263 lines
12 KiB
C++
263 lines
12 KiB
C++
#include "mapper.h"
|
|
|
|
#include <memory>
|
|
#include <mutex>
|
|
|
|
#include "common/log/log.h"
|
|
#include "common/math/fitting.h"
|
|
#include "common/pcl/pcl_utils.h"
|
|
#include "oh_my_loam/visualizer/mapper_visualizer.h"
|
|
|
|
namespace oh_my_loam {
|
|
|
|
namespace {
|
|
using common::YAMLConfig;
|
|
using LineCoeff = Eigen::Matrix<double, 6, 1>; // 定义直线系数类型,包含 6 个元素
|
|
} // namespace
|
|
|
|
// 初始化地图参数和设置
|
|
bool Mapper::Init() {
|
|
const auto &config = YAMLConfig::Instance()->config(); // 获取配置文件
|
|
config_ = config["mapper_config"]; // 读取映射配置
|
|
is_vis_ = config_["vis"].as<bool>(); // 是否启用可视化
|
|
verbose_ = config_["verbose"].as<bool>(); // 是否输出详细日志
|
|
AINFO << "Mapping visualizer: " << (is_vis_ ? "ON" : "OFF"); // 打印可视化状态
|
|
map_shape_ = YAMLConfig::GetSeq<int>(config_["map_shape"]); // 获取地图的形状
|
|
submap_shape_ = YAMLConfig::GetSeq<int>(config_["submap_shape"]); // 获取子地图的形状
|
|
map_step_ = config_["map_step"].as<double>(); // 获取地图分辨率
|
|
corn_map_.reset(new Map(map_shape_, map_step_)); // 初始化角点地图
|
|
surf_map_.reset(new Map(map_shape_, map_step_)); // 初始化表面地图
|
|
if (is_vis_) visualizer_.reset(new MapperVisualizer); // 如果启用可视化,初始化可视化器
|
|
return true;
|
|
}
|
|
|
|
// 重置地图
|
|
void Mapper::Reset() {
|
|
SetState(UN_INIT); // 设置状态为未初始化
|
|
}
|
|
|
|
// 处理每一帧点云数据
|
|
void Mapper::Process(double timestamp, const TPointCloudConstPtr &cloud_corn,
|
|
const TPointCloudConstPtr &cloud_surf,
|
|
const common::Pose3d &pose_curr2odom,
|
|
common::Pose3d *const pose_curr2map) {
|
|
if (GetState() == UN_INIT) { // 如果地图尚未初始化
|
|
pose_curr2map->SetIdentity(); // 设置当前位姿为单位矩阵
|
|
pose_odom2map_.SetIdentity(); // 设置里程计到地图的变换为单位矩阵
|
|
UpdateMap(*pose_curr2map, cloud_corn, cloud_surf); // 更新地图
|
|
SetState(DONE); // 设置状态为已完成
|
|
AINFO << "Mapper initialized..."; // 打印初始化完成信息
|
|
return;
|
|
}
|
|
if (GetState() == DONE) { // 如果地图已初始化
|
|
thread_.reset(new std::thread(&Mapper::Run, this, cloud_corn, cloud_surf,
|
|
pose_curr2odom)); // 启动新的线程来运行地图更新
|
|
if (thread_->joinable()) thread_->detach(); // 分离线程
|
|
}
|
|
std::lock_guard<std::mutex> lock(state_mutex_); // 锁住状态,避免多线程竞争
|
|
*pose_curr2map = pose_odom2map_ * pose_curr2odom; // 计算当前位姿到地图的变换
|
|
AINFO << "Pose_curr2map = " << pose_curr2map->ToString(); // 打印位姿
|
|
}
|
|
|
|
// 执行映射操作
|
|
void Mapper::Run(const TPointCloudConstPtr &cloud_corn,
|
|
const TPointCloudConstPtr &cloud_surf,
|
|
const common::Pose3d &pose_curr2odom) {
|
|
BLOCK_TIMER_START;
|
|
SetState(RUNNING); // 设置状态为运行中
|
|
common::Pose3d pose_curr2map = pose_odom2map_ * pose_curr2odom; // 计算当前位姿到地图的变换
|
|
TPoint t_vec(pose_curr2map.t_vec().x(), pose_curr2map.t_vec().y(),
