotonic_timer timer; const int precise = strstr(data->setup_data, "precise") != NULL; const int fallback = strstr(data->setup_data, "fallback") != NULL; struct timeval tv[10], delay; int total_diff = 0; int flags = 0, wantres, acceptdiff, i; if (precise) flags |= EV_MONOT_PRECISE; if (fallback) flags |= EV_MONOT_FALLBACK; if (precise || fallback) { #ifdef _WIN32 wantres = 10*1000; acceptdiff = 1000; #else wantres = 1000; acceptdiff = 300; #endif } else { wantres = 40*1000; acceptdiff = 20*1000; } TT_BLATHER(("Precise = %d", precise)); TT_BLATHER(("Fallback = %d", fallback)); /* First, make sure we match up with usleep. */ delay.tv_sec = 0; delay.tv_usec = wantres; tt_int_op(evutil_configure_monotonic_time_(&timer, flags), ==, 0); for (i = 0; i < 10; ++i) { evutil_gettime_monotonic_(&timer, &tv[i]); evutil_usleep_(&delay); } for (i = 0; i < 9; ++i) { struct timeval diff; tt_assert(evutil_timercmp(&tv[i], &tv[i+1], <)); evutil_timersub(&tv[i+1], &tv[i], &diff); tt_int_op(diff.tv_sec, ==, 0); total_diff += diff.tv_usec; TT_BLATHER(("Difference = %d", (int)diff.tv_usec)); } tt_int_op(abs(total_diff/9 - wantres), <, acceptdiff); end: ; } static void test_evutil_monotonic_prc(void *data_) { struct basic_test_data *data = data_; struct evutil_monotonic_timer timer; const int precise = strstr(data->setup_data, "precise") != NULL; const int fallback = strstr(data->setup_data, "fallback") != NULL; struct timeval tv[10]; int total_diff = 0; int i, maxstep = 25*1000,flags=0; if (precise) maxstep = 500; if (precise) flags |= EV_MONOT_PRECISE; if (fallback) flags |= EV_MONOT_FALLBACK; tt_int_op(evutil_configure_monotonic_time_(&timer, flags), ==, 0); /* find out what precision we actually see. */ evutil_gettime_monotonic_(&timer, &tv[0]); for (i = 1; i < 10; ++i) { do { evutil_gettime_monotonic_(&timer, &tv[i]); } while (evutil_timercmp(&tv[i-1], &tv[i], ==)); } total_diff = 0; for (i = 0; i < 9; ++i) { struct timeval diff; tt_assert(evutil_timercmp(&tv[i], &tv[i+1], <)); evutil_timersub(&tv[i+1], &tv[i], &diff); tt_int_op(diff.tv_sec, ==, 0); total_diff += diff.tv_usec; TT_BLATHER(("Step difference = %d", (int)diff.tv_usec)); } TT_BLATHER(("Average step difference = %d", total_diff / 9)); tt_int_op(total_diff/9, <, maxstep); end: ; } static void create_tm_from_unix_epoch(struct tm *cur_p, const time_t t) { #ifdef _WIN32 struct tm *tmp = gmtime(&t); if (!tmp) { fprintf(stderr, "gmtime: %s (%i)", strerror(errno), (int)t); exit(1); } *cur_p = *tmp; #else gmtime_r(&t, cur_p); #endif } static struct date_rfc1123_case { time_t t; char date[30]; } date_rfc1123_cases[] = { { 0, "Thu, 01 Jan 1970 00:00:00 GMT"} /* UNIX time of zero */, { 946684799, "Fri, 31 Dec 1999 23:59:59 GMT"} /* the last moment of the 20th century */, { 946684800, "Sat, 01 Jan 2000 00:00:00 GMT"} /* the first moment of the 21st century */, { 981072000, "Fri, 02 Feb 