stm32f103-template/rt-thread/components/drivers/sdio/block_dev.c

723 lines
20 KiB
C
Raw Permalink Normal View History

2023-05-09 22:30:49 +08:00
/*
* Copyright (c) 2006-2023, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2011-07-25 weety first version
*/
#include <rtthread.h>
#include <dfs_fs.h>
#include <drivers/mmcsd_core.h>
#include <drivers/gpt.h>
#define DBG_TAG "SDIO"
#ifdef RT_SDIO_DEBUG
#define DBG_LVL DBG_LOG
#else
#define DBG_LVL DBG_INFO
#endif /* RT_SDIO_DEBUG */
#include <rtdbg.h>
static rt_list_t blk_devices = RT_LIST_OBJECT_INIT(blk_devices);
#define BLK_MIN(a, b) ((a) < (b) ? (a) : (b))
struct mmcsd_blk_device
{
struct rt_mmcsd_card *card;
rt_list_t list;
struct rt_device dev;
struct dfs_partition part;
struct rt_device_blk_geometry geometry;
rt_size_t max_req_size;
};
#ifndef RT_MMCSD_MAX_PARTITION
#define RT_MMCSD_MAX_PARTITION 16
#endif
#define RT_GPT_PARTITION_MAX 128
static int __send_status(struct rt_mmcsd_card *card, rt_uint32_t *status, unsigned retries)
{
int err;
struct rt_mmcsd_cmd cmd;
cmd.busy_timeout = 0;
cmd.cmd_code = SEND_STATUS;
cmd.arg = card->rca << 16;
cmd.flags = RESP_R1 | CMD_AC;
err = mmcsd_send_cmd(card->host, &cmd, retries);
if (err)
return err;
if (status)
*status = cmd.resp[0];
return 0;
}
static int card_busy_detect(struct rt_mmcsd_card *card, unsigned int timeout_ms,
rt_uint32_t *resp_errs)
{
int timeout = rt_tick_from_millisecond(timeout_ms);
int err = 0;
rt_uint32_t status;
rt_tick_t start;
start = rt_tick_get();
do
{
rt_bool_t out = (int)(rt_tick_get() - start) > timeout;
err = __send_status(card, &status, 5);
if (err)
{
LOG_E("error %d requesting status", err);
return err;
}
/* Accumulate any response error bits seen */
if (resp_errs)
*resp_errs |= status;
if (out)
{
LOG_E("wait card busy timeout");
return -RT_ETIMEOUT;
}
/*
* Some cards mishandle the status bits,
* so make sure to check both the busy
* indication and the card state.
*/
}
while (!(status & R1_READY_FOR_DATA) ||
(R1_CURRENT_STATE(status) == 7));
return err;
}
rt_int32_t mmcsd_num_wr_blocks(struct rt_mmcsd_card *card)
{
rt_int32_t err;
rt_uint32_t blocks;
struct rt_mmcsd_req req;
struct rt_mmcsd_cmd cmd;
struct rt_mmcsd_data data;
rt_uint32_t timeout_us;
rt_memset(&cmd, 0, sizeof(struct rt_mmcsd_cmd));
cmd.cmd_code = APP_CMD;
cmd.arg = card->rca << 16;
cmd.flags = RESP_SPI_R1 | RESP_R1 | CMD_AC;
err = mmcsd_send_cmd(card->host, &cmd, 0);
if (err)
return -RT_ERROR;
if (!controller_is_spi(card->host) && !(cmd.resp[0] & R1_APP_CMD))
return -RT_ERROR;
rt_memset(&cmd, 0, sizeof(struct rt_mmcsd_cmd));
cmd.cmd_code = SD_APP_SEND_NUM_WR_BLKS;
cmd.arg = 0;
cmd.flags = RESP_SPI_R1 | RESP_R1 | CMD_ADTC;
rt_memset(&data, 0, sizeof(struct rt_mmcsd_data));
data.timeout_ns = card->tacc_ns * 100;
data.timeout_clks = card->tacc_clks * 100;
timeout_us = data.timeout_ns / 1000;
timeout_us += data.timeout_clks * 1000 /
(card->host->io_cfg.clock / 1000);
if (timeout_us > 100000)
{
data.timeout_ns = 100000000;
data.timeout_clks = 0;
}
data.blksize = 4;
data.blks = 1;
data.flags = DATA_DIR_READ;
data.buf = &blocks;
rt_memset(&req, 0, sizeof(struct rt_mmcsd_req));
req.cmd = &cmd;
req.data = &data;