|
|
pose_curr2map.t_vec().z()); // 提取平移向量
|
|
AdjustMap(t_vec); // 调整地图
|
|
TPointCloudPtr cloud_corn_map =
|
|
corn_map_->GetSubmapPoints(t_vec, submap_shape_); // 获取角点子地图
|
|
TPointCloudPtr cloud_surf_map =
|
|
surf_map_->GetSubmapPoints(t_vec, submap_shape_); // 获取表面子地图
|
|
kdtree_corn_.setInputCloud(cloud_corn_map); // 设置角点的kdtree
|
|
kdtree_surf_.setInputCloud(cloud_surf_map); // 设置表面点云的kdtree
|
|
std::vector<PointLineCoeffPair> pl_pairs;
|
|
std::vector<PointPlaneCoeffPair> pp_pairs;
|
|
for (int i = 0; i < config_["icp_iter_num"].as<int>(); ++i) { // 进行ICP迭代
|
|
std::vector<PointLineCoeffPair>().swap(pl_pairs);
|
|
std::vector<PointPlaneCoeffPair>().swap(pp_pairs);
|
|
MatchCorn(cloud_corn, pose_curr2map, &pl_pairs); // 匹配角点
|
|
MatchSurf(cloud_surf, pose_curr2map, &pp_pairs); // 匹配表面点
|
|
AINFO_IF(verbose_) << "Iter " << i
|
|
<< ": matched num: point2line = " << pl_pairs.size()
|
|
<< ", point2plane = " << pp_pairs.size(); // 输出匹配结果
|
|
if (pl_pairs.size() + pp_pairs.size() <
|
|
config_["min_correspondence_num"].as<size_t>()) { // 如果匹配点对太少,跳过当前迭代
|
|
AWARN << "Too less correspondence: " << pl_pairs.size() << " + "
|
|
<< pp_pairs.size();
|
|
continue;
|
|
}
|
|
PoseSolver solver(pose_curr2map); // 创建姿态求解器
|
|
for (const auto &pair : pl_pairs) {
|
|
solver.AddPointLineCoeffPair(pair, 1.0); // 添加点-直线配对
|
|
}
|
|
for (const auto &pair : pp_pairs) {
|
|
solver.AddPointPlaneCoeffPair(pair, 1.0); // 添加点-平面配对
|
|
}
|
|
if (!solver.Solve(config_["solve_iter_num"].as<int>(), verbose_,
|
|
&pose_curr2map)) { // 解决优化问题
|
|
AWARN << "Mapping solve: no_convergence";
|
|
}
|
|
AINFO_IF(verbose_) << "Odometer::ICP: iter_" << i << ": "
|
|
<< BLOCK_TIMER_STOP_FMT;
|
|
}
|
|
UpdateMap(pose_curr2map, cloud_corn, cloud_surf); // 更新地图
|
|
std::lock_guard<std::mutex> lock(state_mutex_); // 锁住状态,避免多线程竞争
|
|
pose_odom2map_ = pose_curr2map * pose_curr2odom.Inv(); // 计算新的里程计到地图的变换
|
|
AINFO << "Pose_curr2map = " << pose_curr2map.ToString(); // 打印位姿
|
|
AUSER << "Mapper::Run: " << BLOCK_TIMER_STOP_FMT;
|
|
if (is_vis_) Visualize(pl_pairs, pp_pairs, pose_curr2odom, pose_curr2map); // 可视化结果
|
|
state_ = DONE; // 设置状态为已完成,注意死锁问题
|
|
}
|
|
|
|
// 匹配角点
|
|
void Mapper::MatchCorn(const TPointCloudConstPtr &cloud_curr,
|
|
const common::Pose3d &pose_curr2map,
|
|
std::vector<PointLineCoeffPair> *const pairs) const {
|
|
if (kdtree_corn_.getInputCloud()->empty()) return; // 如果输入点云为空,返回
|
|
std::vector<int> indices;
|
|
std::vector<float> dists;
|
|
int nearest_neighbor_k = config_["nearest_neighbor_k"].as<int>(); // 获取最近邻数目
|
|
float neighbor_point_dist_sq_th =
|
|
config_["neighbor_point_dist_sq_th"].as<float>(); // 获取邻点距离阈值