2001 00:00:00 GMT"}, { 1015113600, "Sun, 03 Mar 2002 00:00:00 GMT"}, { 1049414400, "Fri, 04 Apr 2003 00:00:00 GMT"}, { 1083715200, "Wed, 05 May 2004 00:00:00 GMT"}, { 1118016000, "Mon, 06 Jun 2005 00:00:00 GMT"}, { 1152230400, "Fri, 07 Jul 2006 00:00:00 GMT"}, { 1186531200, "Wed, 08 Aug 2007 00:00:00 GMT"}, { 1220918400, "Tue, 09 Sep 2008 00:00:00 GMT"}, { 1255132800, "Sat, 10 Oct 2009 00:00:00 GMT"}, { 1289433600, "Thu, 11 Nov 2010 00:00:00 GMT"}, { 1323648000, "Mon, 12 Dec 2011 00:00:00 GMT"}, #ifndef _WIN32 #if EVENT__SIZEOF_TIME_T > 4 /** In win32 case we have max "23:59:59 January 18, 2038, UTC" for time32 */ { 4294967296, "Sun, 07 Feb 2106 06:28:16 GMT"} /* 2^32 */, /** In win32 case we have max "23:59:59, December 31, 3000, UTC" for time64 */ {253402300799, "Fri, 31 Dec 9999 23:59:59 GMT"} /* long long future no one can imagine */, #endif /* time_t != 32bit */ { 1456704000, "Mon, 29 Feb 2016 00:00:00 GMT"} /* leap year */, #endif { 1435708800, "Wed, 01 Jul 2015 00:00:00 GMT"} /* leap second */, { 1481866376, "Fri, 16 Dec 2016 05:32:56 GMT"} /* the time this test case is generated */, {0, ""} /* end of test cases. */ }; static void test_evutil_date_rfc1123(void *arg) { struct tm query; char result[30]; size_t i = 0; /* Checks if too small buffers are safely accepted. */ { create_tm_from_unix_epoch(&query, 0); evutil_date_rfc1123(result, 8, &query); tt_str_op(result, ==, "Thu, 01"); } /* Checks for testcases. */ for (i = 0; ; i++) { struct date_rfc1123_case c = date_rfc1123_cases[i]; if (strlen(c.date) == 0) break; create_tm_from_unix_epoch(&query, c.t); evutil_date_rfc1123(result, sizeof(result), &query); tt_str_op(result, ==, c.date); } end: ; } static void test_evutil_v4addr_is_local(void *arg) { struct sockaddr_in sin; sin.sin_family = AF_INET; /* we use evutil_inet_pton() here to fill in network-byte order */ #define LOCAL(str, yes) do { \ tt_int_op(evutil_inet_pton(AF_INET, str, &sin.sin_addr), ==, 1); \ tt_int_op(evutil_v4addr_is_local_(&sin.sin_addr), ==, yes); \ } while (0) /** any */ sin.sin_addr.s_addr = INADDR_ANY; tt_int_op(evutil_v4addr_is_local_(&sin.sin_addr), ==, 1); /** loopback */ sin.sin_addr.s_addr = htonl(INADDR_LOOPBACK); tt_int_op(evutil_v4addr_is_local_(&sin.sin_addr), ==, 1); LOCAL("127.0.0.1", 1); LOCAL("127.255.255.255", 1); LOCAL("121.0.0.1", 0); /** link-local */ LOCAL("169.254.0.1", 1); LOCAL("169.254.255.255", 1); LOCAL("170.0.0.0", 0); /** Multicast */ LOCAL("224.0.0.0", 1); LOCAL("239.255.255.255", 1); LOCAL("240.0.0.0", 0); end: ; } static void test_evutil_v6addr_is_local(void *arg) { struct sockaddr_in6 sin6; struct in6_addr anyaddr = IN6ADDR_ANY_INIT; struct in6_addr loopback = IN6ADDR_LOOPBACK_INIT; sin6.sin6_family = AF_INET6; #define LOCAL6(str, yes) do { \ tt_int_op(evutil_inet_pton(AF_INET6, str, &sin6.sin6_addr), ==, 1);\ tt_int_op(evutil_v6addr_is_local_(&sin6.sin6_addr), ==, yes); \ } while (0) /** any */ tt_int_op(evutil_v6addr_is_local_(&anyaddr), ==, 1); LOCAL6("::0", 1); /** loopback */ tt_int_op(evutil_v6addr_is_local_(&loopback), ==, 1); LOCAL6("::1", 1); /** IPV4 mapped */ LOCAL6("::ffff:0:0", 1); /** IPv4 translated */ LOCAL6("::ffff:0:0:0", 1); /** IPv4/IPv6 translation */ LOCAL6("64:ff9b::", 0); /** Link-local */ LOCAL6("fe80::", 1); /** Multicast */ LOCAL6("ff00::", 1); /** Unspecified */ LOCAL6("::", 1); /** Global Internet */ LOCAL6("2001::", 0); LOCAL6("2001:4860:4802:32::1b", 0); end: ; } struct testcase_t util_testcases[] = { { "ipv4_parse", regress_ipv4_parse, 0, NULL, NULL }, { "ipv6_parse", regress_ipv6_parse, 0, NULL, NULL }, { "ipv6_parse_scope", regress_ipv6_parse_scope, 0, NULL, NULL }, { "sockaddr_port_parse", regress_sockaddr_port_parse, 0, NULL, NULL }, { "sockaddr_port_format", regress_sockaddr_port_format, 0, NULL, NULL }, { "sockaddr_predicates", test_evutil_sockaddr_predicates, 0,NULL,NULL }, { "evutil_snprintf", test_evutil_snprintf, 0, NULL, NULL }, { "evutil_strtoll", test_evutil_strtoll, 0, NULL, NULL }, { "evutil_casecmp", test_evutil_casecmp, 0, NULL, NULL }, { "evutil_rtrim", test_evutil_rtrim, 0, NULL, NULL }, { "strlcpy", test_evutil_strlcpy, 0, NULL, NULL }, { "log", test_evutil_log, TT_FORK, NULL, NULL }, { "upcast", test_evutil_upcast, 0, NULL, NULL }, { "integers", test_evutil_integers, 0, NULL, NULL }, { "rand", test_evutil_rand, TT_FORK, NULL, NULL }, { "EVUTIL_IS_", test_EVUTIL_IS_, 0, NULL, NULL }, { "getaddrinfo", test_evutil_getaddrinfo, TT_FORK, NULL, NULL }, { "getaddrinfo_live", test_evutil_getaddrinfo_live, TT_FORK|TT_OFF_BY_DEFAULT, NULL, NULL }, { "getaddrinfo_AI_ADDRCONFIG", test_evutil_getaddrinfo_AI_ADDRCONFIG, TT_FORK|TT_OFF_BY_DEFAULT, NULL, NULL }, #ifdef _WIN32 { "loadsyslib", test_evutil_loadsyslib, TT_FORK, NULL, NULL }, #endif { "mm_malloc", test_event_malloc, 0, NULL, NULL }, { "mm_calloc", test_event_calloc, 0, NULL, NULL }, { "mm_strdup", test_event_strdup, 0, NULL, NULL }, { "usleep", test_evutil_usleep, TT_RETRIABLE, NULL, NULL }, { "monotonic_res", test_evutil_monotonic_res, 0, &basic_setup, (void*)"" }, { "monotonic_res_precise", test_evutil_monotonic_res, TT_OFF_BY_DEFAULT, &basic_setup, (void*)"precise" }, { "monotonic_res_fallback", test_evutil_monotonic_res, TT_OFF_BY_DEFAULT, &basic_setup, (void*)"fallback" }, { "monotonic_prc", test_evutil_monotonic_prc, 0, &basic_setup, (void*)"" }, { "monotonic_prc_precise", test_evutil_monotonic_prc, TT_RETRIABLE, &basic_setup, (void*)"precise" }, { "monotonic_prc_fallback", test_evutil_monotonic_prc, 0, &basic_setup, (void*)"fallback" }, { "date_rfc1123", test_evutil_date_rfc1123, 0, NULL, NULL }, { "evutil_v4addr_is_local", test_evutil_v4addr_is_local, 0, NULL, NULL }, { "evutil_v6addr_is_local", test_evutil_v6addr_is_local, 0, NULL, NULL }, END_OF_TESTCASES, };