mmcsd_send_request(card->host, &req);
if (cmd.err || data.err)
return -RT_ERROR;
return blocks;
}
static rt_err_t rt_mmcsd_req_blk(struct rt_mmcsd_card *card,
rt_uint32_t sector,
void *buf,
rt_size_t blks,
rt_uint8_t dir)
{
struct rt_mmcsd_cmd cmd, stop;
struct rt_mmcsd_data data;
struct rt_mmcsd_req req;
struct rt_mmcsd_host *host = card->host;
rt_uint32_t r_cmd, w_cmd;
mmcsd_host_lock(host);
rt_memset(&req, 0, sizeof(struct rt_mmcsd_req));
rt_memset(&cmd, 0, sizeof(struct rt_mmcsd_cmd));
rt_memset(&stop, 0, sizeof(struct rt_mmcsd_cmd));
rt_memset(&data, 0, sizeof(struct rt_mmcsd_data));
req.cmd = &cmd;
req.data = &data;
cmd.arg = sector;
if (!(card->flags & CARD_FLAG_SDHC))
{
cmd.arg <<= 9;
}
cmd.flags = RESP_SPI_R1 | RESP_R1 | CMD_ADTC;
data.blksize = SECTOR_SIZE;
data.blks = blks;
if (blks > 1)
{
if (!controller_is_spi(card->host) || !dir)
{
req.stop = &stop;
stop.cmd_code = STOP_TRANSMISSION;
stop.arg = 0;
stop.flags = RESP_SPI_R1B | RESP_R1B | CMD_AC;
}
r_cmd = READ_MULTIPLE_BLOCK;
w_cmd = WRITE_MULTIPLE_BLOCK;
}
else
{
req.stop = RT_NULL;
r_cmd = READ_SINGLE_BLOCK;
w_cmd = WRITE_BLOCK;
}
if (!controller_is_spi(card->host) && (card->flags & 0x8000))
{
/* last request is WRITE,need check busy */
card_busy_detect(card, 10000, RT_NULL);
}
if (!dir)
{
cmd.cmd_code = r_cmd;
data.flags |= DATA_DIR_READ;
card->flags &= 0x7fff;
}
else
{
cmd.cmd_code = w_cmd;
data.flags |= DATA_DIR_WRITE;
card->flags |= 0x8000;
}
mmcsd_set_data_timeout(&data, card);
data.buf = buf;
mmcsd_send_request(host, &req);
mmcsd_host_unlock(host);
if (cmd.err || data.err || stop.err)
{
LOG_E("mmcsd request blocks error");
LOG_E("%d,%d,%d, 0x%08x,0x%08x",
cmd.err, data.err, stop.err, data.flags, sector);
return -RT_ERROR;
}
return RT_EOK;
}
static rt_err_t rt_mmcsd_init(rt_device_t dev)
{
return RT_EOK;
}
static rt_err_t rt_mmcsd_open(rt_device_t dev, rt_uint16_t oflag)
{
return RT_EOK;
}
static rt_err_t rt_mmcsd_close(rt_device_t dev)
{
return RT_EOK;
}
static rt_err_t rt_mmcsd_control(rt_device_t dev, int cmd, void *args)
{
struct mmcsd_blk_device *blk_dev = (struct mmcsd_blk_device *)dev->user_data;
switch (cmd)
{
case RT_DEVICE_CTRL_BLK_GETGEOME:
rt_memcpy(args, &blk_dev->geometry, sizeof(struct rt_device_blk_geometry));
break;
case RT_DEVICE_CTRL_BLK_PARTITION:
rt_memcpy(args, &blk_dev->part, sizeof(struct dfs_partition));
default:
break;
}
return RT_EOK;
}
static rt_ssize_t rt_mmcsd_read(rt_device_t dev,
rt_off_t pos,
void *buffer,
rt_size_t size)
{
rt_err_t err = 0;
rt_size_t offset = 0;
rt_size_t req_size = 0;
rt_size_t remain_size = size;
void *rd_ptr = (void *)buffer;
struct mmcsd_blk_device *blk_dev = (struct mmcsd_blk_device *)dev->user_data;
struct dfs_partition *part = &blk_dev->part;
if (dev == RT_NULL)
{
rt_set_errno(-EINVAL);
return 0;
}
rt_sem_take(part->lock, RT_WAITING_FOREVER);
while (remain_size)
{
req_size = (remain_size > blk_dev->max_req_size) ? blk_dev->max_req_size : remain_size;
err = rt_mmcsd_req_blk(blk_dev->card, part->offset + pos + offset, rd_ptr, req_size, 0);
if (err)
break;
offset += req_size;
rd_ptr = (void *)((rt_uint8_t *)rd_ptr + (req_size << 9));
remain_size -= req_size;
}
rt_sem_release(part->lock);