|
|
for (const auto &pt : *cloud_curr) { // 遍历当前点云
|
|
TPoint pt_query = common::TransformPoint(pose_curr2map, pt); // 变换当前点
|
|
if (kdtree_corn_.nearestKSearch(pt_query, nearest_neighbor_k, indices,
|
|
dists) != nearest_neighbor_k) {
|
|
continue;
|
|
}
|
|
if (dists.back() > neighbor_point_dist_sq_th) continue; // 如果距离太大,跳过
|
|
TPointCloud neighbor_pts;
|
|
pcl::copyPointCloud(*kdtree_corn_.getInputCloud(), indices, neighbor_pts); // 获取邻域点云
|
|
double fit_score = 0.0;
|
|
LineCoeff coeff = common::FitLine3D(neighbor_pts, &fit_score); // 拟合直线
|
|
if (fit_score < config_["min_line_fit_score"].as<double>()) continue; // 如果拟合分数太低,跳过
|
|
pairs->emplace_back(pt, coeff); // 添加点-直线配对
|
|
}
|
|
}
|
|
|
|
// 匹配表面点
|
|
void Mapper::MatchSurf(const TPointCloudConstPtr &cloud_curr,
|
|
const common::Pose3d &pose_curr2map,
|
|
std::vector<PointPlaneCoeffPair> *const pairs) const {
|
|
if (kdtree_surf_.getInputCloud()->empty()) return; // 如果输入点云为空,返回
|
|
std::vector<int> indices;
|
|
std::vector<float> dists;
|
|
int nearest_neighbor_k = config_["nearest_neighbor_k"].as<int>(); // 获取最近邻数目
|
|
float neighbor_point_dist_sq_th =
|
|
config_["neighbor_point_dist_sq_th"].as<float>(); // 获取邻点距离阈值
|
|
for (const auto &pt : *cloud_curr) { // 遍历当前点云
|
|
TPoint pt_query = common::TransformPoint(pose_curr2map, pt); // 变换当前点
|
|
if (kdtree_surf_.nearestKSearch(pt_query, nearest_neighbor_k, indices,
|
|
dists) != nearest_neighbor_k) {
|
|
continue;
|
|
}
|
|
if (dists.back() > neighbor_point_dist_sq_th) continue; // 如果距离太大,跳过
|
|
TPointCloud neighbor_pts;
|
|
pcl::copyPointCloud(*kdtree_surf_.getInputCloud(), indices, neighbor_pts); // 获取邻域点云
|
|
double fit_score = 0.0;
|
|
Eigen::Vector4d coeff = common::FitPlane(neighbor_pts, &fit_score); // 拟合平面
|
|
if (fit_score < config_["min_plane_fit_score"].as<double>()) continue; // 如果拟合分数太低,跳过
|
|
TPoint pt1(coeff[0], coeff[1], coeff[2], 0.0); // 生成平面上的点
|
|
pairs->emplace_back(pt, coeff);
|
|
}
|
|
}
|
|
|
|
void Mapper::AdjustMap(const TPoint ¢er) {
|
|
Index index = corn_map_->GetIndex(center);
|
|
int min_idx_z = submap_shape_[0] / 2 + 1;
|
|
int max_idx_z = map_shape_[0] - min_idx_z - 1;
|
|
if (index.k < min_idx_z) {
|
|
corn_map_->ShiftZ(index.k - min_idx_z);
|
|
surf_map_->ShiftZ(index.k - min_idx_z);
|
|
}
|
|
if (index.k > max_idx_z) {
|
|
corn_map_->ShiftZ(index.k - max_idx_z);
|
|
surf_map_->ShiftZ(index.k - max_idx_z);
|
|
}
|
|
int min_idx_y = submap_shape_[0] / 2 + 1;
|
|
int max_idx_y = map_shape_[1] - min_idx_y - 1;
|
|
if (index.j < min_idx_y) {
|
|
corn_map_->ShiftY(index.j - min_idx_y);
|
|
surf_map_->ShiftY(index.j - min_idx_y);
|
|
}
|
|
if (index.j > max_idx_y) {
|
|