/* the length of reading must align to SECTOR SIZE */
if (err)
{
rt_set_errno(-EIO);
return 0;
}
return size - remain_size;
}
static rt_ssize_t rt_mmcsd_write(rt_device_t dev,
rt_off_t pos,
const void *buffer,
rt_size_t size)
{
rt_err_t err = 0;
rt_size_t offset = 0;
rt_size_t req_size = 0;
rt_size_t remain_size = size;
void *wr_ptr = (void *)buffer;
struct mmcsd_blk_device *blk_dev = (struct mmcsd_blk_device *)dev->user_data;
struct dfs_partition *part = &blk_dev->part;
if (dev == RT_NULL)
{
rt_set_errno(-EINVAL);
return 0;
}
rt_sem_take(part->lock, RT_WAITING_FOREVER);
while (remain_size)
{
req_size = (remain_size > blk_dev->max_req_size) ? blk_dev->max_req_size : remain_size;
err = rt_mmcsd_req_blk(blk_dev->card, part->offset + pos + offset, wr_ptr, req_size, 1);
if (err)
break;
offset += req_size;
wr_ptr = (void *)((rt_uint8_t *)wr_ptr + (req_size << 9));
remain_size -= req_size;
}
rt_sem_release(part->lock);
/* the length of reading must align to SECTOR SIZE */
if (err)
{
rt_set_errno(-EIO);
return 0;
}
return size - remain_size;
}
static rt_int32_t mmcsd_set_blksize(struct rt_mmcsd_card *card)
{
struct rt_mmcsd_cmd cmd;
int err;
/* Block-addressed cards ignore MMC_SET_BLOCKLEN. */
if (card->flags & CARD_FLAG_SDHC)
return 0;
mmcsd_host_lock(card->host);
cmd.cmd_code = SET_BLOCKLEN;
cmd.arg = 512;
cmd.flags = RESP_SPI_R1 | RESP_R1 | CMD_AC;
err = mmcsd_send_cmd(card->host, &cmd, 5);
mmcsd_host_unlock(card->host);
if (err)
{
LOG_E("MMCSD: unable to set block size to %d: %d", cmd.arg, err);
return -RT_ERROR;
}
return 0;
}
rt_int32_t read_lba(struct rt_mmcsd_card *card, size_t lba, uint8_t *buffer, size_t count)
{
rt_uint8_t status = 0;
status = mmcsd_set_blksize(card);
if (status)
{
return status;
}
rt_thread_mdelay(1);
status = rt_mmcsd_req_blk(card, lba, buffer, count, 0);
return status;
}
#ifdef RT_USING_DEVICE_OPS
const static struct rt_device_ops mmcsd_blk_ops =
{
rt_mmcsd_init,
rt_mmcsd_open,
rt_mmcsd_close,
rt_mmcsd_read,
rt_mmcsd_write,
rt_mmcsd_control
};
#endif
rt_int32_t gpt_device_probe(struct rt_mmcsd_card *card)
{
rt_int32_t err = RT_EOK;
rt_uint8_t i, status;
char dname[10];
char sname[16];
struct mmcsd_blk_device *blk_dev = RT_NULL;
blk_dev = rt_calloc(1, sizeof(struct mmcsd_blk_device));
if (!blk_dev)
{
LOG_E("mmcsd:malloc memory failed!");
return -1;
}
blk_dev->max_req_size = BLK_MIN((card->host->max_dma_segs *
card->host->max_seg_size) >> 9,
(card->host->max_blk_count *
card->host->max_blk_size) >> 9);
blk_dev->part.offset = 0;
blk_dev->part.size = 0;
rt_snprintf(sname, sizeof(sname) - 1, "sem_%s%d", card->host->name, 0);
blk_dev->part.lock = rt_sem_create(sname, 1, RT_IPC_FLAG_FIFO);
/* register mmcsd device */
blk_dev->dev.type = RT_Device_Class_Block;
#ifdef RT_USING_DEVICE_OPS
blk_dev->dev.ops = &mmcsd_blk_ops;
#else
blk_dev->dev.init = rt_mmcsd_init;
blk_dev->dev.open = rt_mmcsd_open;
blk_dev->dev.close = rt_mmcsd_close;
blk_dev->dev.read = rt_mmcsd_read;
blk_dev->dev.write = rt_mmcsd_write;
blk_dev->dev.control = rt_mmcsd_control;
#endif
blk_dev->card = card;
blk_dev->geometry.bytes_per_sector = 1 << 9;
blk_dev->geometry.block_size = card->card_blksize;
blk_dev->geometry.sector_count =
card->card_capacity * (1024 / 512);
blk_dev->dev.user_data = blk_dev;
rt_device_register(&(blk_dev->dev), card->host->name,
RT_DEVICE_FLAG_RDWR);
rt_list_insert_after(&blk_devices, &blk_dev->list);
for (i = 0; i < RT_GPT_PARTITION_MAX; i++)
{
blk_dev = rt_calloc(1, sizeof(struct mmcsd_blk_device));
if (!blk_dev)
{
LOG_E("mmcsd:malloc memory failed!");
break;
}
blk_dev->max_req_size = BLK_MIN((card->host->max_dma_segs *
card->host->max_seg_size) >> 9,
(card->host->max_blk_count *
card->host->max_blk_size) >> 9);
/* get the first partition */
status = gpt_get_partition_param(card, &blk_dev->part, i);
if (status == RT_EOK)
{
rt_snprintf(dname, sizeof(dname) - 1, "%s%d", card->host->name, i);
rt_snprintf(sname, sizeof(sname) - 1, "sem_%s%d", card->host->name, i + 1);
blk_dev->part.lock = rt_sem_create(sname, 1, RT_IPC_FLAG_FIFO);
/* register mmcsd device */
blk_dev->dev.type = RT_Device_Class_Block;
#ifdef RT_USING_DEVICE_OPS
blk_dev->dev.ops = &mmcsd_blk_ops;
#else
blk_dev->dev.init = rt_mmcsd_init;
blk_dev->dev.open = rt_mmcsd_open;
blk_dev->dev.close = rt_mmcsd_close;
blk_dev->dev.read = rt_mmcsd_read;
blk_dev->dev.write = rt_mmcsd_write;
blk_dev->dev.control = rt_mmcsd_control;
#endif
blk_dev->card = card;
blk_dev->geometry.bytes_per_sector = 1 << 9;
blk_dev->geometry.block_size = card->card_blksize;
blk_dev->geometry.sector_count = blk_dev->part.size;
blk_dev->dev.user_data = blk_dev;
rt_device_register(&(blk_dev->dev), dname,
RT_DEVICE_FLAG_RDWR);
rt_list_insert_after(&blk_devices, &blk_dev->list);
}
else
{
rt_free(blk_dev);
blk_dev = RT_NULL;
break;
}
#ifdef RT_USING_DFS_MNTTABLE
if (blk_dev)
{
LOG_I("try to mount file system!");
/* try to mount file system on this block device */
dfs_mount_device(&(blk_dev->dev));
}
#endif
}
gpt_free();
return err;
}
rt_int32_t mbr_device_probe(struct rt_mmcsd_card *card)
{
rt_int32_t err = 0;
rt_uint8_t i, status;
rt_uint8_t *sector;
char dname[10];
char sname[16];
struct mmcsd_blk_device *blk_dev = RT_NULL;
err = mmcsd_set_blksize(card);
if (err)
{
return err;
}
rt_thread_mdelay(1);
/* get the first sector to read partition table */
sector = (rt_uint8_t *)rt_malloc(SECTOR_SIZE);
if (sector == RT_NULL)
{
LOG_E("allocate partition sector buffer failed!");
return -RT_ENOMEM;
}
status = rt_mmcsd_req_blk(card, 0, sector, 1, 0);
if (status == RT_EOK)
{
blk_dev = rt_calloc(1, sizeof(struct mmcsd_blk_device));
if (!blk_dev)
{
LOG_E("mmcsd:malloc memory failed!");
return -1;
}
blk_dev->max_req_size = BLK_MIN((card->host->max_dma_segs *
card->host->max_seg_size) >> 9,
(card->host->max_blk_count *
card->host->max_blk_size) >> 9);
blk_dev->part.offset = 0;
blk_dev->part.size = 0;
rt_snprintf(sname, sizeof(sname) - 1, "sem_%s%d", card->host->name, 0);
blk_dev->part.lock = rt_sem_create(sname, 1, RT_IPC_FLAG_FIFO);
/* register mmcsd device */
blk_dev->dev.type = RT_Device_Class_Block;
#ifdef RT_USING_DEVICE_OPS
blk_dev->dev.ops = &mmcsd_blk_ops;
#else
blk_dev->dev.init = rt_mmcsd_init;
blk_dev->dev.open = rt_mmcsd_open;
blk_dev->dev.close = rt_mmcsd_close;
blk_dev->dev.read = rt_mmcsd_read;
blk_dev->dev.write = rt_mmcsd_write;
blk_dev->dev.control = rt_mmcsd_control;
#endif
blk_dev->card = card;