corn_map_->ShiftY(index.j - max_idx_y);
|
|
surf_map_->ShiftY(index.j - max_idx_y);
|
|
}
|
|
int min_idx_x = submap_shape_[0] / 2 + 1;
|
|
int max_idx_x = map_shape_[2] - min_idx_x - 1;
|
|
if (index.i < min_idx_x) {
|
|
corn_map_->ShiftX(index.i - min_idx_x);
|
|
surf_map_->ShiftX(index.i - min_idx_x);
|
|
}
|
|
if (index.i > max_idx_x) {
|
|
corn_map_->ShiftX(index.i - max_idx_x);
|
|
surf_map_->ShiftX(index.i - max_idx_x);
|
|
}
|
|
}
|
|
|
|
void Mapper::UpdateMap(const common::Pose3d &pose_curr2map,
|
|
const TPointCloudConstPtr &cloud_corn,
|
|
const TPointCloudConstPtr &cloud_surf) {
|
|
auto update_map = [&](const TPointCloudConstPtr &cloud,
|
|
Map *const map /* const TPointCloudPtr &cloud_map*/) {
|
|
TPointCloudPtr cloud_trans(new TPointCloud);
|
|
common::TransformPointCloud(pose_curr2map, *cloud, cloud_trans.get());
|
|
std::vector<Index> indices;
|
|
map->AddPoints(cloud_trans, &indices);
|
|
map->Downsample(indices, config_["downsample_voxel_size"].as<double>());
|
|
};
|
|
std::lock_guard<std::mutex> lock(map_mutex_);
|
|
update_map(cloud_corn, corn_map_.get());
|
|
update_map(cloud_surf, surf_map_.get());
|
|
}
|
|
|
|
TPointCloudPtr Mapper::GetMapCloudCorn() const {
|
|
std::lock_guard<std::mutex> lock(map_mutex_);
|
|
return corn_map_->GetAllPoints();
|
|
}
|
|
|
|
TPointCloudPtr Mapper::GetMapCloudSurf() const {
|
|
std::lock_guard<std::mutex> lock(map_mutex_);
|
|
return surf_map_->GetAllPoints();
|
|
}
|
|
|
|
TPointCloudPtr Mapper::GetMapCloud() const {
|
|
TPointCloudPtr map_points(new TPointCloud);
|
|
std::lock_guard<std::mutex> lock(map_mutex_);
|
|
*map_points += *corn_map_->GetAllPoints();
|
|
*map_points += *surf_map_->GetAllPoints();
|
|
return map_points;
|
|
}
|
|
|
|
Mapper::State Mapper::GetState() const {
|
|
std::lock_guard<std::mutex> lock(state_mutex_);
|
|
return state_;
|
|
}
|
|
|
|
void Mapper::SetState(State state) {
|
|
std::lock_guard<std::mutex> lock(state_mutex_);
|
|
state_ = state;
|
|
}
|
|
|
|
void Mapper::Visualize(const std::vector<PointLineCoeffPair> &pl_pairs,
|
|
const std::vector<PointPlaneCoeffPair> &pp_pairs,
|
|
const common::Pose3d &pose_curr2odom,
|
|
const common::Pose3d &pose_curr2map, double timestamp) {
|
|
std::shared_ptr<MapperVisFrame> frame(new MapperVisFrame);
|
|
frame->timestamp = timestamp;
|
|
frame->cloud_corn = kdtree_corn_.getInputCloud()->makeShared();
|
|
frame->cloud_surf = kdtree_surf_.getInputCloud()->makeShared();
|
|
frame->pl_pairs = pl_pairs;
|
|
frame->pp_pairs = pp_pairs;
|
|
frame->pose_curr2odom = pose_curr2odom;
|
|
frame->pose_curr2map = pose_curr2map;
|
|
visualizer_->Render(frame);
|
|
}
|
|
|
|
} // namespace oh_my_loam
|