blk_dev->geometry.bytes_per_sector = 1 << 9;
blk_dev->geometry.block_size = card->card_blksize;
blk_dev->geometry.sector_count =
card->card_capacity * (1024 / 512);
blk_dev->dev.user_data = blk_dev;
rt_device_register(&(blk_dev->dev), card->host->name,
RT_DEVICE_FLAG_RDWR);
rt_list_insert_after(&blk_devices, &blk_dev->list);
for (i = 0; i < RT_MMCSD_MAX_PARTITION; i++)
{
blk_dev = rt_calloc(1, sizeof(struct mmcsd_blk_device));
if (!blk_dev)
{
LOG_E("mmcsd:malloc memory failed!");
break;
}
blk_dev->max_req_size = BLK_MIN((card->host->max_dma_segs *
card->host->max_seg_size) >> 9,
(card->host->max_blk_count *
card->host->max_blk_size) >> 9);
/* get the first partition */
status = dfs_filesystem_get_partition(&blk_dev->part, sector, i);
if (status == RT_EOK)
{
rt_snprintf(dname, sizeof(dname) - 1, "%s%d", card->host->name, i);
rt_snprintf(sname, sizeof(sname) - 1, "sem_%s%d", card->host->name, i + 1);
blk_dev->part.lock = rt_sem_create(sname, 1, RT_IPC_FLAG_FIFO);
/* register mmcsd device */
blk_dev->dev.type = RT_Device_Class_Block;
#ifdef RT_USING_DEVICE_OPS
blk_dev->dev.ops = &mmcsd_blk_ops;
#else
blk_dev->dev.init = rt_mmcsd_init;
blk_dev->dev.open = rt_mmcsd_open;
blk_dev->dev.close = rt_mmcsd_close;
blk_dev->dev.read = rt_mmcsd_read;
blk_dev->dev.write = rt_mmcsd_write;
blk_dev->dev.control = rt_mmcsd_control;
#endif
blk_dev->card = card;
blk_dev->geometry.bytes_per_sector = 1 << 9;
blk_dev->geometry.block_size = card->card_blksize;
blk_dev->geometry.sector_count = blk_dev->part.size;
blk_dev->dev.user_data = blk_dev;
rt_device_register(&(blk_dev->dev), dname,
RT_DEVICE_FLAG_RDWR);
rt_list_insert_after(&blk_devices, &blk_dev->list);
}
else
{
rt_free(blk_dev);
blk_dev = RT_NULL;
break;
}
#ifdef RT_USING_DFS_MNTTABLE
if (blk_dev)
{
LOG_I("try to mount file system!");
/* try to mount file system on this block device */
dfs_mount_device(&(blk_dev->dev));
}
#endif
}
}
else
{
LOG_E("read mmcsd first sector failed");
err = -RT_ERROR;
}
/* release sector buffer */
rt_free(sector);
return err;
}
rt_int32_t rt_mmcsd_blk_probe(struct rt_mmcsd_card *card)
{
uint32_t err = 0;
LOG_D("probe mmcsd block device!");
if (check_gpt(card) != 0)
{
err = gpt_device_probe(card);
}
else
{
err = mbr_device_probe(card);
}
return err;
}
void rt_mmcsd_blk_remove(struct rt_mmcsd_card *card)
{
rt_list_t *l, *n;
struct mmcsd_blk_device *blk_dev;
for (l = (&blk_devices)->next, n = l->next; l != &blk_devices; l = n, n = n->next)
{
blk_dev = (struct mmcsd_blk_device *)rt_list_entry(l, struct mmcsd_blk_device, list);
if (blk_dev->card == card)
{
/* unmount file system */
const char *mounted_path = dfs_filesystem_get_mounted_path(&(blk_dev->dev));
if (mounted_path)
{
dfs_unmount(mounted_path);
LOG_D("unmount file system %s for device %s.\r\n", mounted_path, blk_dev->dev.parent.name);
}
rt_sem_delete(blk_dev->part.lock);
rt_device_unregister(&blk_dev->dev);
rt_list_remove(&blk_dev->list);
rt_free(blk_dev);
}
}
}
/*
* This function will initialize block device on the mmc/sd.
*
* @deprecated since 2.1.0, this function does not need to be invoked
* in the system initialization.
*/
int rt_mmcsd_blk_init(void)
{
/* nothing */
return 0;
}